Displaying publications 61 - 80 of 341 in total

Abstract:
Sort:
  1. Chin CY, Hara Y, Ghazali AK, Yap SJ, Kong C, Wong YC, et al.
    BMC Genomics, 2015;16:471.
    PMID: 26092034 DOI: 10.1186/s12864-015-1692-0
    Chronic bacterial infections occur as a result of the infecting pathogen's ability to live within a biofilm, hence escaping the detrimental effects of antibiotics and the immune defense system. Burkholderia pseudomallei, a gram-negative facultative pathogen, is distinctive in its ability to survive within phagocytic and non-phagocytic cells, to persist in vivo for many years and subsequently leading to relapse as well as the development of chronic disease. The capacity to persist has been attributed to the pathogen's ability to form biofilm. However, the underlying biology of B. pseudomallei biofilm development remains unresolved.
    Matched MeSH terms: Mice, Inbred BALB C
  2. Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Chong PP
    Int J Mol Sci, 2014;15(8):14848-67.
    PMID: 25153636 DOI: 10.3390/ijms150814848
    Different murine species differ in their susceptibility to systemic infection with Candida albicans, giving rise to varied host immune responses, and this is compounded by variations in virulence of the different yeast strains used. Hence, this study was aimed at elucidating the pathogenesis of a clinical C. albicans isolate (HVS6360) in a murine intravenous challenge model by examining the different parameters which included the counts of red blood cells and associated components as well as the organ-specific expression profiles of cytokines and chemokines. Kidneys and brains of infected mice have higher fungal recovery rates as compared to other organs and there were extensive yeast infiltration with moderate to severe inflammation seen in kidney and brain tissues. Red blood cells (RBCs) and haemoglobin (Hb) counts were reduced throughout the infection period. Pattern recognition receptors (PRRs), chemokines and cytokine transcription profiles were varied among the different organs (kidney, spleen and brain) over 72 h post infections. Transcription of most of the PRRs, cytokines and chemokines were suppressed at 72 h post infection in spleen while continuous expression of PRRs, cytokines and chemokines genes were seen in brain and kidney. Reduction in red blood cells and haemoglobin counts might be associated with the action of extracellular haemolysin enzyme and haeme oxygenase of C. albicans in conjunction with iron scavenging for the fungal growth. Renal cells responsible for erythropoietin production may be injured by the infection and hence the combined effect of haemolysis plus lack of erythropoietin-induced RBC replenishment leads to aggravated reduction in RBC numbers. The varied local host immune profiles among target organs during systemic C. albicans infection could be of importance for future work in designing targeted immunotherapy through immunomodulatory approaches.
    Matched MeSH terms: Mice, Inbred BALB C
  3. Ching XT, Fong MY, Lau YL
    Front Microbiol, 2016;7:609.
    PMID: 27199938 DOI: 10.3389/fmicb.2016.00609
    Toxoplasmosis is a foodborne disease caused by Toxoplasma gondii, an obligate intracellular parasite. Severe symptoms occur in the immunocompromised patients and pregnant women leading to fatality and abortions respectively. Vaccination development is essential to control the disease. The T. gondii dense granule antigen 2 and 5 (GRA2 and GRA5) have been targeted in this study because these proteins are essential to the development of parasitophorous vacuole (PV), a specialized compartment formed within the infected host cell. PV is resistance to host cell endosomes and lysosomes thereby protecting the invaded parasite. Recombinant dense granular proteins, GRA2 (rGRA2) and GRA5 (rGRA5) were cloned, expressed, and purified in Escherichia coli, BL21 (DE3) pLysS. The potential of these purified antigens as subunit vaccine candidates against toxoplasmosis were evaluated through subcutaneous injection of BALB/c mice followed by immunological characterization (humoral- and cellular-mediated) and lethal challenge against virulent T. gondii RH strain in BALB/c mice. Results obtained demonstrated that rGRA2 and rGRA5 elicited humoral and cellular-mediated immunity in the mice. High level of IgG antibody was produced with the isotype IgG2a/IgG1 ratio of ≈0.87 (p < 0.001). Significant increase (p < 0.05) in the level of four cytokines (IFN-γ, IL-2, IL-4, and IL-10) was obtained. The antibody and cytokine results suggest that a mix mode of Th1/Th2-immunity was elicited with predominant Th1-immune response inducing partial protection against T. gondii acute infection in BALB/c mice. Our findings indicated that both GRA2 and GRA5 are potential candidates for vaccine development against T. gondii acute infection.
    Matched MeSH terms: Mice, Inbred BALB C
  4. Ching XT, Fong MY, Lau YL
    Am J Trop Med Hyg, 2017 Jun;96(6):1441-1447.
    PMID: 28719288 DOI: 10.4269/ajtmh.16-0548
    AbstractToxoplasma gondii infects a broad range of warm-blooded hosts, including humans. Important clinical manifestations include encephalitis in immunocompromised patients as well as miscarriage and fetal damage during early pregnancy. Toxoplasma gondii dense granule antigen 2 and 5 (GRA2 and GRA5) are essential for parasitophorous vacuole development of the parasite. To evaluate the potential of GRA2 and GRA5 as recombinant DNA vaccine candidates, these antigens were cloned into eukaryotic expression vector (pcDNA 3.1C) and evaluated in vaccination experiments. Recombinant DNA vaccines constructed with genes encoding GRAs were validated in Chinese hamster ovary cells before evaluation using lethal challenge of the virulent T. gondii RH strain in BALB/c mice. The DNA vaccines of pcGRA2 and pcGRA5 elicited cellular-mediated immune response with significantly higher levels of interferon-gamma, interleukin-2 (IL-2), IL-4, and IL-10 (P < 0.05) compared with controls. A mixed T-helper cell 1 (Th1)/Th2 response was associated with slightly prolonged survival. These findings provide evidence that DNA vaccination with GRA2 and GRA5 is associated with Th1-like cell-mediated immune responses. It will be worthwhile to construct recombinant multiantigen combining full-length GRA2 or/and GRA5 with various antigenic proteins such as the surface antigens and rhoptry antigens to improve vaccination efficacy.
    Matched MeSH terms: Mice, Inbred BALB C
  5. Chong H, Cheah SH, Ragavan M, Johgalingam VT
    Hybridoma (Larchmt), 2006 Feb;25(1):34-40.
    PMID: 16475880
    Hybridomas secreting monoclonal antibodies (MAbs) against 17alpha-hydroxyprogesterone (17OHP) have been generated. These MAbs are highly specific and have an affinity of 7-12 x 10(7) M(1). The hybridomas were obtained by fusion of spleen cells from immunized mice with mouse myeloma P3X63 Ag8.653 cells. The antigen used for immunization was 17OHP conjugated to bovine serum albumin (17OHP:BSA). Fused cells were plated and cloned in 96-well microtiter plates. Wells containing hybridomas were screened simultaneously for specific gamma globulin (IgG) and anti-17OHP activity using an enzyme-linked immunosorbent assay (ELISA)-based method, which is faster than the conventional radioimmunoassay (RIA) screening procedure. Limiting dilution methods were used to obtain single hybridoma clones producing MAb. The stable hybridomas secreting anti-17OHP MAbs were expanded into bioreactors or ascites fluid for large-scale production of the required antibodies. These MAbs will be used in the formulation of a 17OHP assay kit to screen for congenital adrenal hyperplasia (CAH) in local newborn human population.
    Matched MeSH terms: Mice, Inbred BALB C
  6. Chong SL, Mou DG, Ali AM, Lim SH, Tey BT
    Hybridoma (Larchmt), 2008 Apr;27(2):107-11.
    PMID: 18642675
    The effect of mild hypothermic (32 degrees C) conditions on cell growth, cell-cycle progress, and antibody production of hybridoma C2E7 cells was investigated in the present study. The growth of hybridoma cells was slower during the mild hypothermic condition compared to that at 37 degrees C; this led to about 10% decrease in maximum viable cell density and volumetric antibody productivity. However, under mild hypothermic growth conditions, the culture viability was substantially improved and the specific antibody productivity was enhanced compared to that at 37 degrees C. The average specific productivity for the entire batch culture at 32 degrees C is about 5% higher than that at 37 degrees C. Cell-cycle analysis data showed that there was no growth arrestment during the mild hypothermic growth of hybridoma cells. The G1-phase cells were increased, while the S-phase cells were decreased gradually as the culture time progressed. Further analysis showed that the specific antibody productivity of hybridoma cells was correlated to the fraction of S-phase cells.
    Matched MeSH terms: Mice, Inbred BALB C
  7. Choo ZW, Chakravarthi S, Wong SF, Nagaraja HS, Thanikachalam PM, Mak JW, et al.
    Oncol Lett, 2010 Jan;1(1):215-222.
    PMID: 22966285
    Systemic candidiasis is a fungal infection which coupled with solid malignancies places patients at high risk of succumbing to the disease. Few studies have shown evidence of the relationship between systemic candidiasis and malignancy-induced immunosuppression disease especially in breast cancer. At present, animal studies that exclusively demonstrate this relationship have yet to be conducted. The exact causative mechanism of systemic candidiasis is currently under much speculation. This study therefore aimed to demonstrate this relationship by observing the histopathological changes of organs harvested from female Balb/c mice which were experimentally induced with breast cancer and inoculated with systemic candidiasis. The mice were randomly assigned to five different groups (n=12). The first group (group 1) was injected with phosphate buffer solution, the second (group 2) with systemic candidiasis, the third (group 3) with breast cancer and the final two groups (groups 4 and 5) had both candidiasis and breast cancer at two different doses of candidiasis, respectively. Inoculation of mice with systemic candidiasis was performed by an intravenous injection of Candida albicans via the tail vein following successful culture methods. Induction of mice with breast cancer occurred via injection of 4T1 cancer cells at the right axillary mammary fatpad after effective culture methods. The prepared slides with organ tissues were stained with hematoxylin and eosin, periodic acidic schiff and gomori methenamine silver stains for a histopathological analysis. Grading of primary tumour and identification of metastatic deposits, as well as scoring of inflammation and congestion in all the respective organs was conducted. Statistical tests performed to compare groups 2 and 4 showed that group 4 exhibited a highly statistically significant increase in organ inflammation and congestion (p<0.01). The median severity of candidiasis in the kidneys and liver also increased in group 4 as compared to group 2. In conclusion, based on the above evidence, systemic candidiasis significantly increased in mice with breast cancer.
    Matched MeSH terms: Mice, Inbred BALB C
  8. Chua CL, Chan YF, Sam IC
    J Virol Methods, 2014 Jan;195:126-33.
    PMID: 24134938 DOI: 10.1016/j.jviromet.2013.10.015
    Chikungunya virus (CHIKV) is a mosquito-borne arbovirus which has recently re-emerged globally and poses a major threat to public health. Infection leads to severe arthralgia, and disease management remains supportive in the absence of vaccines and anti-viral interventions. The high specificities of monoclonal antibodies (mAbs) have been exploited in immunodiagnostics and immunotherapy in recent decades. In this study, eight different clones of mAbs were generated and characterised. These mAbs targeted the linear epitopes on the CHIKV E2 envelope glycoprotein, which is the major target antigen during infection. All the mAbs showed binding activity against the purified CHIKV virion or recombinant E2 when analysed by immunofluorescence, ELISA and Western blot. The epitopes of each mAb were mapped by overlapping synthetic peptide-based ELISA. The epitopes are distributed at different functional domains of E2 glycoprotein, namely at domain A, junctions of β-ribbons with domains A and B, and domain C. Alignment of mAb epitope sequences revealed that some are well-conserved within different genotypes of CHIKV, while some are identical to and likely to cross-react with the closely-related alphavirus O'nyong-nyong virus. These mAbs with their mapped epitopes are useful for the development of diagnostic or research tools, including immunofluorescence, ELISA and Western blot.
    Matched MeSH terms: Mice, Inbred BALB C
  9. Crameri G, Wang LF, Morrissy C, White J, Eaton BT
    J Virol Methods, 2002 Jan;99(1-2):41-51.
    PMID: 11684302
    Rapid immune plaque assays have been developed to quantify biohazard level 4 agents Hendra and Nipah viruses and detect neutralising antibodies to both viruses. The methods rely on the fact that both viruses rapidly generate large syncytia in monolayers of Vero cells within 24 h and that monospecific antiserum to the Hendra virus phosphoprotein (P) detects that protein in both Hendra and Nipah virus-induced syncytia after methanol fixation of virus-infected cells. The P protein is a constituent of the ribonucleoprotein core of the viruses and a component of the viral RNA-dependent RNA polymerase and is made in significant amounts in infected cells. In the immune plaque assay, anti-P antibody is localised by an alkaline phosphatase-linked second antibody and the Western blot substrates 5-bromo-4-chloro-3-indolyl phosphate and p-nitro blue tetrazolium. A modification of the rapid immune plaque assay was also used to detect antibodies to Nipah virus in a panel of porcine field sera from Malaysia and the results showed good agreement between the immune plaque assay and a traditional serum neutralisation test. After methanol fixation, plates can be stored for up to 7 months and may be used in the immune plaque assay to complement the enzyme-linked immunosorbent assay screening of sera for antibodies to Nipah virus. At present, all enzyme-linked immunosorbent assay positive sera are subject to confirmatory serum neutralisation tests. Use of the immune plaque assay may reduce the number of sera requiring confirmatory neutralisation testing for Nipah virus antibodies under biohazard level 4 conditions by identifying those that generate false positive in the enzyme-linked immunosorbent assay.
    Matched MeSH terms: Mice, Inbred BALB C
  10. Donald, Koh Fook Chen, Joon, Wah Mak, Soo, Shen Ooi, Kwai Hoe Chong, Kok, Fee Mak
    MyJurnal
    Background: A number of Traditional Chinese Medicine (TCM) preparations are being used for the treatment of diabetes mellitus. Some components of these preparations have biochemical effects other than those of lowering blood glucose and indeed have been used for other medical indications in traditional practice. The primary objective of the study was to determine the effect of the oral mixture of Traditional Chinese Medicine for diabetes (TCM-D™ complex) on blood glucose level and the biochemical changes if any, on the liver (ALT, AST, gamma-GT, albumin, globulin) and renal (blood creatinine, urea) functions in normal mice. The oral mixture is an aqueous extract of four wellknown traditional Chinese medicinal herbs and consists of Trichosanthes kirilowii Maxim., Paeonia lactiflora Pall., Glycyrrhiza uranlensis Fisch., and Panax ginseng (red) CA Meyer in the proportion of 36%, 28%, 18%, and 18% respectively of the dry weight. These herbs have
    been shown to have blood glucose lowering activity and have been used for other traditional medicinal purposes.The safety of the combination was evaluated in the present study. Methods: Experimental Balb/c mice were treated orally via gastric tube with the extract at daily doses equivalent to 1 and 10 times the recommended human dose for 8 weeks. Blood glucose and other biochemical profiles were monitored at pre-treatment and monthly posttreatment until killed. Results: When compared to pre-treatment levels, the blood glucose levels were significantly lower in treated animals compared to those in the control group. At the recommended TCM-D™ dose the levels in treated animals were significantly lower than that of control animals and at pre-treatment. When compared with pre-treatment, the glucose levels were lowest at Week 8 of treatment, the mean levels being 111.23%, 83.32% and 70.33% in control, and in animals given 1 x and 10 x the recommended TCM-D™ dosage respectively. The blood glucose lowering effect was also associated with a significant weight loss in treated animals. There were transient increases in AST and ALT levels but these reverted to normal at Week 8 of treatment. The levels of bilirubin, g-GT, albumin, creatinine and blood urea were also not significantly different at Week 8 from pre-treatment levels in all groups. Conclusion: Even at 10 times the dosage recommended for humans, TCM-D™ did not affect the liver and renal functions of treated animals. Treated and control animals remained healthy and normal throughout the period of observation.
    Matched MeSH terms: Mice, Inbred BALB C
  11. Dua K, Madan JR, Chellappan DK, Gupta G
    Panminerva Med, 2018 09;60(3):135-136.
    PMID: 30176702 DOI: 10.23736/S0031-0808.18.03442-0
    Matched MeSH terms: Mice, Inbred BALB C
  12. Dups J, Middleton D, Long F, Arkinstall R, Marsh GA, Wang LF
    Virol J, 2014;11:102.
    PMID: 24890603 DOI: 10.1186/1743-422X-11-102
    Nipah virus and Hendra virus are closely related and following natural or experimental exposure induce similar clinical disease. In humans, encephalitis is the most serious outcome of infection and, hitherto, research into the pathogenesis of henipavirus encephalitis has been limited by the lack of a suitable model. Recently we reported a wild-type mouse model of Hendra virus (HeV) encephalitis that should facilitate detailed investigations of its neuropathogenesis, including mechanisms of disease recrudescence. In this study we investigated the possibility of developing a similar model of Nipah virus encephalitis.
    Matched MeSH terms: Mice, Inbred BALB C
  13. Dyari HRE, Rawling T, Chen Y, Sudarmana W, Bourget K, Dwyer JM, et al.
    FASEB J, 2017 12;31(12):5246-5257.
    PMID: 28798154 DOI: 10.1096/fj.201700033R
    A saturated analog of the cytochrome P450-mediated ω-3-17,18-epoxide of ω-3-eicosapentaenoic acid (C20E) activated apoptosis in human triple-negative MDA-MB-231 breast cancer cells. This study evaluated the apoptotic mechanism of C20E. Increased cytosolic cytochrome c expression and altered expression of pro- and antiapoptotic B-cell lymphoma-2 proteins indicated activation of the mitochondrial pathway. Caspase-3 activation by C20E was prevented by pharmacological inhibition and silencing of the JNK and p38 MAP kinases (MAPK), upstream MAPK kinases MKK4 and MKK7, and the upstream MAPK kinase kinase apoptosis signal-regulating kinase 1 (ASK1). Silencing of the death receptor TNF receptor 1 (TNFR1), but not Fas, DR4, or DR5, and the adapters TRADD and TNF receptor-associated factor 2, but not Fas-associated death domain, prevented C20E-mediated apoptosis. B-cell lymphoma-2 homology 3-interacting domain death agonist (Bid) cleavage by JNK/p38 MAPK linked the extrinsic and mitochondrial pathways of apoptosis. In further studies, an antibody against the extracellular domain of TNFR1 prevented apoptosis by TNF-α but not C20E. These findings suggest that C20E acts intracellularly at TNFR1 to activate ASK1-MKK4/7-JNK/p38 MAPK signaling and to promote Bid-dependent mitochondrial disruption and apoptosis. Inin vivostudies, tumors isolated from C20E-treated nu/nu mice carrying MDA-MB-231 xenografts showed increased TUNEL staining and decreased Ki67 staining, reflecting increased apoptosis and decreased proliferation, respectively. ω-3-Epoxy fatty acids like C20E could be incorporated into treatments for triple-negative breast cancers.-Dyari, H. R. E., Rawling, T., Chen, Y., Sudarmana, W., Bourget, K., Dwyer, J. M., Allison, S. E., Murray, M. A novel synthetic analogue of ω-3 17,18-epoxyeicosatetraenoic acid activates TNF receptor-1/ASK1/JNK signaling to promote apoptosis in human breast cancer cells.
    Matched MeSH terms: Mice, Inbred BALB C
  14. Fischer K, Diederich S, Smith G, Reiche S, Pinho Dos Reis V, Stroh E, et al.
    PLoS One, 2018;13(4):e0194385.
    PMID: 29708971 DOI: 10.1371/journal.pone.0194385
    Hendra virus (HeV) and Nipah virus (NiV) belong to the genus Henipavirus in the family Paramyxoviridae. Henipavirus infections were first reported in the 1990's causing severe and often fatal outbreaks in domestic animals and humans in Southeast Asia and Australia. NiV infections were observed in humans in Bangladesh, India and in the first outbreak in Malaysia, where pigs were also infected. HeV infections occurred in horses in the North-Eastern regions of Australia, with singular transmission events to humans. Bats of the genus Pteropus have been identified as the reservoir hosts for henipaviruses. Molecular and serological indications for the presence of henipa-like viruses in African fruit bats, pigs and humans have been published recently. In our study, truncated forms of HeV and NiV attachment (G) proteins as well as the full-length NiV nucleocapsid (N) protein were expressed using different expression systems. Based on these recombinant proteins, Enzyme-linked Immunosorbent Assays (ELISA) were developed for the detection of HeV or NiV specific antibodies in porcine serum samples. We used the NiV N ELISA for initial serum screening considering the general reactivity against henipaviruses. The G protein based ELISAs enabled the differentiation between HeV and NiV infections, since as expected, the sera displayed higher reactivity with the respective homologous antigens. In the future, these assays will present valuable tools for serosurveillance of swine and possibly other livestock or wildlife species in affected areas. Such studies will help assessing the potential risk for human and animal health worldwide by elucidating the distribution of henipaviruses.
    Matched MeSH terms: Mice, Inbred BALB C
  15. Freiberg B, Rahman MM, Marquardt O
    Virus Genes, 1999;19(3):167-82.
    PMID: 10595408
    This report extends the knowledge on the epizootical situation of foot-and-mouth disease in Asia. RNA from six samples of type A and five of type O virus, isolated between 1987 and 1997 in Bangladesh, Iran, Malaysia and Turkey, was subjected to reverse transcription-dependent polymerase chain reactions that amplify large parts of the capsid protein VP1 encoding genome region. The amplification products were sequenced, and the sequences aligned to each other and to published sequences. This showed the type O isolates of 1987-1997 from Bangladesh to be of same genotype and closely related to isolates of 1988 and later from Saudi Arabia, 1990 from India, 1996 from Greece and Bulgaria, and 1997 from Iran. Among the analyzed type A isolates, those of 1992 and 1996 from Turkey were of same genotype and related to previously described isolates of 1987 from Iran and of 1992 from Saudi Arabia. The isolate of 1997 from Malaysia was found to be related to isolates from Thailand of 1993 and 1996. The isolates of 1987 from Bangladesh and 1997 from Iran, however, represent different so far not described genotypes. Monoclonal antibodies, raised against the vaccine production strains A22 Iraq, Asial Shamir, O1 Kaufbeuren and O1 Manisa, and the recent type A field isolates Saudi Arabia/92 and Albania/96, were used in an ELISA to compare the reaction patterns of many of the field isolates. The monoclonal antibodies were further characterized for virus-neutralizing activity and binding to trypsinized homologous virus. The failure of neutralizing antibodies in binding to trypsinized homologous as well as to heterologous virus suggested the epitopes to reside at the major antigenic component of the virus, which is the capsid protein VP1. Two non-neutralizing antibodies that bind to trypsin-sensitive epitopes cross-reacted, however, with heterologous virus. This indicates the existence of a trypsin-sensitive antigenic site outside of VP1. In summary, the results obtained by ELISA confirm the observed sequence differences, but indicate further sequence differences at minor antigenic sites that do not reside on VP1.
    Matched MeSH terms: Mice, Inbred BALB C
  16. Ganesan N, Embi N, Hasidah MS
    Trop Biomed, 2020 Jun 01;37(2):303-317.
    PMID: 33612800
    Burkholderia pseudomallei is the etiologic agent of melioidosis, a major cause of community-acquired pneumonia and sepsis in the endemic areas. The overall mortality of patients with severe melioidosis remains high due to severe sepsis attributed to overwhelming inflammatory cytokine response in spite of recommended antibiotic therapy. It is crucial that therapeutic approaches beyond just effective antibiotic treatment such as adjunct therapy be considered to mitigate the dysregulated inflammatory signaling and augment host defenses. In an acute B. pseudomallei infection model, we have previously demonstrated that treatment with anti-malarial drug, chloroquine, modulated inflammatory cytokine levels and increased animal survivability via Akt-mediated inhibition of glycogen synthase kinase-3β (GSK3β). GSK3β is a downstream effector molecule within the phosphatidylinositol 3-kinase (PI3K)/ Akt axis which plays a pivotal role in regulating the production of pro- and anti-inflammatory cytokines. Here we evaluate the effect of chloroquine treatment in combination with a subtherapeutic dose of the antibiotic doxycycline on animal survivability, cytokine levels and phosphorylation states of GSK3β (Ser9) in a murine model of acute melioidosis infection to investigate whether chloroquine could be used as an adjunct therapy along with doxycycline for the treatment of melioidosis. Our findings revealed that 50 mg/kg b.w. chloroquine treatment together with a dose of 20 mg/kg b.w. doxycycline improved survivability (100%) of mice infected with 3 X LD50 of B. pseudomallei and significantly (P<0.05) lowered the bacterial loads in spleen, liver and blood compared to controls. B. pseudomallei-infected mice subjected to adjunct treatment with chloroquine and doxycycline significantly (P<0.05) reduced serum levels of pro-inflammatory cytokines (TNF-α, IFN-γ and IL-6) but increased levels of antiinflammatory cytokines (IL-4 and IL-10). Western blot analysis demonstrated that the intensities of pGSK3β (Ser9) in liver samples from mice treated with chloroquine and doxycycline combination were significantly (P<0.05) higher suggesting that the adjunct treatment resulted in significant inhibition of GSK3β. Taken together the bacteriostatic action of doxycycline coupled with the cytokine-modulating effect of chloroquine gave full protection to B. pseudomallei-infected mice and involved inhibition of GSK3β. Findings from the present study using B. pseudomallei-infected BALB/c mice suggest that chloroquine is a plausible candidate for repurposing as adjunct therapy to treat acute B. pseudomallei infection.
    Matched MeSH terms: Mice, Inbred BALB C
  17. Gebriel AM, Subramaniam G, Sekaran SD
    Trop Biomed, 2006 Dec;23(2):194-207.
    PMID: 17322822 MyJurnal
    The detection of leptospires in patient blood in the first week of the disease using PCR provides an early diagnostic tool. PCR using two sets of primers (G1/G2 and B64-I/B64-II) tested with samples seeded with 23 leptospiral strains from pathogenic and non-pathogenic strains was able to amplify leptospiral DNA from pathogenic strains only. Of the 39 antibody negative samples collected from patients suspected for leptospirosis, only 1 sample (2.6%) was PCR positive. Using LSSP-PCR, the G2 primers allowed the characterization of Leptopira species to 10 different genetic signatures which may have epidemiological value in determining species involved in outbreaks. Leptospiral outer membrane proteins from three strains were purified and reacted against patients sera and gave rise to different profiles for pathogenic and non-pathogenic strains. Lymphocytes of mice injected with OMPs proliferated and released IFN(-3) when stimulated in vitro using Leptospira OMP as antigens. This suggests that an immune response could be established using leptospiral OMPs as a putative vaccine. OMPs were also used in a Dot-ELISA to detect antibodies against Leptospira pathogens in humans.
    Matched MeSH terms: Mice, Inbred BALB C
  18. Geh SL, Rowan EG, Harvey AL
    Toxicon, 1992 Sep;30(9):1051-7.
    PMID: 1440642
    Four homologous single chain phospholipases A2 (Pa-1G, Pa-5, Pa-12C and Pa-15) were tested for neuromuscular effects on chick biventer cervicis and mouse hemidiaphragm nerve-muscle preparations. The four isozymes blocked directly elicited (mouse hemidiaphragm) and indirectly elicited (mouse and chick nerve-muscle preparations) twitch responses in concentrations of 1-30 micrograms/ml. The order of potency seen in both types of preparations was Pa-1G = Pa-5 greater than Pa-12C much greater than Pa-15. All four isozymes caused slow-onset, sustained contractures and reduction of muscle membrane potentials. In the chick preparation, responses to acetylcholine, carbachol and KCl were reduced by exposure to the toxins. It is concluded that the toxins act primarily postsynaptically to depress muscle contractility, perhaps by directly damaging muscle fibres. The order of potency agrees with their phospholipase A2 activity. Pa-1G is unusual because it is an acidic molecule, most toxic phospholipases being basic.
    Matched MeSH terms: Mice, Inbred BALB C
  19. Goh JZ, Tang SN, Chiong HS, Yong YK, Zuraini A, Hakim MN
    Int J Nanomedicine, 2015;10:297-303.
    PMID: 25678786 DOI: 10.2147/IJN.S75545
    Diclofenac is a nonsteroidal anti-inflammatory drug (NSAID) that exhibits anti-inflammatory, antinociceptive, and antipyretic activities. Liposomes have been shown to improve the therapeutic efficacy of encapsulated drugs. The present study was conducted to compare the antinociceptive properties between liposome-encapsulated and free-form diclofenac in vivo via different nociceptive assay models. Liposome-encapsulated diclofenac was prepared using the commercialized proliposome method. Antinociceptive effects of liposome-encapsulated and free-form diclofenac were evaluated using formalin test, acetic acid-induced abdominal writhing test, Randall-Selitto paw pressure test, and plantar test. The results of the writhing test showed a significant reduction of abdominal constriction in all treatment groups in a dose-dependent manner. The 20 mg/kg liposome-encapsulated diclofenac demonstrated the highest antinociceptive effect at 78.97% compared with 55.89% in the free-form group at equivalent dosage. Both liposome-encapsulated and free-form diclofenac produced significant results in the late phase of formalin assay at a dose of 20 mg/kg, with antinociception percentages of 78.84% and 60.71%, respectively. Significant results of antinociception were also observed in both hyperalgesia assays. For Randall-Sellito assay, the highest antinociception effect of 71.38% was achieved with 20 mg/kg liposome-encapsulated diclofenac, while the lowest antinociceptive effect of 17.32% was recorded with 0 mg/kg liposome formulation, whereas in the plantar test, the highest antinociceptive effect was achieved at 56.7% with 20 mg/kg liposome-encapsulated diclofenac, and the lowest effect was shown with 0 mg/kg liposome formulation of 8.89%. The present study suggests that liposome-encapsulated diclofenac exhibits higher antinociceptive efficacy in a dose-dependent manner in comparison with free-form diclofenac.
    Matched MeSH terms: Mice, Inbred BALB C
  20. Guang-Han O, Leang-Chung C, Vellasamy KM, Mariappan V, Li-Yen C, Vadivelu J
    PLoS One, 2016;11(7):e0158213.
    PMID: 27387381 DOI: 10.1371/journal.pone.0158213
    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen intrinsically resistant to a variety of antibiotics. Phages have been developed for use as an alternative treatment therapy, particularly for bacterial infections that do not respond to conventional antibiotics. In this study, we investigated the use of phages to treat cells infected with B. pseudomallei. Phage C34 isolated from seawater was purified and characterised on the basis of its host range and morphology using transmission electron microscopy (TEM). Phage C34 was able to lyse 39.5% of B. pseudomallei clinical strains. Due to the presence of contractile tail, phage C34 is classified as a member of the family Myoviridae, a tailed double-stranded DNA virus. When 2 × 105 A549 cells were exposed to 2 × 107 PFU of phage C34, 24 hours prior to infection with 2 × 106 CFU of B. pseudomallei, it was found that the survivability of the cells increased to 41.6 ± 6.8% as compared to 22.8 ± 6.0% in untreated control. Additionally, application of phage successfully rescued 33.3% of mice infected with B. pseudomallei and significantly reduced the bacterial load in the spleen of the phage-treated mice. These findings indicate that phage can be a potential antimicrobial agent for B. pseudomallei infections.
    Matched MeSH terms: Mice, Inbred BALB C
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links