Displaying publications 61 - 80 of 90 in total

Abstract:
Sort:
  1. Peng TL, Armiladiana MM, Ruhil HH, Maizan M, Choong SS
    Vet Parasitol Reg Stud Reports, 2019 08;17:100310.
    PMID: 31303218 DOI: 10.1016/j.vprsr.2019.100310
    The occurrence of Setaria digitata in a horse is reported for the first time in Malaysia. An 8-year-old Thoroughbred cross mare was referred to the University Veterinary Clinic with the primary complaint of corneal opacity and excessive eye discharge. After initial treatment with Terramycin eye ointment, corneal opacity cleared partially to reveal a moving thread-like cylindrical worm in the anterior chamber of the eye. The parasite was successfully removed surgically, and examination under the light microscope revealed that the isolated worm (length = 45 mm) was a 5th stage larva of S. digitata based on morphological criteria. Confirmation of the species of the worm was through molecular methods. The 12S rRNA gene was PCR-amplified, and the purified amplicon was directly sequenced. Phylogenetic analyses revealed that the isolated roundworm showed 100% sequence similarity with that of S. digitata in NCBI GenBank database (Accession no.: KY284626.1). This report is the first confirmed case of equine ocular setariasis by S. digitata in Malaysia. The current study provides evidence that S. digitata is an etiological agent of ocular infection and its presence in Malaysia.
    Matched MeSH terms: Horses
  2. Phillips MJ, Shazwani Zakaria S
    Mol Phylogenet Evol, 2021 05;158:107082.
    PMID: 33482383 DOI: 10.1016/j.ympev.2021.107082
    Mitochondrial genomes provided the first widely used sequences that were sufficiently informative to resolve relationships among animals across a wide taxonomic domain, from within species to between phyla. However, mitogenome studies supported several anomalous relationships and fell partly out of favour as sequencing multiple, independent nuclear loci proved to be highly effective. A tendency to blame mitochondrial DNA (mtDNA) has overshadowed efforts to understand and ameliorate underlying model misspecification. Here we find that influential assessments of the infidelity of mitogenome phylogenies have often been overstated, but nevertheless, substitution saturation and compositional non-stationarity substantially mislead reconstruction. We show that RY coding the mtDNA, excluding protein-coding 3rd codon sites, partitioning models based on amino acid hydrophobicity and enhanced taxon sampling improve the accuracy of mitogenomic phylogeny reconstruction for placental mammals, almost to the level of multi-gene nuclear datasets. Indeed, combined analysis of mtDNA with 3-fold longer nuclear sequence data either maintained or improved upon the nuclear support for all generally accepted clades, even those that mtDNA alone did not favour, thus indicating "hidden support". Confident mtDNA phylogeny reconstruction is especially important for understanding the evolutionary dynamics of mitochondria themselves, and for merging extinct taxa into the tree of life, with ancient DNA often only accessible as mtDNA. Our ancient mtDNA analyses lend confidence to the relationships of three extinct megafaunal taxa: glyptodonts are nested within armadillos, the South American ungulate, Macrauchenia is sister to horses and rhinoceroses, and sabre-toothed and scimitar cats are the monophyletic sister-group of modern cats.
    Matched MeSH terms: Horses
  3. Piyasena TBH, Setoh YX, Hobson-Peters J, Prow NA, Bielefeldt-Ohmann H, Khromykh AA, et al.
    Vector Borne Zoonotic Dis, 2017 12;17(12):825-835.
    PMID: 29083957 DOI: 10.1089/vbz.2017.2172
    In Australia, infection of horses with the West Nile virus (WNV) or Murray Valley encephalitis virus (MVEV) occasionally results in severe neurological disease that cannot be clinically differentiated. Confirmatory serological tests to detect antibody specific for MVEV or WNV in horses are often hampered by cross-reactive antibodies induced to conserved epitopes on the envelope (E) protein. This study utilized bacterially expressed recombinant antigens derived from domain III of the E protein (rE-DIII) of MVEV and WNV, respectively, to determine whether these subunit antigens provided specific diagnostic markers of infection with these two viruses. When a panel of 130 serum samples, from horses with known flavivirus infection status, was tested in enzyme-linked immunosorbent assay (ELISA) using rE-DIII antigens, a differential diagnosis of MVEV or WNV was achieved for most samples. Time-point samples from horses exposed to flavivirus infection during the 2011 outbreak of equine encephalitis in south-eastern Australia also indicated that the rE-DIII antigens were capable of detecting and differentiating MVEV and WNV infection in convalescent sera with similar sensitivity and specificity to virus neutralization tests and blocking ELISAs. Overall, these results indicate that the rE-DIII is a suitable antigen for use in rapid immunoassays for confirming MVEV and WNV infections in horses in the Australian context and warrant further assessment on sensitive, high-throughput serological platforms such as multiplex immune assays.
    Matched MeSH terms: Horses
  4. Pruksaphon K, Tan KY, Tan CH, Simsiriwong P, Gutiérrez JM, Ratanabanangkoon K
    PLoS Negl Trop Dis, 2020 Aug;14(8):e0008581.
    PMID: 32857757 DOI: 10.1371/journal.pntd.0008581
    The aim of this study was to develop an in vitro assay for use in place of in vivo assays of snake venom lethality and antivenom neutralizing potency. A novel in vitro assay has been developed based on the binding of post-synaptically acting α-neurotoxins to nicotinic acetylcholine receptor (nAChR), and the ability of antivenoms to prevent this binding. The assay gave high correlation in previous studies with the in vivo murine lethality tests (Median Lethal Dose, LD50), and the neutralization of lethality assays (Median Effective Dose, ED50) by antisera against Naja kaouthia, Naja naja and Bungarus candidus venoms. Here we show that, for the neurotoxic venoms of 20 elapid snake species from eight genera and four continents, the in vitro median inhibitory concentrations (IC50s) for α-neurotoxin binding to purified nAChR correlated well with the in vivo LD50s of the venoms (R2 = 0.8526, p < 0.001). Furthermore, using this assay, the in vitro ED50s of a horse pan-specific antiserum against these venoms correlated significantly with the corresponding in vivo murine ED50s, with R2 = 0.6896 (p < 0.01). In the case of four elapid venoms devoid or having a very low concentration of α-neurotoxins, no inhibition of nAChR binding was observed. Within the philosophy of 3Rs (Replacement, Reduction and Refinement) in animal testing, the in vitro α-neurotoxin-nAChR binding assay can effectively substitute the mouse lethality test for toxicity and antivenom potency evaluation for neurotoxic venoms in which α-neurotoxins predominate. This will greatly reduce the number of mice used in toxicological research and antivenom production laboratories. The simpler, faster, cheaper and less variable in vitro assay should also expedite the development of pan-specific antivenoms against various medically important snakes in many parts of the world.
    Matched MeSH terms: Horses
  5. Rajendren, S.K., Khairuddin, N.H., Sumita, S.
    Jurnal Veterinar Malaysia, 2019;31(1):28-33.
    MyJurnal
    Endurance horses continuously undergoing training. This will cause inflammation which leads to acute phase reaction with the production of acute phase protein, especially serum amyloid A (SAA). The purpose of this study was to establish concentration of SAA in normal endurance horses in the blood serum using two-site enzyme linked immunoassay (ELISA) technique. Horse sera were aliquoted from blood taken from jugular venipuncture. The highest concentration of SAA was observed in horses rested between 12 months and 24 months. The lowest concentration of SAA was noticed in horses rested more than 24 months. All the horses between 6 and 11 years old have high SAA concentration. When resting intervals were compared against gender of the horses, it was noted that all mares have high SAA concentration compared to gelding and stallion. Whereas SAA concentration in Thoroughbred horses were high compared to Arabian horses in all rest intervals. The SAA concentration in horses rested more than 24 months was low most probably because the horses recovered well from the inflammatory process happened during the endurance race.
    Matched MeSH terms: Horses
  6. Razik BM, Osman H, Ezzat MO, Basiri A, Salhin A, Kia Y, et al.
    Med Chem, 2016;12(6):527-36.
    PMID: 26833077
    BACKGROUND: The search for new cholinesterase inhibitors is still a promising approach for management of Alzheimer`s disease. Schiff bases are considered as important class of organic compounds, which have wide range of applications including as enzyme inhibitors. In the present study, a new green ionic liquid mediated strategy was developed for convenient synthesis of two series of Schiff bases 3(a-j) and 5(a-j) as potential cholinesterase inhibitors using aromatic aldehydes and primary amines in [bmim]Br.

    METHODS: The synthesized compounds were evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potential by modified Ellman's method. The molecular interactions between the most active compound and the enzyme were analyzed by molecular docking.

    RESULTS: Among them, 3j displayed higher inhibitory activities than reference drug, galanthamine, with IC50 values of 2.05 and 5.77 µM, for AChE and BChE, respectively. Interestingly, all the compounds except 3b displayed higher BChE inhibitions than galanthamine with IC50 values ranging from 5.77 to 18.52 µM. Molecular docking of compound 3j inside the TcAChE and hBChE completely coincided with the inhibitory activities observed. The compound forms strong hydrogen bonding at the peripheral anionic site of AChE whereas on BChE, it had hydrophobic and mild polar interactions.

    CONCLUSION: An efficient and eco-friendly synthetic methodology has been developed to synthesize Schiff bases in a very short reaction time and excellent yields in ionic solvent, whereby the compounds from series 3 showed promising cholinesterase inhibitory activity.

    Matched MeSH terms: Horses
  7. Salis AT, Bray SCE, Lee MSY, Heiniger H, Barnett R, Burns JA, et al.
    Mol Ecol, 2022 Dec;31(24):6407-6421.
    PMID: 34748674 DOI: 10.1111/mec.16267
    The Bering Land Bridge connecting North America and Eurasia was periodically exposed and inundated by oscillating sea levels during the Pleistocene glacial cycles. This land connection allowed the intermittent dispersal of animals, including humans, between Western Beringia (far northeast Asia) and Eastern Beringia (northwest North America), changing the faunal community composition of both continents. The Pleistocene glacial cycles also had profound impacts on temperature, precipitation and vegetation, impacting faunal community structure and demography. While these palaeoenvironmental impacts have been studied in many large herbivores from Beringia (e.g., bison, mammoths, horses), the Pleistocene population dynamics of the diverse guild of carnivorans present in the region are less well understood, due to their lower abundances. In this study, we analyse mitochondrial genome data from ancient brown bears (Ursus arctos; n = 103) and lions (Panthera spp.; n = 39), two megafaunal carnivorans that dispersed into North America during the Pleistocene. Our results reveal striking synchronicity in the population dynamics of Beringian lions and brown bears, with multiple waves of dispersal across the Bering Land Bridge coinciding with glacial periods of low sea levels, as well as synchronous local extinctions in Eastern Beringia during Marine Isotope Stage 3. The evolutionary histories of these two taxa underline the crucial biogeographical role of the Bering Land Bridge in the distribution, turnover and maintenance of megafaunal populations in North America.
    Matched MeSH terms: Horses/genetics
  8. Sam SS, Teoh BT, Chee CM, Mohamed-Romai-Noor NA, Abd-Jamil J, Loong SK, et al.
    Sci Rep, 2018 12 05;8(1):17632.
    PMID: 30518924 DOI: 10.1038/s41598-018-36043-6
    Getah virus (GETV), a mosquito-borne alphavirus, is an emerging animal pathogen causing outbreaks among racehorses and pigs. Early detection of the GETV infection is essential for timely implementation of disease prevention and control interventions. Thus, a rapid and accurate nucleic acid detection method for GETV is highly needed. Here, two TaqMan minor groove binding (MGB) probe-based quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays were developed. The qRT-PCR primers and TaqMan MGB probe were designed based on the conserved region of nsP1 and nsP2 genes of 23 GETV genome sequences retrieved from GenBank. Only the qRT-PCR assay using nsP2-specific primers and probe detected all two Malaysia GETV strains (MM2021 and B254) without cross-reacting with other closely related arboviruses. The qRT-PCR assay detected as few as 10 copies of GETV RNA, but its detection limit at the 95% probability level was 63.25 GETV genome copies (probit analysis, P ≤ 0.05). Further validation of the qRT-PCR assay using 16 spiked simulated clinical specimens showed 100% for both sensitivity and specificity. In conclusion, the qRT-PCR assay developed in this study is useful for rapid, sensitive and specific detection and quantification of GETV.
    Matched MeSH terms: Horses
  9. Sapsutthipas S, Leong PK, Akesowan S, Pratanaphon R, Tan NH, Ratanabanangkoon K
    PLoS Negl Trop Dis, 2015 Mar;9(3):e0003609.
    PMID: 25774998 DOI: 10.1371/journal.pntd.0003609
    Snake envenomation has been estimated to affect 1.8 million people annually with about 94,000 deaths mostly in poor tropical countries. Specific antivenoms are the only rational and effective therapy for these cases. Efforts are being made to produce effective, affordable and sufficient antivenoms for these victims. The immunization process, which has rarely been described in detail, is one step that needs to be rigorously studied and improved especially with regard to the production of polyspecific antisera. The polyspecific nature of therapeutic antivenom could obviate the need to identify the culprit snake species. The aim of this study was to produce potent polyspecific antisera against 3 medically important vipers of Thailand and its neighboring countries, namely Cryptelytrops albolabris "White lipped pit viper" (CA), Calleoselasma rhodostoma "Malayan pit viper" (CR), and Daboia siamensis "Russell's viper" (DS). Four horses were immunized with a mixture of the 3 viper venoms using the 'low dose, low volume multi-site' immunization protocol. The antisera showed rapid rise in ELISA titers against the 3 venoms and reached plateau at about the 8th week post-immunization. The in vivo neutralization potency (P) of the antisera against CA, CR and DS venoms was 10.40, 2.42 and 0.76 mg/ml, respectively and was much higher than the minimal potency limits set by Queen Soavabha Memorial Institute (QSMI). The corresponding potency values for the QSMI monospecific antisera against CA, CR and DS venoms were 7.28, 3.12 and 1.50 mg/ml, respectively. The polyspecific antisera also effectively neutralized the procoagulant, hemorrhagic, necrotic and nephrotoxic activities of the viper venoms. This effective immunization protocol should be useful in the production of potent polyspecific antisera against snake venoms, and equine antisera against tetanus, diphtheria or rabies.
    Matched MeSH terms: Horses
  10. Selmi R, Dhibi M, Ben Said M, Ben Yahia H, Abdelaali H, Ameur H, et al.
    Trop Biomed, 2019 Sep 01;36(3):742-757.
    PMID: 33597496
    Livestock constitute habitual hosts and carriers for several infectious pathogens which may represent a serious public health concern affecting the readiness of military forces and lead to wide economic losses. The present report aimed to investigate the prevalence of some haemopathogens infecting military livestock, particularly, dromedaries, sheep and horses using Giemsa-stained blood smears. A total of 300 animals (100 from each species) were selected, clinically examined and sampled. Trypanosoma spp. (22.0%), Anaplasma spp. (17.0%) and Babesia spp. (1.0%) were identified in camels' blood. Six dromedaries were found to be co-infected by Trypanosoma and Anaplasma organisms (6.0%). Camels of female gender, infested by ticks and showing clinical signs were statistically more infected by Trypanosoma spp., compared to those of male gender, free of ticks and apparently healthy (P= 0.027, 0.000 and 0.004, respectively). Babesia spp. infection (1.0%) was identified, for the first time in Tunisia, in one adult female camel that presented abortion and anemia. Anaplasma spp. was the only haemopathogen identified in examined sheep (6.0%) and horses (17.0%). Horses infested by Hippobosca equina flies and sheep infested by Rhipicephalus turanicus ticks were more infected by Anaplasma spp. than other non-infested animals (P=0.046 and 0.042, respectively). Hyalomma dromedarii, H. impeltatum and H. excavatum were the most prevalent diagnosed ticks removed from camels with an intensity of infestation of 1.2 ticks per animal. However, in sheep, only R. turanicus was identified. H. equina and Tabanus spp. were the potential hematophagous flies found in dromedaries and horses herds. This useful data must be taken into consideration during animal treatment and vectors' control programs in Tunisian military farms which help to limit the diffusion of vector-borne diseases, keep our livestock healthy and reduce economic losses.
    Matched MeSH terms: Horses/parasitology
  11. Shaik Alaudeen, Nor Muslim, Kamarul Faridah, Hamid Arshat
    MyJurnal
    Milk lipids play an important role in the early nutrition of an infant's life. A study was undertaken to investigate the total lipid content of milk obtained from urban, exclusively breastfeeding Malaysian mothers offill term infants. Results from approximately 600 samples analysed using a commercial kit [MerckotestO] , showed that the total lipid concentration was lowest in colostrum [1.9 + 0.1 g/dl J, however this value increased gradually with days of lactation and attained a maximum concentration of 3.1 ± 0.1 g/dl during the mature milk stage. This agrees with results from other studies that the total lipid content is indeed influenced by the stage of lactation. The effect of socioeconomic factors such as income and parity on the milk lipids was also investi-gated and the results revealed that the above factors had no significant influence on the total lipid content of Malaysian mother 's milk obtained during all three stages of lactation studied [colostrum, transitional and mature milk] . However; ethnicity showed significant influence during the mature but not in the early [colostrum and transitional] stage of lactation. This however, is not filly explained by this study. As a whole, this study suggests that the human breast, through a mechanism that is ill understood, maintains cm optimal level of total lipid in milk despite their differing cultural and genetic background. It is hoped that such scientific evidence will instil more confidence among breastfeeding mothers in this fast developing cosmopolitan nation.
    Matched MeSH terms: Horses
  12. Shaw DJ, Rosanowski SM
    Vet J, 2019 Aug;250:24-27.
    PMID: 31383416 DOI: 10.1016/j.tvjl.2019.05.015
    Epiglottic entrapment is a condition in racing horses, associated with abnormal respiratory noises and exercise intolerance. Epiglottic entrapment has been linked to both poor and superior athletic performance, leading to concerns regarding whether surgery is indicated, and whether surgical correction may have a deleterious effect on future race performance. The objective of the current study was to assess the race-day performance of horses racing with epiglottic entrapment and the effect of surgical correction on performance outcomes using an intra-oral technique in anaesthetised horses. A case-control study was conducted at the Singapore Turf Club from 2008 to 2011. Controls were selected 1:1 to cases, based on Malaysian Racing Authority number. The performance of horses racing with epiglottic entrapment was recorded and post-surgery race performance was described. Further, post-surgery race performance was compared between cases and with non-case controls. Twenty horses raced with epiglottic entrapment were retrospectively enrolled. There was a significant difference in racing performance in case horses racing with and without epiglottic entrapment (P 
    Matched MeSH terms: Horses/physiology*; Horses/surgery
  13. Sherrini BA, Chong TT
    Med J Malaysia, 2014 Aug;69 Suppl A:103-11.
    PMID: 25417957
    Between September 1998 to May 1999, Malaysia and Singapore were hit by an outbreak of fatal encephalitis caused by a novel virus from the paramyxovirus family. This virus was subsequently named as Nipah virus, after the Sungei Nipah village in Negeri Sembilan, where the virus was first isolated. The means of transmission was thought to be from bats-topigs and subsequently pigs-to-human. Since 2001, almost yearly outbreak of Nipah encephalitis has been reported from Bangladesh and West Bengal, India. These outbreaks were characterized by direct bats-to-human, and human-to-human spread of infection. Nipah virus shares many similar characteristics to Hendra virus, first isolated in an outbreak of respiratory illness involving horses in Australia in 1994. Because of their homology, a new genus called Henipavirus (Hendra + Nipah) was introduced. Henipavirus infection is a human disease manifesting most often as acute encephalitis (which may be relapsing or late-onset) or pneumonia, with a high mortality rate. Pteropus bats act as reservoir for the virus, which subsequently lead to human spread. Transmission may be from consumption of food contaminated by bats secretion, contact with infected animals, or human-to-human spread. With wide geographical distribution of Pteropus bats, Henipavirus infection has become an important emerging human infection with worldwide implication.
    Matched MeSH terms: Horses
  14. Singh M, Zaman V, Goh TK, Kheng CS
    Med J Malaya, 1967 Dec;22(2):115-7.
    PMID: 4231976
    Matched MeSH terms: Horses
  15. Tahar AS, Ong EJ, Rahardja A, Mamora D, Lim KT, Ahmed K, et al.
    J Med Virol, 2023 Aug;95(8):e28987.
    PMID: 37501648 DOI: 10.1002/jmv.28987
    Rotavirus is the leading causative viral agent of pediatric acute gastroenteritis globally, infecting mostly children 5 years old and below. Data on rotavirus prevalence in Malaysia is scarce, despite the WHO's recommendation for continuous rotavirus surveillance, and has underestimated the need for national rotavirus vaccination. Characteristics of the current rotavirus strains in Malaysia have to be determined to understand the rotavirus epidemiology and vaccine compatibility. This study sought to determine the genetic relatedness of Sarawak rotavirus strains with global strains and to determine the antigenic coverage and epitope compatibility of Rotarix and RotaTeq vaccines with the Sarawak rotavirus strains via in silico analysis. A total of 89 stool samples were collected from pediatric patients (<5 years old) with acute gastroenteritis at private hospitals in Kuching, Sarawak. Rotavirus was detected using reverse transcription-polymerase chain reaction. Positive amplicons were analyzed using nucleotide sequencing before phylogenetic analyses and assessment of epitope compatibility. Genotyping revealed G1P[8] (1/13; 7.7%), G3P[8] (3/13; 23%), G9P[4] (1/13; 7.7%), and G9P[8] (3/13; 23%), G9P[X] (1/13; 7.7%), GXP[4] (1/13; 7.7%), and GXP[8] (3/13; 23%) in samples. All wild-type Sarawak rotavirus strains, with the exception of G1, showed variations in their phylogenetic and antigenic epitope characteristics.
    Matched MeSH terms: Horses/genetics
  16. Takaoka H, Otsuka Y, Fukuda M, Low VL, Ya'cob Z
    Trop Biomed, 2023 Jun 01;40(2):266-272.
    PMID: 37650416 DOI: 10.47665/tb.40.2.020
    Simulium takahasii (Rubtsov), which was originally described from Japan, and recorded from Korea and China, is the first among the 19 species of the subgenus Wilhelmia Enderlein recorded from East Asia. It is striking in mating, blood-feeding and ovipositing in captivity and in experimentally transmitting Dirofilaria immitis (Leidy) and Brugia pahangi (Buckley & Edeson), and it is a severe biter of cattle and horses, rarely of humans. Nevertheless, updated information about its morphological characteristics was lacking, making comparisons with related species described from China difficult, since species of the subgenus Wilhelmia are almost indistinguishable from one another, in particular, in their female terminalia, male genitalia and most of larval features. In this study, as many morphological characteristics as possible of S. takahasii based on specimens from Japan are redescribed. New information about many features of this species including the length of the female sensory vesicle against the third palpal segment, number of male upper-eye (large) facets, arrangement of the eight pupal gill filaments, presence or absence of tiny dark setae on the dorsum of the larval abdomen and the number of rows and hooklets of the larval posterior circlet will be useful in evaluating the species status of several Wilhelmia species in China including the species regarded as S. takahasii.
    Matched MeSH terms: Horses
  17. Tamin A, Rota PA
    Dev Biol (Basel), 2013;135:139-45.
    PMID: 23689891 DOI: 10.1159/000189236
    Hendra virus (HeV) and Nipah virus (NiV) are the causative agents of emerging transboundary animal disease in pigs and horses. They also cause fatal disease in humans. NiV has a case fatality rate of 40 - 100%. In the initial NiV outbreak in Malaysia in 1999, about 1.1 million pigs had to be culled. The economic impact was estimated to be approximately US$450 million. Worldwide, HeV has caused more than 60 deaths in horses with 7 human cases and 4 deaths. Since the initial outbreak, HeV spillovers from Pteropus bats to horses and humans continue. This article presents a brief review on the currently available diagnostic methods for henipavirus infections, including advances achieved since the initial outbreak, and a gap analysis of areas needing improvement.
    Matched MeSH terms: Horses
  18. Tan LP, Mohd Rajdi NZI, Mohamad MA, Mohamed M, Hamdan RH, Goriman Khan MAK, et al.
    J Equine Vet Sci, 2022 01;108:103807.
    PMID: 34875427 DOI: 10.1016/j.jevs.2021.103807
    Trypanosoma (Megatrypanum) theileri is a non-pathogenic or weakly pathogenic parasite of domestic cattle that is cyclically transmitted by blood-sucking insects, mainly tabanid flies. It has been reported in several countries like Brazil, Venezuela, Japan, Taiwan, Thailand, Vietnam, and the Philippines. Although the ruminant industry is actively expanded in Malaysia, T. theileri and T. theileri-like trypanosomes have never been reported from Malaysia. The low pathogenicity of this species might be the main reason for overlooking T. theileri in this country. This paper describes an unforeseen finding of T. theileri from the outbreak of T. evansi in the state of Kelantan, Malaysia. This is the first time T. theileri reported in Malaysia, and also the first time T. theileri is reported in equid. Clinical signs compatible with infection by blood protozoa were observed; however, it was uncertain whether they were due to T. theileri infection. The detection of T. theileri from the blood sample and Tabanus sp. were confirmed through molecular analysis with PCR and DNA sequencing. In the present study, T. theileri from one horse and one Tabanus sp. were clustered with sequences of the previously described phylogenetic lineages from Japan, Chad and Brazil cattle. Even though this species is claimed to be host-specific with ruminant host restriction, the finding from this study suggested that T. theileri can infect equine whilst other isolates are known to infect ruminant species only. It is suspected there were two genotypes of T. theileri circulating in at least two districts of Kelantan. Thus, further study on multiple DNA regions should be conducted to determine the strains of detected T. theileri in Malaysia. Its impact on the horse and cattle industry should also be revised.
    Matched MeSH terms: Horses
  19. Tiong V, Shu MH, Wong WF, AbuBakar S, Chang LY
    Front Microbiol, 2018;9:2747.
    PMID: 30483242 DOI: 10.3389/fmicb.2018.02747
    Nipah virus (NiV) can infect multiple organs in humans with the central nervous system (CNS) being the most severely affected. Currently, it is not fully understood how NiV spreads throughout the body. NiV has been shown to infect certain leukocyte populations and we hypothesized that these infected cells could cross the blood-brain barrier (BBB), facilitating NiV entry into the CNS. Here, three leukocyte types, primary immature dendritic cells (iDC), primary monocytes (pMO), and monocytic cell line (THP-1), were evaluated for permissiveness to NiV. We found only iDC and THP-1 were permissive to NiV. Transendothelial migration of mock-infected and NiV-infected leukocytes was then evaluated using an in vitro BBB model established with human brain microvascular endothelial cells (HBMEC). There was approximately a threefold increase in migration of NiV-infected iDC across endothelial monolayer when compared to mock-infected iDC. In contrast, migration rates for pMO and THP-1 did not change upon NiV infection. Across TNF-α-treated endothelial monolayer, there was significant increase of almost twofold in migration of NiV-infected iDC and THP-1 over mock-infected cells. Immunofluorescence analysis showed the migrated NiV-infected leukocytes retained their ability to infect other cells. This study demonstrates for the first time that active NiV infection of iDC and THP-1 increased their transendothelial migration activity across HBMEC and activation of HBMEC by TNF-α further promoted migration. The findings suggest that NiV infection of leukocytes to disseminate the virus via the "Trojan horse" mechanism is a viable route of entry into the CNS.
    Matched MeSH terms: Horses
  20. Toh X, Soh ML, Ng MK, Yap SC, Harith N, Fernandez CJ, et al.
    Transbound Emerg Dis, 2019 Sep;66(5):1884-1893.
    PMID: 31059176 DOI: 10.1111/tbed.13218
    Equine influenza is a major cause of respiratory infections in horses and can spread rapidly despite the availability of commercial vaccines. In this study, we carried out molecular characterization of Equine Influenza Virus (EIV) isolated from the Malaysian outbreak in 2015 by sequencing of the HA and NA gene segments using Sanger sequencing. The nucleotide and amino acid sequences of HA and NA were compared with representative Florida clade 1 and clade 2 strains using phylogenetic analysis. The Florida clade 1 viruses identified in this outbreak revealed numerous amino acid substitutions in the HA protein as compared to the current OIE vaccine strain recommendations and representative strains of circulating Florida sub-lineage clade 1 and clade 2. Differences in HA included amino acids located within antigenic sites which could lead to reduced immune recognition of the outbreak strain and alter the effectiveness of vaccination against the outbreak strain. Detailed surveillance and genetic information sharing could allow genetic drift of equine influenza viruses to be monitored more effectively on a global basis and aid in refinement of vaccine strain selection for EIV.
    Matched MeSH terms: Horses
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links