Displaying publications 61 - 80 of 116 in total

Abstract:
Sort:
  1. Hong-Seng G, Sayuti KA, Karim AH
    Biomed Mater Eng, 2017;28(2):75-85.
    PMID: 28372262 DOI: 10.3233/BME-171658
    BACKGROUND: Existing knee cartilage segmentation methods have reported several technical drawbacks. In essence, graph cuts remains highly susceptible to image noise despite extended research interest; active shape model is often constraint by the selection of training data while shortest path have demonstrated shortcut problem in the presence of weak boundary, which is a common problem in medical images.

    OBJECTIVES: The aims of this study is to investigate the capability of random walks as knee cartilage segmentation method.

    METHODS: Experts would scribble on knee cartilage image to initialize random walks segmentation. Then, reproducibility of the method is assessed against manual segmentation by using Dice Similarity Index. The evaluation consists of normal cartilage and diseased cartilage sections which is divided into whole and single cartilage categories.

    RESULTS: A total of 15 normal images and 10 osteoarthritic images were included. The results showed that random walks method has demonstrated high reproducibility in both normal cartilage (observer 1: 0.83±0.028 and observer 2: 0.82±0.026) and osteoarthritic cartilage (observer 1: 0.80±0.069 and observer 2: 0.83±0.029). Besides, results from both experts were found to be consistent with each other, suggesting the inter-observer variation is insignificant (Normal: P=0.21; Diseased: P=0.15).

    CONCLUSION: The proposed segmentation model has overcame technical problems reported by existing semi-automated techniques and demonstrated highly reproducible and consistent results against manual segmentation method.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  2. Cacha LA, Parida S, Dehuri S, Cho SB, Poznanski RR
    J Integr Neurosci, 2016 Dec;15(4):593-606.
    PMID: 28093025 DOI: 10.1142/S0219635216500345
    The huge number of voxels in fMRI over time poses a major challenge to for effective analysis. Fast, accurate, and reliable classifiers are required for estimating the decoding accuracy of brain activities. Although machine-learning classifiers seem promising, individual classifiers have their own limitations. To address this limitation, the present paper proposes a method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification for application across multiple subjects. Similarly, the fuzzy integral (FI) approach has been employed as an efficient tool for combining different classifiers. The FI approach led to the development of a classifiers ensemble technique that performs better than any of the single classifier by reducing the misclassification, the bias, and the variance. The proposed method successfully classified the different cognitive states for multiple subjects with high accuracy of classification. Comparison of the performance improvement, while applying ensemble neural networks method, vs. that of the individual neural network strongly points toward the usefulness of the proposed method.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  3. Abdul Hamid NA, Mediani A, Maulidiani M, Abas F, Park YS, Leontowicz H, et al.
    J Pharm Biomed Anal, 2017 May 10;138:80-91.
    PMID: 28189049 DOI: 10.1016/j.jpba.2017.01.046
    It is known from our previous studies that kiwifruits, which are used in common human diet, have preventive properties of coronary artery disease. This study describes a combination of (1)H NMR spectroscopy, multivariate data analyses and fluorescence measurements in differentiating of some kiwifruit varieties, their quenching and antioxidant properties. A total of 41 metabolites were identified by comparing with literature data Chenomx database and 2D NMR. The binding properties of the extracted polyphenols against HSA showed higher reactivity of studied two cultivars in comparison with the common Hayward. The results showed that the fluorescence of HSA was quenched by Bidan as much as twice than by other fruits. The correlation between the binding properties of polyphenols in the investigated fruits, their relative quantification and suggested metabolic pathway was established. These results can provide possible application of fruit extracts in pharmaceutical industry.
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  4. Keserci B, Duc NM
    Int J Hyperthermia, 2018;35(1):626-636.
    PMID: 30307340 DOI: 10.1080/02656736.2018.1516301
    OBJECTIVE: This retrospective study aimed (1) to investigate the magnetic resonance imaging (MRI) features influencing a nonperfused volume ratio (NPVr) ≥ 90% after high-intensity focussed ultrasound (HIFU) ablation of adenomyosis, and (2) to assess the safety, which was defined in terms of adverse events (AEs) and changes in anti-Mullerian hormone (AMH) concentrations, and clinical efficacy, which was defined in terms of adenomyosis volume reduction and symptom improvement at 6 months' follow-up.

    METHODS: Sixty-six women who underwent HIFU treatment were divided into groups A (NPVr ≥90%; n = 26) and B (NPVr <90%, n = 40). Multivariate logistic regression analyses of MRI features were conducted to identify the potential predictors of an NPVr ≥90%.

    RESULTS: Generalized estimating equation (GEE) analysis was used to model the prediction of an NPVr ≥90% with four significant predictors from multivariate analyses: the thickness of the subcutaneous fat layer, adenomyosis volume, T2 signal intensity (SI) ratio of adenomyosis to myometrium, and the Ktrans ratio of adenomyosis to myometrium. Clinical efficacy was significantly greater in group A than in group B. The findings showed no serious AEs and no significant differences between AMH concentrations before and 6 months after treatment.

    CONCLUSIONS: The present retrospective study demonstrated that achievement of NPVr ≥90% as a measure of clinical treatment success in MRI-guided HIFU treatment of adenomyosis using multivariate analyses and a prediction model is clinically possible without compromising the safety of patients.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  5. Ramli N, Yap A, Muridan R, Seow P, Rahmat K, Fong CY, et al.
    Clin Radiol, 2020 01;75(1):77.e15-77.e22.
    PMID: 31668796 DOI: 10.1016/j.crad.2019.09.134
    AIM: To evaluate the microstructural abnormalities of the white matter tracts (WMT) using diffusion tensor imaging (DTI) in children with global developmental delay (GDD).

    MATERIALS AND METHODS: Sixteen children with GDD underwent magnetic resonance imaging (MRI) and cross-sectional DTI. Formal developmental assessment of all GDD patients was performed using the Mullen Scales of Early Learning. An automated processing pipeline for the WMT assessment was implemented. The DTI-derived metrics of the children with GDD were compared to healthy children with normal development (ND).

    RESULTS: Only two out of the 17 WMT demonstrated significant differences (p<0.05) in DTI parameters between the GDD and ND group. In the uncinate fasciculus (UF), the GDD group had lower mean values for fractional anisotropy (FA; 0.40 versus 0.44), higher values for mean diffusivity (0.96 versus 0.91×10-3 mm2/s) and radial diffusivity (0.75 versus 0.68×10-3 mm2/s) compared to the ND group. In the superior cerebellar peduncle (SCP), mean FA values were lower for the GDD group (0.38 versus 0.40). Normal myelination pattern of DTI parameters was deviated against age for GDD group for UF and SCP.

    CONCLUSION: The UF and SCP WMT showed microstructural changes suggestive of compromised white matter maturation in children with GDD. The DTI metrics have potential as imaging markers for inadequate white matter maturation in GDD children.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  6. Bilal M, Anis H, Khan N, Qureshi I, Shah J, Kadir KA
    Biomed Res Int, 2019;2019:6139785.
    PMID: 31119178 DOI: 10.1155/2019/6139785
    Background: Motion is a major source of blurring and ghosting in recovered MR images. It is more challenging in Dynamic Contrast Enhancement (DCE) MRI because motion effects and rapid intensity changes in contrast agent are difficult to distinguish from each other.

    Material and Methods: In this study, we have introduced a new technique to reduce the motion artifacts, based on data binning and low rank plus sparse (L+S) reconstruction method for DCE MRI. For Data binning, radial k-space data is acquired continuously using the golden-angle radial sampling pattern and grouped into various motion states or bins. The respiratory signal for binning is extracted directly from radially acquired k-space data. A compressed sensing- (CS-) based L+S matrix decomposition model is then used to reconstruct motion sorted DCE MR images. Undersampled free breathing 3D liver and abdominal DCE MR data sets are used to validate the proposed technique.

    Results: The performance of the technique is compared with conventional L+S decomposition qualitatively along with the image sharpness and structural similarity index. Recovered images are visually sharper and have better similarity with reference images.

    Conclusion: L+S decomposition provides improved MR images with data binning as preprocessing step in free breathing scenario. Data binning resolves the respiratory motion by dividing different respiratory positions in multiple bins. It also differentiates the respiratory motion and contrast agent (CA) variations. MR images recovered for each bin are better as compared to the method without data binning.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  7. Khan SU, Ullah N, Ahmed I, Ahmad I, Mahsud MI
    Curr Med Imaging Rev, 2019;15(3):243-254.
    PMID: 31989876 DOI: 10.2174/1573405614666180726124952
    BACKGROUND: Medical imaging is to assume greater and greater significance in an efficient and precise diagnosis process.

    DISCUSSION: It is a set of various methodologies which are used to capture internal or external images of the human body and organs for clinical and diagnosis needs to examine human form for various kind of ailments. Computationally intelligent machine learning techniques and their application in medical imaging can play a significant role in expediting the diagnosis process and making it more precise.

    CONCLUSION: This review presents an up-to-date coverage about research topics which include recent literature in the areas of MRI imaging, comparison with other modalities, noise in MRI and machine learning techniques to remove the noise.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  8. Neo RJ
    Med J Malaysia, 2019 12;74(6):537-539.
    PMID: 31929482
    A 17-year-old man from Sarawak presented with acute encephalitis syndrome. Serologic testing revealed raised Japanese Encephalitis (JE) IgM antibody titre in which first serum JE was negative followed by positive second serum JE IgM one week later. Magnetic resonance imaging (MRI) and Magnetic resonance venogram (MRV) showed cerebral venous sinus thrombosis (CVST) which is a rare presentation of JE. Early identification of CVST is important as anticoagulation needs to be started to reduce adverse neurological sequelae and improve prognosis.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  9. Jatoi MA, Kamel N, Musavi SHA, López JD
    Curr Med Imaging Rev, 2019;15(2):184-193.
    PMID: 31975664 DOI: 10.2174/1573405613666170629112918
    BACKGROUND: Electrical signals are generated inside human brain due to any mental or physical task. This causes activation of several sources inside brain which are localized using various optimization algorithms.

    METHODS: Such activity is recorded through various neuroimaging techniques like fMRI, EEG, MEG etc. EEG signals based localization is termed as EEG source localization. The source localization problem is defined by two complementary problems; the forward problem and the inverse problem. The forward problem involves the modeling how the electromagnetic sources cause measurement in sensor space, while the inverse problem refers to the estimation of the sources (causes) from observed data (consequences). Usually, this inverse problem is ill-posed. In other words, there are many solutions to the inverse problem that explains the same data. This ill-posed problem can be finessed by using prior information within a Bayesian framework. This research work discusses source reconstruction for EEG data using a Bayesian framework. In particular, MSP, LORETA and MNE are compared.

    RESULTS: The results are compared in terms of variational free energy approximation to model evidence and in terms of variance accounted for in the sensor space. The results are taken for real time EEG data and synthetically generated EEG data at an SNR level of 10dB.

    CONCLUSION: In brief, it was seen that MSP has the highest evidence and lowest localization error when compared to classical models. Furthermore, the plausibility and consistency of the source reconstruction speaks to the ability of MSP technique to localize active brain sources.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  10. Annuar BR, Liew CK, Chin SP, Ong TK, Seyfarth MT, Chan WL, et al.
    Eur J Radiol, 2008 Jan;65(1):112-9.
    PMID: 17466480
    To compare the assessment of global and regional left ventricular (LV) function using 64-slice multislice computed tomography (MSCT), 2D echocardiography (2DE) and cardiac magnetic resonance (CMR).
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  11. Msayib Y, Harston GWJ, Tee YK, Sheerin F, Blockley NP, Okell TW, et al.
    Neuroimage Clin, 2019;23:101833.
    PMID: 31063943 DOI: 10.1016/j.nicl.2019.101833
    BACKGROUND: Amide proton transfer (APT) imaging may help identify the ischaemic penumbra in stroke patients, the classical definition of which is a region of tissue around the ischaemic core that is hypoperfused and metabolically stressed. Given the potential of APT imaging to complement existing imaging techniques to provide clinically-relevant information, there is a need to develop analysis techniques that deliver a robust and repeatable APT metric. The challenge to accurate quantification of an APT metric has been the heterogeneous in-vivo environment of human tissue, which exhibits several confounding magnetisation transfer effects including spectrally-asymmetric nuclear Overhauser effects (NOEs). The recent literature has introduced various model-free and model-based approaches to analysis that seek to overcome these limitations.

    OBJECTIVES: The objective of this work was to compare quantification techniques for CEST imaging that specifically separate APT and NOE effects for application in the clinical setting. Towards this end a methodological comparison of different CEST quantification techniques was undertaken in healthy subjects, and around clinical endpoints in a cohort of acute stroke patients.

    METHODS: MRI data from 12 patients presenting with ischaemic stroke were retrospectively analysed. Six APT quantification techniques, comprising model-based and model-free techniques, were compared for repeatability and ability for APT to distinguish pathological tissue in acute stroke.

    RESULTS: Robustness analysis of six quantification techniques indicated that the multi-pool model-based technique had the smallest contrast between grey and white matter (2%), whereas model-free techniques exhibited the highest contrast (>30%). Model-based techniques also exhibited the lowest spatial variability, of which 4-pool APTR∗ was by far the most uniform (10% coefficient of variation, CoV), followed by 3-pool analysis (20%). Four-pool analysis yielded the highest ischaemic core contrast-to-noise ratio (0.74). Four-pool modelling of APT effects was more repeatable (3.2% CoV) than 3-pool modelling (4.6% CoV), but this appears to come at the cost of reduced contrast between infarct growth tissue and normal tissue.

    CONCLUSION: The multi-pool measures performed best across the analyses of repeatability, spatial variability, contrast-to-noise ratio, and grey matter-white matter contrast, and might therefore be more suitable for use in clinical imaging of acute stroke. Addition of a fourth pool that separates NOEs and semisolid effects appeared to be more biophysically accurate and provided better separation of the APT signal compared to the 3-pool equivalent, but this improvement appeared be accompanied by reduced contrast between infarct growth tissue and normal tissue.

    Matched MeSH terms: Diffusion Magnetic Resonance Imaging/methods*
  12. Cheng J, Wang H, Wei S, Mei J, Liu F, Zhang G
    Comput Biol Med, 2024 Mar;170:108000.
    PMID: 38232453 DOI: 10.1016/j.compbiomed.2024.108000
    Alzheimer's disease (AD) is a neurodegenerative disease characterized by various pathological changes. Utilizing multimodal data from Fluorodeoxyglucose positron emission tomography(FDG-PET) and Magnetic Resonance Imaging(MRI) of the brain can offer comprehensive information about the lesions from different perspectives and improve the accuracy of prediction. However, there are significant differences in the feature space of multimodal data. Commonly, the simple concatenation of multimodal features can cause the model to struggle in distinguishing and utilizing the complementary information between different modalities, thus affecting the accuracy of predictions. Therefore, we propose an AD prediction model based on de-correlation constraint and multi-modal feature interaction. This model consists of the following three parts: (1) The feature extractor employs residual connections and attention mechanisms to capture distinctive lesion features from FDG-PET and MRI data within their respective modalities. (2) The de-correlation constraint function enhances the model's capacity to extract complementary information from different modalities by reducing the feature similarity between them. (3) The mutual attention feature fusion module interacts with the features within and between modalities to enhance the modal-specific features and adaptively adjust the weights of these features based on information from other modalities. The experimental results on ADNI database demonstrate that the proposed model achieves a prediction accuracy of 86.79% for AD, MCI and NC, which is higher than the existing multi-modal AD prediction models.
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  13. Usman OL, Muniyandi RC, Omar K, Mohamad M
    PLoS One, 2021;16(2):e0245579.
    PMID: 33630876 DOI: 10.1371/journal.pone.0245579
    Achieving biologically interpretable neural-biomarkers and features from neuroimaging datasets is a challenging task in an MRI-based dyslexia study. This challenge becomes more pronounced when the needed MRI datasets are collected from multiple heterogeneous sources with inconsistent scanner settings. This study presents a method of improving the biological interpretation of dyslexia's neural-biomarkers from MRI datasets sourced from publicly available open databases. The proposed system utilized a modified histogram normalization (MHN) method to improve dyslexia neural-biomarker interpretations by mapping the pixels' intensities of low-quality input neuroimages to range between the low-intensity region of interest (ROIlow) and high-intensity region of interest (ROIhigh) of the high-quality image. This was achieved after initial image smoothing using the Gaussian filter method with an isotropic kernel of size 4mm. The performance of the proposed smoothing and normalization methods was evaluated based on three image post-processing experiments: ROI segmentation, gray matter (GM) tissues volume estimations, and deep learning (DL) classifications using Computational Anatomy Toolbox (CAT12) and pre-trained models in a MATLAB working environment. The three experiments were preceded by some pre-processing tasks such as image resizing, labelling, patching, and non-rigid registration. Our results showed that the best smoothing was achieved at a scale value, σ = 1.25 with a 0.9% increment in the peak-signal-to-noise ratio (PSNR). Results from the three image post-processing experiments confirmed the efficacy of the proposed methods. Evidence emanating from our analysis showed that using the proposed MHN and Gaussian smoothing methods can improve comparability of image features and neural-biomarkers of dyslexia with a statistically significantly high disc similarity coefficient (DSC) index, low mean square error (MSE), and improved tissue volume estimations. After 10 repeated 10-fold cross-validation, the highest accuracy achieved by DL models is 94.7% at a 95% confidence interval (CI) level. Finally, our finding confirmed that the proposed MHN method significantly outperformed the normalization method of the state-of-the-art histogram matching.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  14. Yusof ANM, Thong HK, Kamalden TMIT
    Med Arch, 2020 Aug;74(4):312-314.
    PMID: 33041452 DOI: 10.5455/medarh.2020.74.312-314
    INTRODUCTION: Chondroblastoma is an uncommon benign, locally destructive tumor that usually arises from epiphyses of the long bones. Temporal bone chondroblastoma is an extremely rare occurrence. Chondroblastoma arise from immature cartilage cells and it may display certain malignant features by invading surrounding structures and metastasizing to adjacent sites.

    AIM: To present a case of extradural temporal bone chondroblastoma and discuss the clinical presentation, radiographic findings, histology and particularly the surgical management of the case.

    CASE REPORT: We report a case of a 31-year-old man who presented with a painless left temporal swelling and left sided hearing loss for four months. Computed tomography (CT) scan revealed an aggressive mass involving the left preauricular region with temporal mastoid bone erosion. Magnetic resonance imaging (MRI) showed an extra-axial left temporal mastoid mass pushing the left temporal lobe superiorly. The patient underwent complete excision of the temporal bone tumor. The final histopathological diagnosis was in keeping with chondroblastoma.

    CONCLUSION: Temporal bone chondroblastoma is rare but an aggressive condition. Complete tumor resection via an appropriate approach that enables adequate exposure will lead to a favorable outcome.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  15. Hoe HG, Zaki FM, Rashid AHA
    Sultan Qaboos Univ Med J, 2018 Feb;18(1):e93-e96.
    PMID: 29666688 DOI: 10.18295/squmj.2018.18.01.015
    Synovial haemangiomas are rare benign vascular proliferations arising in synovium-lined surfaces. While the knee is by far the joint most commonly involved, this condition can also occur in the elbow. We report an eight-year-old boy who presented to the National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia, in 2016 with a left elbow swelling of one year's duration. Magnetic resonance imaging showed a lobulated intra-articular mass with intermediate signal intensity on T1-weighted imaging and low signal punctate and linear structures within the hyperintense mass on T2-weighted imaging. In addition, there was heterogeneous yet avid contrast enhancement on post-gadolinium contrast images. The mass had juxta-articular extension and bony erosion to the coronoid process and the head of the radius. Synovial haemangiomas present a diagnostic dilemma. This report highlights certain imaging characteristics to distinguish this entity from other differential diagnoses.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  16. Tan HH, Tan SK, Shunmugan R, Zakaria R, Zahari Z
    Sultan Qaboos Univ Med J, 2017 Nov;17(4):e455-e459.
    PMID: 29372089 DOI: 10.18295/squmj.2017.17.04.013
    Persistent urogenital sinus (PUGS) is a rare anomaly whereby the urinary and genital tracts fail to separate during embryonic development. We report a three-year-old female child who was referred to the Sabah Women & Children Hospital, Sabah, Malaysia, in 2016 with a pelvic mass. She had been born prematurely at 36 gestational weeks via spontaneous vaginal delivery in 2013 and initially misdiagnosed with neurogenic bladder dysfunction. The external genitalia appeared normal and an initial sonogram and repeat micturating cystourethrograms did not indicate any urogenital anomalies. She therefore underwent clean intermittent catheterisation. Three years later, the diagnosis was corrected following the investigation of a persistent cystic mass posterior to the bladder. At this time, a clinical examination of the perineum showed a single opening into the introitus. Magnetic resonance imaging of the pelvis revealed gross hydrocolpos and a genitogram confirmed a diagnosis of PUGS, for which the patient underwent surgical separation of the urinary and genital tracts.
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  17. Vairavan R, Abdullah O, Retnasamy PB, Sauli Z, Shahimin MM, Retnasamy V
    Curr Med Imaging Rev, 2019;15(2):85-121.
    PMID: 31975658 DOI: 10.2174/1573405613666170912115617
    BACKGROUND: Breast carcinoma is a life threatening disease that accounts for 25.1% of all carcinoma among women worldwide. Early detection of the disease enhances the chance for survival.

    DISCUSSION: This paper presents comprehensive report on breast carcinoma disease and its modalities available for detection and diagnosis, as it delves into the screening and detection modalities with special focus placed on the non-invasive techniques and its recent advancement work done, as well as a proposal on a novel method for the application of early breast carcinoma detection.

    CONCLUSION: This paper aims to serve as a foundation guidance for the reader to attain bird's eye understanding on breast carcinoma disease and its current non-invasive modalities.

    Matched MeSH terms: Magnetic Resonance Imaging/methods; Diffusion Magnetic Resonance Imaging/methods
  18. Hani AF, Kumar D, Malik AS, Walter N, Razak R, Kiflie A
    Acad Radiol, 2015 Jan;22(1):93-104.
    PMID: 25481518 DOI: 10.1016/j.acra.2014.08.008
    Quantitative assessment of knee articular cartilage (AC) morphology using magnetic resonance (MR) imaging requires an accurate segmentation and 3D reconstruction. However, automatic AC segmentation and 3D reconstruction from hydrogen-based MR images alone is challenging because of inhomogeneous intensities, shape irregularity, and low contrast existing in the cartilage region. Thus, the objective of this research was to provide an insight into morphologic assessment of AC using multilevel data processing of multinuclear ((23)Na and (1)H) MR knee images.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  19. Powell R, Ahmad M, Gilbert FJ, Brian D, Johnston M
    Br J Health Psychol, 2015 Sep;20(3):449-65.
    PMID: 25639980 DOI: 10.1111/bjhp.12132
    The movement of patients in magnetic resonance imaging (MRI) scanners results in motion artefacts which impair image quality. Non-completion of scans leads to delay in diagnosis and increased costs. This study aimed to develop and evaluate an intervention to enable patients to stay still in MRI scanners (reducing motion artefacts) and to enhance scan completion. Successful scan outcome was deemed to be completing the scan with no motion artefacts.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  20. Yin LK, Rajeswari M
    Biomed Mater Eng, 2014;24(6):3333-41.
    PMID: 25227043 DOI: 10.3233/BME-141156
    To segment an image using the random walks algorithm; users are often required to initialize the approximate locations of the objects and background in the image. Due to its segmenting model that is mainly reflected by the relationship among the neighborhood pixels and its boundary conditions, random walks algorithm has made itself sensitive to the inputs of the seeds. Instead of considering the relationship between the neighborhood pixels solely, an attempt has been made to modify the weighting function that accounts for the intensity changes between the neighborhood nodes. Local affiliation within the defined neighborhood region of the two nodes is taken into consideration by incorporating an extra penalty term into the weighting function. Besides that, to better segment images, particularly medical images with texture features, GLCM variance is incorporated into the weighting function through kernel density estimation (KDE). The probability density of each pixel belonging to the initialized seeds is estimated and integrated into the weighting function. To test the performance of the proposed weighting model, several medical images that mainly made up of 174-brain tumor images are experimented. These experiments establish that the proposed method produces better segmentation results than the original random walks.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links