DESIGN: Serum intact parathormone (PTH) concentrations were measured on samples taken before and during a variable-rate tri-sodium citrate infusion designed to 'clamp' the whole blood ionised calcium concentration 0.20 mmol L-1 below baseline for 120 min.
SUBJECTS: Six Malaysian patients aged 17-42 years with acute malaria, four of whom were restudied in convalescence, and 12 healthy controls aged 19-36 years.
MAIN OUTCOME MEASURES: Whole-blood ionised calcium and serum intact PTH concentrations.
RESULTS: The mean (SD baseline ionised calcium was lower in the malaria patients than in controls (1.09 +/- 0.06 vs. 1.18 +/- 0.03 mmol L-1, respectively; P = 0.01) but PTH concentrations were similar (3.0 +/- 1.8 vs. 3.3 +/- 1.3 pmol L(-1); P = 0.33). Target whole-blood ionised calcium concentrations were achieved more rapidly in the controls than the patients (within 15 vs. 30 min) despite significantly more citrate being required in the patients (area under the citrate infusion-time curve 0.95 (0.25 vs. 0.57 +/- 0.09 mmol kg-1; P < 0.01). The ratio of the change in serum PTH to that in ionised calcium (delta PTH/ delta Ca2+), calculated to adjust for differences in initial rate of fall of ionised calcium, was similar during the first 5 min of the clamp (132 +/- 75 x 10(-6) vs. 131 +/- 43 x 10(-6) in patients and controls, respectively, P > 0.05), as were steady-state serum PTH levels during the second hour (7.0 +/- 2.2 pmol L-1 in each case). Convalescent patients had normal basal ionised calcium levels but the lowest serum intact PTH levels before and during the clamp, consistent with an increase in skeletal PTH sensitivity after treatment.
CONCLUSIONS: There is a decreased ionised calcium 'set point' for basal PTH secretion but a normal PTH response to acute hypocalcaemia in malaria. Skeletal resistance may attenuate the effects of the PTH response but patients with malaria appear relatively resistant to the calcium chelating effects of citrated blood products.
METHODS: In a systematic study of the presentation and course of patients with acute P. knowlesi infection, clinical and laboratory data were collected from previously untreated, nonpregnant adults admitted to the hospital with polymerase chain reaction-confirmed acute malaria at Kapit Hospital (Sarawak, Malaysia) from July 2006 through February 2008.
RESULTS: Of 152 patients recruited, 107 (70%) had P. knowlesi infection, 24 (16%) had Plasmodium falciparum infection, and 21 (14%) had Plasmodium vivax. Patients with P. knowlesi infection presented with a nonspecific febrile illness, had a baseline median parasitemia value at hospital admission of 1387 parasites/microL (interquartile range, 6-222,570 parasites/microL), and all were thrombocytopenic at hospital admission or on the following day. Most (93.5%) of the patients with P. knowlesi infection had uncomplicated malaria that responded to chloroquine and primaquine treatment. Based on World Health Organization criteria for falciparum malaria, 7 patients with P. knowlesi infection (6.5%) had severe infections at hospital admission. The most frequent complication was respiratory distress, which was present at hospital admission in 4 patients and developed after admission in an additional 3 patients. P. knowlesi parasitemia at hospital admission was an independent determinant of respiratory distress, as were serum creatinine level, serum bilirubin, and platelet count at admission (p < .002 for each). Two patients with knowlesi malaria died, representing a case fatality rate of 1.8% (95% confidence interval, 0.2%-6.6%).
CONCLUSIONS: Knowlesi malaria causes a wide spectrum of disease. Most cases are uncomplicated and respond promptly to treatment, but approximately 1 in 10 patients develop potentially fatal complications.
METHODS: A cross-sectional study was carried out from 1 April 2018 to 31 January 2019 in Jazan region, southwestern Saudi Arabia, which targeted febrile individuals attending hospitals and primary healthcare centres. Participants' demographic data were collected, including age, gender, nationality, and residence. Moreover, association of climatic variables with the monthly autochthonous malaria cases reported during the period of 2010-2017 was retrospectively analysed.
RESULTS: A total of 1124 febrile subjects were found to be positive for malaria during the study period. Among them, 94.3 and 5.7% were infected with Plasmodium falciparum and Plasmodium vivax, respectively. In general, subjects aged 18-30 years and those aged over 50 years had the highest (42.7%) and lowest (5.9%) percentages of malaria cases. Similarly, the percentage of malaria-positive cases was higher among males than females (86.2 vs 13.8%), among non-Saudi compared to Saudi subjects (70.6 vs 29.4%), and among patients residing in rural rather than in urban areas (89.8 vs 10.2%). A total of 407 autochthonous malaria cases were reported in Jazan region between 2010 and 2017. Results of zero-inflated negative binomial regression analysis showed that monthly average temperature and relative humidity were the significant climatic determinants of autochthonous malaria in the region.
CONCLUSION: Malaria remains a public health problem in most governorates of Jazan region. The identification and monitoring of malaria transmission hotspots and predictors would enable control efforts to be intensified and focused on specific areas and therefore expedite the elimination of residual malaria from the whole region.
METHODS AND ANALYSIS: A population-based case-control study will be conducted over a 2-year period at two adjacent districts in north-west Sabah, Malaysia. Confirmed malaria cases presenting to the district hospital sites meeting relevant inclusion criteria will be requested to enrol. Three community controls matched to the same village as the case will be selected randomly. Study procedures will include blood sampling and administration of household and individual questionnaires to evaluate potential exposure risks associated with acquisition of P. knowlesi malaria. Secondary outcomes will include differences in exposure variables between P. knowlesi and other Plasmodium spp, risk of severe P. knowlesi malaria, and evaluation of P. knowlesi case clustering. Primary analysis will be per protocol, with adjusted ORs for exposure risks between cases and controls calculated using conditional multiple logistic regression models.
ETHICS: This study has been approved by the human research ethics committees of Malaysia, the Menzies School of Health Research, Australia, and the London School of Hygiene and Tropical Medicine, UK.
METHODS: Blood samples from 511 febrile patients were collected and a partial region of the 18 s ribosomal RNA (18 s rRNA) gene was amplified using nested PCR. From the 86 positive blood samples, 13 Plasmodium falciparum and 4 Plasmodium vivax were selected and underwent cloning and, subsequently, sequencing and the sequences were subjected to phylogenetic analysis using the neighbor-joining and maximum parsimony methods.
RESULTS: Malaria was detected by PCR in 86 samples (16.8%). The majority of the single infections were caused by P. falciparum (80.3%), followed by P. vivax (5.8%). Mixed infection rates of P. falciparum + P. vivax and P. falciparum + P. malariae were 11.6% and 2.3%, respectively. All P. falciparum isolates were grouped with the strain 3D7, while P. vivax isolates were grouped with the strain Salvador1. Phylogenetic trees based on 18 s rRNA placed the P. falciparum isolates into three sub-clusters and P. vivax into one cluster. Sequence alignment analysis showed 5-14.8% SNP in the partial sequences of the 18 s rRNA of P. falciparum.
CONCLUSIONS: Although P. falciparum is predominant, P. vivax, P. malariae and mixed infections are more prevalent than has been revealed by microscopy. This overlooked distribution should be considered by malaria control strategy makers. The genetic polymorphisms warrant further investigation.
Method: Thirty-five full-length pk41 sequences from clinical isolates of Malaysia along with four laboratory lines (along with H-strain) were downloaded from public databases. For comparative analysis between species, orthologous P41 genes from P. falciparum, P. vivax, P. coatneyi and P. cynomolgi were also downloaded. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 software. Phylogenetic relationships between Pk41 genes were determined using MEGA 5.0 software.
Results: Analysis of 39 full-length pk41 sequences along with the H-strain identified 36 SNPs (20 non-synonymous and 16 synonymous substitutions) resulting in 31 haplotypes. Nucleotide diversity across the full-length gene was low and was similar to its ortholog in P. vivax; pv41. Domain-wise amino acid analysis of the two s48/45 domains indicated low level of polymorphisms for both the domains, and the glutamic acid rich region had extensive size variations. In the central domain, upstream to the glutamate rich region, a unique two to six (K-E)n repeat region was identified within the clinical isolates. Overall, the pk41 genes were indicative of negative/purifying selection due to functional constraints. Domain-wise analysis of the s48/45 domains also indicated purifying selection. However, analysis of Tajima's D across the genes identified non-synonymous SNPs in the s48/45 domain II with high positive values indicating possible epitope binding regions. All the 6-cysteine residues within the s48/45 domains were conserved within the clinical isolates indicating functional conservation of these regions. Phylogenetic analysis of full-length pk41 genes indicated geographical clustering and identified three subpopulations of P. knowlesi; one originating in the laboratory lines and two originating from Sarawak, Malaysian Borneo.
Conclusion: This is the first study to report on the polymorphism and natural selection of pk41 genes from clinical isolates of Malaysia. The results reveal that there is low level of polymorphism in both s48/45 domains, indicating that this antigen could be a potential vaccine target. However, genetic and molecular immunology studies involving higher number of samples from various parts of Malaysia would be necessary to validate this antigen's candidacy as a vaccine target for P. knowlesi.
METHODS: In 2013, a total of 1744 dried blood spots (DBS) were obtained from residents of 8 longhouses who appeared healthy. Subsequently, 251 venous blood samples were collected from residents of 2 localities in 2014 based on the highest number of submicroscopic cases from prior findings. Thin and thick blood films were prepared from blood obtained from all participants in this study. Microscopic examination were carried out on all samples and a nested and nested multiplex PCR were performed on samples collected in 2013 and 2014 respectively.
RESULTS: No malaria parasites were detected in all the Giemsa-stained blood films. However, of the 1744 samples, 29 (1.7%) were positive for Plasmodium vivax by PCR. Additionally, of the 251 samples, the most prevalent mono-infection detected by PCR was Plasmodium falciparum 50 (20%), followed by P. vivax 39 (16%), P. knowlesi 9 (4%), and mixed infections 20 (8%).
CONCLUSIONS: This research findings conclude evidence of Plasmodium by PCR, among samples previously undetectable by routine blood film microscopic examination, in local ethnic minority who are clinically healthy. SMM in Belaga district is attributed not only to P. vivax, but also to P. falciparum and P. knowlesi. In complementing efforts of programme managers, there is a need to increase surveillance for SMM nationwide to estimate the degree of SMM that warrant measures to block new transmission of malaria.