Displaying publications 61 - 80 of 909 in total

Abstract:
Sort:
  1. Menon S, Anand D, Kavita, Verma S, Kaur M, Jhanjhi NZ, et al.
    Sensors (Basel), 2023 Jul 04;23(13).
    PMID: 37447981 DOI: 10.3390/s23136132
    With the increasing growth rate of smart home devices and their interconnectivity via the Internet of Things (IoT), security threats to the communication network have become a concern. This paper proposes a learning engine for a smart home communication network that utilizes blockchain-based secure communication and a cloud-based data evaluation layer to segregate and rank data on the basis of three broad categories of Transactions (T), namely Smart T, Mod T, and Avoid T. The learning engine utilizes a neural network for the training and classification of the categories that helps the blockchain layer with improvisation in the decision-making process. The contributions of this paper include the application of a secure blockchain layer for user authentication and the generation of a ledger for the communication network; the utilization of the cloud-based data evaluation layer; the enhancement of an SI-based algorithm for training; and the utilization of a neural engine for the precise training and classification of categories. The proposed algorithm outperformed the Fused Real-Time Sequential Deep Extreme Learning Machine (RTS-DELM) system, the data fusion technique, and artificial intelligence Internet of Things technology in providing electronic information engineering and analyzing optimization schemes in terms of the computation complexity, false authentication rate, and qualitative parameters with a lower average computation complexity; in addition, it ensures a secure, efficient smart home communication network to enhance the lifestyle of human beings.
    Matched MeSH terms: Machine Learning; Learning
  2. Hossain R, Ibrahim RB, Hashim HB
    World Neurosurg, 2023 Jul;175:57-68.
    PMID: 37019303 DOI: 10.1016/j.wneu.2023.03.115
    To develop a research overview of brain tumor classification using machine learning, we conducted a systematic review with a bibliometric analysis. Our systematic review and bibliometric analysis included 1747 studies of automated brain tumor detection using machine learning reported in the previous 5 years (2019-2023) from 679 different sources and authored by 6632 investigators. Bibliographic data were collected from the Scopus database, and a comprehensive bibliometric analysis was conducted using Biblioshiny and the R platform. The most productive and collaborative institutes, reports, journals, and countries were determined using citation analysis. In addition, various collaboration metrics were determined at the institute, country, and author level. Lotka's law was tested using the authors' performance. Analysis showed that the authors' publication trends followed Lotka's inverse square law. An annual publication analysis showed that 36.46% of the studies had been reported in 2022, with steady growth from previous years. Most of the cited authors had focused on multiclass classification and novel convolutional neural network models that are efficient for small training sets. A keyword analysis showed that "deep learning," "magnetic resonance imaging," "nuclear magnetic resonance imaging," and "glioma" appeared most often, proving that of the several brain tumor types, most studies had focused on glioma. India, China, and the United States were among the highest collaborative countries in terms of both authors and institutes. The University of Toronto and Harvard Medical School had the highest number of affiliations with 132 and 87 publications, respectively.
    Matched MeSH terms: Machine Learning
  3. Wong ZY, Daher AM, Pathirage K, Lim KG
    Med Teach, 2023 Jul;45(7):789.
    PMID: 36705016 DOI: 10.1080/0142159X.2023.2169119
    Matched MeSH terms: Learning
  4. Song J, Shin SD, Jamaluddin SF, Chiang WC, Tanaka H, Song KJ, et al.
    J Neurotrauma, 2023 Jul;40(13-14):1376-1387.
    PMID: 36656672 DOI: 10.1089/neu.2022.0280
    Abstract Traumatic brain injury (TBI) is a significant healthcare concern in several countries, accounting for a major burden of morbidity, mortality, disability, and socioeconomic losses. Although conventional prognostic models for patients with TBI have been validated, their performance has been limited. Therefore, we aimed to construct machine learning (ML) models to predict the clinical outcomes in adult patients with isolated TBI in Asian countries. The Pan-Asian Trauma Outcome Study registry was used in this study, and the data were prospectively collected from January 1, 2015, to December 31, 2020. Among a total of 6540 patients (≥ 15 years) with isolated moderate and severe TBI, 3276 (50.1%) patients were randomly included with stratification by outcomes and subgrouping variables for model evaluation, and 3264 (49.9%) patients were included for model training and validation. Logistic regression was considered as a baseline, and ML models were constructed and evaluated using the area under the precision-recall curve (AUPRC) as the primary outcome metric, area under the receiver operating characteristic curve (AUROC), and precision at fixed levels of recall. The contribution of the variables to the model prediction was measured using the SHapley Additive exPlanations (SHAP) method. The ML models outperformed logistic regression in predicting the in-hospital mortality. Among the tested models, the gradient-boosted decision tree showed the best performance (AUPRC, 0.746 [0.700-0.789]; AUROC, 0.940 [0.929-0.952]). The most powerful contributors to model prediction were the Glasgow Coma Scale, O2 saturation, transfusion, systolic and diastolic blood pressure, body temperature, and age. Our study suggests that ML techniques might perform better than conventional multi-variate models in predicting the outcomes among adult patients with isolated moderate and severe TBI.
    Matched MeSH terms: Machine Learning
  5. Abdul Rahman NF, Davies N, Suhaimi J, Idris F, Syed Mohamad SN, Park S
    Educ Prim Care, 2023 Jul;34(4):211-219.
    PMID: 37742228 DOI: 10.1080/14739879.2023.2248070
    Clinical reasoning is a vital medical education skill, yet its nuances in undergraduate primary care settings remain debated. This systematic review explores clinical reasoning teaching and learning intricacies within primary care. We redefine clinical reasoning as dynamically assimilating and prioritising synthesised patient, significant other, or healthcare professional information for diagnoses or non-diagnoses. This focused meta-synthesis applies transformative learning theory to primary care clinical reasoning education. A comprehensive analysis of 29 selected studies encompassing various designs made insights into clinical reasoning learning dimensions visible. Primary care placements in varying duration and settings foster diverse instructional methods like bedside teaching, clinical consultations, simulated clinics, virtual case libraries, and more. This review highlights the interplay between disease-oriented and patient-centred orientations in clinical reasoning learning. Transformative learning theory provides an innovative lens, revealing stages of initiation, persistence, time and space, and competence and confidence in students' clinical reasoning evolution. Clinical teachers guide this transformation, adopting roles as fortifiers, connoisseurs, mediators, and monitors. Patient engagement spans passive to active involvement, co-constructing clinical reasoning. The review underscores theoretical underpinnings' significance in shaping clinical reasoning pedagogy, advocating broader diversity. Intentional student guidance amid primary care complexities is vital. Utilising transformative learning, interventions bridging cognitive boundaries enhance meaningful clinical reasoning learning experiences. This study contributes insights for refining pedagogy, encouraging diverse research, and fostering holistic clinical reasoning development.
    Matched MeSH terms: Learning
  6. Alabsi BA, Anbar M, Rihan SDA
    Sensors (Basel), 2023 Jun 16;23(12).
    PMID: 37420810 DOI: 10.3390/s23125644
    The increasing use of Internet of Things (IoT) devices has led to a rise in Distributed Denial of Service (DDoS) and Denial of Service (DoS) attacks on these networks. These attacks can have severe consequences, resulting in the unavailability of critical services and financial losses. In this paper, we propose an Intrusion Detection System (IDS) based on a Conditional Tabular Generative Adversarial Network (CTGAN) for detecting DDoS and DoS attacks on IoT networks. Our CGAN-based IDS utilizes a generator network to produce synthetic traffic that mimics legitimate traffic patterns, while the discriminator network learns to differentiate between legitimate and malicious traffic. The syntactic tabular data generated by CTGAN is employed to train multiple shallow machine-learning and deep-learning classifiers, enhancing their detection model performance. The proposed approach is evaluated using the Bot-IoT dataset, measuring detection accuracy, precision, recall, and F1 measure. Our experimental results demonstrate the accurate detection of DDoS and DoS attacks on IoT networks using the proposed approach. Furthermore, the results highlight the significant contribution of CTGAN in improving the performance of detection models in machine learning and deep learning classifiers.
    Matched MeSH terms: Machine Learning
  7. Pervez MN, Yeo WS, Mishu MMR, Talukder ME, Roy H, Islam MS, et al.
    Sci Rep, 2023 Jun 15;13(1):9679.
    PMID: 37322139 DOI: 10.1038/s41598-023-36431-7
    Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error (RMSE), its mean absolute error (MAE), and its coefficient of determination (R2). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R2 values that could be achieved, reaching 0.9989.
    Matched MeSH terms: Machine Learning
  8. Chew KS, Wong SS, Tarazi ISB, Koh JW, Ridzuan NA'B, Wan Allam SASB
    BMC Med Educ, 2023 Jun 12;23(1):432.
    PMID: 37308907 DOI: 10.1186/s12909-023-04356-4
    BACKGROUND: Although tabletop exercise is a commonly used method for disaster response training, it is labor-intensive, requires a tutor for facilitation and may not be ideal in a pandemic situation. Board game is a low-cost and portable alternative that can be utilized for this purpose. The purpose of this study was to compare the perception of interaction engagement and behavioral intention to use a newly developed board game with tabletop exercise for disaster training.

    METHODS: Using the Mechanics-Dynamics-Aesthetics' (MDA) framework, a new, tutorless educational board game known as the Simulated Disaster Management And Response Triage training ("SMARTriage") was first developed for disaster response training. Subsequently, the perceptions of 113 final year medical students on the "SMARTriage" board game was compared with that of tabletop exercise using a crossover design.

    RESULTS: Using Wilcoxon signed rank test, it was that found that tabletop exercise was generally rated significantly higher (with p 

    Matched MeSH terms: Learning
  9. Zehra S, Faseeha U, Syed HJ, Samad F, Ibrahim AO, Abulfaraj AW, et al.
    Sensors (Basel), 2023 Jun 05;23(11).
    PMID: 37300067 DOI: 10.3390/s23115340
    Network function virtualization (NFV) is a rapidly growing technology that enables the virtualization of traditional network hardware components, offering benefits such as cost reduction, increased flexibility, and efficient resource utilization. Moreover, NFV plays a crucial role in sensor and IoT networks by ensuring optimal resource usage and effective network management. However, adopting NFV in these networks also brings security challenges that must promptly and effectively address. This survey paper focuses on exploring the security challenges associated with NFV. It proposes the utilization of anomaly detection techniques as a means to mitigate the potential risks of cyber attacks. The research evaluates the strengths and weaknesses of various machine learning-based algorithms for detecting network-based anomalies in NFV networks. By providing insights into the most efficient algorithm for timely and effective anomaly detection in NFV networks, this study aims to assist network administrators and security professionals in enhancing the security of NFV deployments, thus safeguarding the integrity and performance of sensors and IoT systems.
    Matched MeSH terms: Machine Learning*
  10. Amin HU, Ullah R, Reza MF, Malik AS
    J Neuroeng Rehabil, 2023 Jun 02;20(1):70.
    PMID: 37269019 DOI: 10.1186/s12984-023-01179-8
    BACKGROUND: Presentation of visual stimuli can induce changes in EEG signals that are typically detectable by averaging together data from multiple trials for individual participant analysis as well as for groups or conditions analysis of multiple participants. This study proposes a new method based on the discrete wavelet transform with Huffman coding and machine learning for single-trial analysis of evenal (ERPs) and classification of different visual events in the visual object detection task.

    METHODS: EEG single trials are decomposed with discrete wavelet transform (DWT) up to the [Formula: see text] level of decomposition using a biorthogonal B-spline wavelet. The coefficients of DWT in each trial are thresholded to discard sparse wavelet coefficients, while the quality of the signal is well maintained. The remaining optimum coefficients in each trial are encoded into bitstreams using Huffman coding, and the codewords are represented as a feature of the ERP signal. The performance of this method is tested with real visual ERPs of sixty-eight subjects.

    RESULTS: The proposed method significantly discards the spontaneous EEG activity, extracts the single-trial visual ERPs, represents the ERP waveform into a compact bitstream as a feature, and achieves promising results in classifying the visual objects with classification performance metrics: accuracies 93.60[Formula: see text], sensitivities 93.55[Formula: see text], specificities 94.85[Formula: see text], precisions 92.50[Formula: see text], and area under the curve (AUC) 0.93[Formula: see text] using SVM and k-NN machine learning classifiers.

    CONCLUSION: The proposed method suggests that the joint use of discrete wavelet transform (DWT) with Huffman coding has the potential to efficiently extract ERPs from background EEG for studying evoked responses in single-trial ERPs and classifying visual stimuli. The proposed approach has O(N) time complexity and could be implemented in real-time systems, such as the brain-computer interface (BCI), where fast detection of mental events is desired to smoothly operate a machine with minds.

    Matched MeSH terms: Machine Learning
  11. Zulkifli MH, Abdullah ZL, Mohamed Yusof NIS, Mohd Fauzi F
    Curr Opin Struct Biol, 2023 Jun;80:102588.
    PMID: 37028096 DOI: 10.1016/j.sbi.2023.102588
    With the availability of public databases that store compound-target/compound-toxicity information, and Traditional Chinese medicine (TCM) databases, in silico approaches are used in toxicity studies of TCM herbal medicine. Here, three in silico approaches for toxicity studies were reviewed, which include machine learning, network toxicology and molecular docking. For each method, its application and implementation e.g., single classifier vs. multiple classifier, single compound vs. multiple compounds, validation vs. screening, were explored. While these methods provide data-driven toxicity prediction that is validated in vitro and/or in vivo, it is still limited to single compound analysis. In addition, these methods are limited to several types of toxicity, with hepatotoxicity being the most dominant. Future studies involving the testing of combination of compounds on the front end i.e., to generate data for in silico modeling, and back end i.e., validate findings from prediction models will advance the in silico toxicity modeling of TCM compounds.
    Matched MeSH terms: Machine Learning
  12. Dujaili J, Ong WK, Kc B, Vordenberg SE, Mattingly AN, Lee RFS
    Curr Pharm Teach Learn, 2023 Jun;15(6):624-632.
    PMID: 37357124 DOI: 10.1016/j.cptl.2023.06.012
    BACKGROUND AND PURPOSE: Due to COVID-19 movement restrictions, institutes of higher learning had to deliver pharmacy curricula remotely. One major challenge was teaching practical lab skills, such as extemporaneous compounding, remotely due to the need for hands-on learning and its associated logistical requirements.

    EDUCATIONAL ACTIVITY AND SETTING: We present the approach to remote extemporaneous compounding teaching taken by three pharmacy schools: Monash University Malaysia, University of Michigan, and University of Maryland. Prior to delivery, students were either supplied with or asked to procure a set of easily accessible ingredients and equipment to conduct the extemporaneous practicals from home. We conducted lessons remotely using both synchronous and asynchronous delivery, and demonstrated, taught, and assessed practical lab skills using video conferencing modalities.

    FINDINGS: We successfully conducted remote teaching of extemporaneous compounding, where similar learning outcomes to the face-to-face implementation were achieved. At Monash University Malaysia, > 90% of students responding to the post-activity surveys found the remote extemporaneous sessions useful for their learning, and qualitative comments supported these views. Mean scores from the remote extemporaneous labs in 2021 were similar to those when conducted physically in 2019, supporting the effectiveness of the approach. The different approaches attempted by the three institutions highlighted the flexibility in implementation that can be considered to achieve similar outcomes.

    SUMMARY: Combining technology-based approaches with synchronous and asynchronous teaching and learning methods can successfully deliver extemporaneous compounding skills remotely.

    Matched MeSH terms: Learning
  13. Sivakumar I, Arunachalam S, Buzayan MM
    J Dent Educ, 2023 Jun;87 Suppl 1:892-894.
    PMID: 36469857 DOI: 10.1002/jdd.13153
    Matched MeSH terms: Learning
  14. Qaid EYA, Abdullah Z, Zakaria R, Long I
    Neurochem Res, 2023 May;48(5):1480-1490.
    PMID: 36509985 DOI: 10.1007/s11064-022-03842-3
    The oxidative stress-induced dysregulation of the cyclic AMP response element-binding protein- brain-derived neurotrophic factor (CREB-BDNF) cascade has been linked to cognitive impairment in several studies. This study aimed to investigate the effect of minocycline on the levels of oxidative stress markers, CREB, and BDNF in lipopolysaccharide (LPS)-induced cognitive impairment. Fifty adult male Sprague Dawley rats were divided randomly into five groups. Group 1 was an untreated control group. Groups 2, 3, 4 and 5 were treated concurrently with LPS (5 mg/kg, i.p) once on day 5 and normal saline (0.7 ml/rat, i.p) or minocycline (25 and 50 mg/kg, i.p) or memantine (10 mg/kg, i.p) once daily from day 1 until day 14, respectively. From day 15 to day 22 of the experiment, Morris Water Maze (MWM) was used to evaluate learning and reference memory in rats. The levels of protein carbonyl (PCO), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) were determined by enzyme-linked immunosorbent assay (ELISA). CREB and BDNF expression and density were measured by immunohistochemistry and western blot analysis, respectively. LPS administration significantly increased escape latency to the hidden platform with decreased travelled distance, swimming speed, target crossings and time spent in the target quadrant. Besides, the hippocampal tissue of LPS rats showed increased levels of PCO and MDA, decreased levels of CAT and SOD, and reduced expression and density of BDNF and CREB. Treatment with minocycline reversed these effects in a dose-dependent manner, comparable to the effects of memantine. Both doses of minocycline treatment protect against LPS-induced cognitive impairment by reducing oxidative stress and upregulating the CREB-BDNF signalling pathway in the rat hippocampus.
    Matched MeSH terms: Maze Learning
  15. Balakrishnan V, Kherabi Y, Ramanathan G, Paul SA, Tiong CK
    Prog Biophys Mol Biol, 2023 May;179:16-25.
    PMID: 36931609 DOI: 10.1016/j.pbiomolbio.2023.03.001
    Biomarker-based tests may facilitate Tuberculosis (TB) diagnosis, accelerate treatment initiation, and thus improve outcomes. This review synthesizes the literature on biomarker-based detection for TB diagnosis using machine learning. The systematic review approach follows the PRISMA guideline. Articles were sought using relevant keywords from Web of Science, PubMed, and Scopus, resulting in 19 eligible studies after a meticulous screening. All the studies were found to have focused on the supervised learning approach, with Support Vector Machine (SVM) and Random Forest emerging as the top two algorithms, with the highest accuracy, sensitivity and specificity reported to be 97.0%, 99.2%, and 98.0%, respectively. Further, protein-based biomarkers were widely explored, followed by gene-based such as RNA sequence and, Spoligotypes. Publicly available datasets were observed to be popularly used by the studies reviewed whilst studies targeting specific cohorts such as HIV patients or children gathering their own data from healthcare facilities, leading to smaller datasets. Of these, most studies used the leave one out cross validation technique to mitigate overfitting. The review shows that machine learning is increasingly assessed in research to improve TB diagnosis through biomarkers, as promising results were shown in terms of model's detection performance. This provides insights on the possible application of machine learning approaches to diagnose TB using biomarkers as opposed to the traditional methods that can be time consuming. Low-middle income settings, where access to basic biomarkers could be provided as compared to sputum-based tests that are not always available, could be a major application of such models.
    Matched MeSH terms: Machine Learning
  16. Tao H, Jawad AH, Shather AH, Al-Khafaji Z, Rashid TA, Ali M, et al.
    Environ Int, 2023 May;175:107931.
    PMID: 37119651 DOI: 10.1016/j.envint.2023.107931
    This study uses machine learning (ML) models for a high-resolution prediction (0.1°×0.1°) of air fine particular matter (PM2.5) concentration, the most harmful to human health, from meteorological and soil data. Iraq was considered the study area to implement the method. Different lags and the changing patterns of four European Reanalysis (ERA5) meteorological variables, rainfall, mean temperature, wind speed and relative humidity, and one soil parameter, the soil moisture, were used to select the suitable set of predictors using a non-greedy algorithm known as simulated annealing (SA). The selected predictors were used to simulate the temporal and spatial variability of air PM2.5 concentration over Iraq during the early summer (May-July), the most polluted months, using three advanced ML models, extremely randomized trees (ERT), stochastic gradient descent backpropagation (SGD-BP) and long short-term memory (LSTM) integrated with Bayesian optimizer. The spatial distribution of the annual average PM2.5 revealed the population of the whole of Iraq is exposed to a pollution level above the standard limit. The changes in temperature and soil moisture and the mean wind speed and humidity of the month before the early summer can predict the temporal and spatial variability of PM2.5 over Iraq during May-July. Results revealed the higher performance of LSTM with normalized root-mean-square error and Kling-Gupta efficiency of 13.4% and 0.89, compared to 16.02% and 0.81 for SDG-BP and 17.9% and 0.74 for ERT. The LSTM could also reconstruct the observed spatial distribution of PM2.5 with MapCurve and Cramer's V values of 0.95 and 0.91, compared to 0.9 and 0.86 for SGD-BP and 0.83 and 0.76 for ERT. The study provided a methodology for forecasting spatial variability of PM2.5 concentration at high resolution during the peak pollution months from freely available data, which can be replicated in other regions for generating high-resolution PM2.5 forecasting maps.
    Matched MeSH terms: Machine Learning
  17. Zhang Y, Feng Y, Ren Z, Zuo R, Zhang T, Li Y, et al.
    Bioresour Technol, 2023 Apr;374:128746.
    PMID: 36813050 DOI: 10.1016/j.biortech.2023.128746
    The ideal conditions for anaerobic digestion experiments with biochar addition are challenging to thoroughly study due to different experimental purposes. Therefore, three tree-based machine learning models were developed to depict the intricate connection between biochar properties and anaerobic digestion. For the methane yield and maximum methane production rate, the gradient boosting decision tree produced R2 values of 0.84 and 0.69, respectively. According to feature analysis, digestion time and particle size had a substantial impact on the methane yield and production rate, respectively. When particle sizes were in the range of 0.3-0.5 mm and the specific surface area was approximately 290 m2/g, corresponding to a range of O content (>31%) and biochar addition (>20 g/L), the maximum promotion of methane yield and maximum methane production rate were attained. Therefore, this study presents new insights into the effects of biochar on anaerobic digestion through tree-based machine learning.
    Matched MeSH terms: Machine Learning
  18. Woods C, Naroo S, Zeri F, Bakkar M, Barodawala F, Evans V, et al.
    Cont Lens Anterior Eye, 2023 Apr;46(2):101821.
    PMID: 36805277 DOI: 10.1016/j.clae.2023.101821
    INTRODUCTION: Evidence based practice is now an important part of healthcare education. The aim of this narrative literature review was to determine what evidence exists on the efficacy of commonly used teaching and learning and assessment methods in the realm of contact lens skills education (CLE) in order to provide insights into best practice. A summary of the global regulation and provision of postgraduate learning and continuing professional development in CLE is included.

    METHOD: An expert panel of educators was recruited and completed a literature review of current evidence of teaching and learning and assessment methods in healthcare training, with an emphasis on health care, general optometry and CLE.

    RESULTS: No direct evidence of benefit of teaching and learning and assessment methods in CLE were found. There was evidence for the benefit of some teaching and learning and assessment methods in other disciplines that could be transferable to CLE and could help students meet the intended learning outcomes. There was evidence that the following teaching and learning methods helped health-care and general optometry students meet the intended learning outcomes; clinical teaching and learning, flipped classrooms, clinical skills videos and clerkships. For assessment these methods were; essays, case presentations, objective structured clinical examinations, self-assessment and formative assessment. There was no evidence that the following teaching and learning methods helped health-care and general optometry students meet the intended learning outcomes; journal clubs and case discussions. Nor was any evidence found for the following assessment methods; multiple-choice questions, oral examinations, objective structured practical examinations, holistic assessment, and summative assessment.

    CONCLUSION: Investigation into the efficacy of common teaching and learning and assessment methods in CLE are required and would be beneficial for the entire community of contact lens educators, and other disciplines that wish to adapt this approach of evidence-based teaching.

    Matched MeSH terms: Learning*
  19. Khare SK, Acharya UR
    Comput Biol Med, 2023 Mar;155:106676.
    PMID: 36827785 DOI: 10.1016/j.compbiomed.2023.106676
    BACKGROUND: Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects a person's sleep, mood, anxiety, and learning. Early diagnosis and timely medication can help individuals with ADHD perform daily tasks without difficulty. Electroencephalogram (EEG) signals can help neurologists to detect ADHD by examining the changes occurring in it. The EEG signals are complex, non-linear, and non-stationary. It is difficult to find the subtle differences between ADHD and healthy control EEG signals visually. Also, making decisions from existing machine learning (ML) models do not guarantee similar performance (unreliable).

    METHOD: The paper explores a combination of variational mode decomposition (VMD), and Hilbert transform (HT) called VMD-HT to extract hidden information from EEG signals. Forty-one statistical parameters extracted from the absolute value of analytical mode functions (AMF) have been classified using the explainable boosted machine (EBM) model. The interpretability of the model is tested using statistical analysis and performance measurement. The importance of the features, channels and brain regions has been identified using the glass-box and black-box approach. The model's local and global explainability has been visualized using Local Interpretable Model-agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), Partial Dependence Plot (PDP), and Morris sensitivity. To the best of our knowledge, this is the first work that explores the explainability of the model prediction in ADHD detection, particularly for children.

    RESULTS: Our results show that the explainable model has provided an accuracy of 99.81%, a sensitivity of 99.78%, 99.84% specificity, an F-1 measure of 99.83%, the precision of 99.87%, a false detection rate of 0.13%, and Mathew's correlation coefficient, negative predicted value, and critical success index of 99.61%, 99.73%, and 99.66%, respectively in detecting the ADHD automatically with ten-fold cross-validation. The model has provided an area under the curve of 100% while the detection rate of 99.87% and 99.73% has been obtained for ADHD and HC, respectively.

    CONCLUSIONS: The model show that the interpretability and explainability of frontal region is highest compared to pre-frontal, central, parietal, occipital, and temporal regions. Our findings has provided important insight into the developed model which is highly reliable, robust, interpretable, and explainable for the clinicians to detect ADHD in children. Early and rapid ADHD diagnosis using robust explainable technologies may reduce the cost of treatment and lessen the number of patients undergoing lengthy diagnosis procedures.

    Matched MeSH terms: Machine Learning
  20. Wong WJ, Affendi NANM, Siow SL, Mahendran HA, Lau PC, Ho SH, et al.
    Surg Endosc, 2023 Mar;37(3):1735-1741.
    PMID: 36214914 DOI: 10.1007/s00464-022-09680-2
    INTRODUCTION: Per-Oral Endoscopic Myotomy (POEM) is an effective treatment for Esophageal Achalasia Cardia (EAC) but the endoscopic technique required is complex. As competency is crucial for patient safety, we believe that its' competency can be demonstrated when the complication rate equals that of an established procedure such as Laparoscopic Heller's Myotomy with Fundoplication (LHM + F).

    METHODS: A multicentre, ambi-directional, non-randomized comparison of intra-procedural complications during the learning curve of POEM was performed against a historical cohort of LHM + F. Demographic, clinicopathological, procedural data and complications were collected. A direct head-to-head comparison was performed, followed by a population pyramid of complication frequency. Case sequence was then divided into blocks of 5, and the complication rates during each block was compared to the historical cohort.

    RESULTS: From January 2010 to April 2021, 60 patients underwent LHM + F and 63 underwent POEM. Mean age was lower for the POEM group (41.7 years vs 48.1 years, p = 0.03), but there was no difference in gender nor type of Achalasia. The POEM group recorded a shorter overall procedural time (125.9 min vs 144.1 min, p = 0.023) and longer myotomies (10.1 cm vs 6.2 cm, p = 0.023). The overall complication rate of POEM was 20.6%, whereas the historical cohort of LHM + F had a rate of 10.0%. On visual inspection of the population pyramid, complications were more frequent in the earlier procedures. On block sequencing, complication frequency could be seen tapering off dramatically after the 25th case, and subsequently equalled that of LHM + F.

    CONCLUSION: POEM is challenging even for experienced endoscopists. From our data, complication rates between POEM and LHM + F equalize after approximately 25 POEMs.

    Matched MeSH terms: Learning Curve
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links