Displaying publications 61 - 80 of 991 in total

Abstract:
Sort:
  1. Palmer S, Albergante L, Blackburn CC, Newman TJ
    Proc Natl Acad Sci U S A, 2018 02 20;115(8):1883-1888.
    PMID: 29432166 DOI: 10.1073/pnas.1714478115
    For many cancer types, incidence rises rapidly with age as an apparent power law, supporting the idea that cancer is caused by a gradual accumulation of genetic mutations. Similarly, the incidence of many infectious diseases strongly increases with age. Here, combining data from immunology and epidemiology, we show that many of these dramatic age-related increases in incidence can be modeled based on immune system decline, rather than mutation accumulation. In humans, the thymus atrophies from infancy, resulting in an exponential decline in T cell production with a half-life of ∼16 years, which we use as the basis for a minimal mathematical model of disease incidence. Our model outperforms the power law model with the same number of fitting parameters in describing cancer incidence data across a wide spectrum of different cancers, and provides excellent fits to infectious disease data. This framework provides mechanistic insight into cancer emergence, suggesting that age-related decline in T cell output is a major risk factor.
    Matched MeSH terms: Mutation
  2. Rabbolini DJ, Morel-Kopp MC, Chen Q, Gabrielli S, Dunlop LC, Chew LP, et al.
    J Thromb Haemost, 2017 Nov;15(11):2245-2258.
    PMID: 28880435 DOI: 10.1111/jth.13843
    Essentials The phenotypes of different growth factor-independent 1B (GFI1B) variants are not established. GFI1B variants produce heterogeneous clinical phenotypes dependent on the site of mutation. Mutation of the first non-DNA-binding zinc-finger causes a mild platelet and clinical phenotype. GFI1B regulates the CD34 promoter; platelet CD34 expression is an indicator of GFI1B mutation.

    SUMMARY: Background Mutation of the growth factor-independent 1B (GFI1B) fifth DNA-binding zinc-finger domain causes macrothrombocytopenia and α-granule deficiency leading to clinical bleeding. The phenotypes associated with GFI1B variants disrupting non-DNA-binding zinc-fingers remain uncharacterized. Objectives To determine the functional and phenotypic consequences of GFI1B variants disrupting non-DNA-binding zinc-finger domains. Methods The GFI1B C168F variant and a novel GFI1B c.2520 + 1_2520 + 8delGTGGGCAC splice variant were identified in four unrelated families. Phenotypic features, DNA-binding properties and transcriptional effects were determined and compared with those in individuals with a GFI1B H294 fs mutation of the fifth DNA-binding zinc-finger. Patient-specific induced pluripotent stem cell (iPSC)-derived megakaryocytes were generated to facilitate disease modeling. Results The DNA-binding GFI1B variant C168F, which is predicted to disrupt the first non-DNA-binding zinc-finger domain, is associated with macrothrombocytopenia without α-granule deficiency or bleeding symptoms. A GFI1B splice variant, c.2520 + 1_2520 + 8delGTGGGCAC, which generates a short GFI1B isoform that lacks non-DNA-binding zinc-fingers 1 and 2, is associated with increased platelet CD34 expression only, without quantitative or morphologic platelet abnormalities. GFI1B represses the CD34 promoter, and this repression is attenuated by different GFI1B zinc-finger mutations, suggesting that deregulation of CD34 expression occurs at a direct transcriptional level. Patient-specific iPSC-derived megakaryocytes phenocopy these observations. Conclusions Disruption of GFI1B non-DNA-binding zinc-finger 1 is associated with mild to moderate thrombocytopenia without α-granule deficiency or bleeding symptomatology, indicating that the site of GFI1B mutation has important phenotypic implications. Platelet CD34 expression appears to be a common feature of perturbed GFI1B function, and may have diagnostic utility.

    Matched MeSH terms: Mutation*
  3. Ninomiya K, Arimura H, Tanaka K, Chan WY, Kabata Y, Mizuno S, et al.
    Comput Methods Programs Biomed, 2023 Jun;236:107544.
    PMID: 37148668 DOI: 10.1016/j.cmpb.2023.107544
    OBJECTIVES: To elucidate a novel radiogenomics approach using three-dimensional (3D) topologically invariant Betti numbers (BNs) for topological characterization of epidermal growth factor receptor (EGFR) Del19 and L858R mutation subtypes.

    METHODS: In total, 154 patients (wild-type EGFR, 72 patients; Del19 mutation, 45 patients; and L858R mutation, 37 patients) were retrospectively enrolled and randomly divided into 92 training and 62 test cases. Two support vector machine (SVM) models to distinguish between wild-type and mutant EGFR (mutation [M] classification) as well as between the Del19 and L858R subtypes (subtype [S] classification) were trained using 3DBN features. These features were computed from 3DBN maps by using histogram and texture analyses. The 3DBN maps were generated using computed tomography (CT) images based on the Čech complex constructed on sets of points in the images. These points were defined by coordinates of voxels with CT values higher than several threshold values. The M classification model was built using image features and demographic parameters of sex and smoking status. The SVM models were evaluated by determining their classification accuracies. The feasibility of the 3DBN model was compared with those of conventional radiomic models based on pseudo-3D BN (p3DBN), two-dimensional BN (2DBN), and CT and wavelet-decomposition (WD) images. The validation of the model was repeated with 100 times random sampling.

    RESULTS: The mean test accuracies for M classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.810, 0.733, 0.838, 0.782, and 0.799, respectively. The mean test accuracies for S classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.773, 0.694, 0.657, 0.581, and 0.696, respectively.

    CONCLUSION: 3DBN features, which showed a radiogenomic association with the characteristics of the EGFR Del19/L858R mutation subtypes, yielded higher accuracy for subtype classifications in comparison with conventional features.

    Matched MeSH terms: Mutation
  4. Jamali S, Eskandari N, Aryani O, Salehpour S, Zaman T, Kamalidehghan B, et al.
    Iran Biomed J, 2014;18(2):114-9.
    PMID: 24518553
    BACKGROUND: Tay-Sachs disease (TSD), or GM2 gangliosidosis, is a lethal autosomal recessive neurodegenerative disorder, which is caused by a deficiency of beta-hexosaminidase A (HEXA), resulting in lysosomal accumulation of GM2 ganglioside. The aim of this study was to identify the TSD-causing mutations in an Iranian population.

    METHODS: In this study, we examined 31 patients for TSD-causing mutations using PCR, followed by restriction enzyme digestion.

    RESULTS: Molecular genetics analysis of DNA from 23 patients of TSD revealed mutations that has been previously reported, including four-base duplications c.1274_1277dupTATC in exon 11 and IVS2+1G>A, deletion TTAGGCAAGGGC in exon 10 as well as a few novel mutations, including C331G, which altered Gln>Glu in HEXB, A>G, T>C, and p.R510X in exon 14, which predicted a termination codon or nonsense mutation.

    CONCLUSION: In conclusion, with the discovery of these novel mutations, the genotypic spectrum of Iranian patients with TSD disease has been extended and could facilitate definition of disease-related mutations.

    Matched MeSH terms: Mutation/genetics*
  5. Ooi HL, Wu LL
    Singapore Med J, 2012 Jul;53(7):e142-4.
    PMID: 22815030
    Neonatal diabetes mellitus (DM) is defined as insulin-requiring DM in the first six months of life. Unlike type 1 DM, it is a monogenic disorder resulting from a de novo mutation in the genes involved in the development of the pancreas, β-cell mass or secretory function. The majority of neonatal DM cases are caused by a heterozygous activating mutation in the KCNJ11 or ABCC8 genes that encode the Kir6.2 and SUR1 protein subunits, respectively, in the KATP channel. Sulphonylurea, a KATP channel inhibitor, can restore insulin secretion, hence offering an attractive alternative to insulin therapy. We report three cases of neonatal DM and their genetic mutations. Two patients were successfully switched over to sulphonylurea monotherapy with resultant improvement in the quality of life and a more stable blood glucose profile. Patients with neonatal DM should undergo genetic evaluation. For patients with KCNJ11 and ABCC8 gene mutation, oral sulphonylurea should be considered.
    Matched MeSH terms: Mutation*
  6. Asiful Islam M, Alam F, Kamal MA, Gan SH, Wong KK, Sasongko TH
    Curr Pharm Des, 2017;23(11):1598-1609.
    PMID: 27875971 DOI: 10.2174/1381612823666161122142950
    Nonsense mutations contribute to approximately 10-30% of the total human inherited diseases via disruption of protein translation. If any of the three termination codons (UGA, UAG and UAA) emerges prematurely [known as premature termination codon (PTC)] before the natural canonical stop codon, truncated nonfunctional proteins or proteins with deleterious loss or gain-of-function activities are synthesized, followed by the development of nonsense mutation-mediated diseases. In the past decade, PTC-associated diseases captured much attention in biomedical research, especially as molecular therapeutic targets via nonsense suppression (i.e. translational readthrough) regimens. In this review, we highlighted different treatment strategies of PTC targeting readthrough therapeutics including the use of aminoglycosides, ataluren (formerly known as PTC124), suppressor tRNAs, nonsense-mediated mRNA decay, pseudouridylation and CRISPR/Cas9 system to treat PTC-mediated diseases. In addition, as thrombotic disorders are a group of disease with major burdens worldwide, 19 potential genes containing a total of 705 PTCs that cause 21 thrombotic disorders have been listed based on the data reanalysis from the 'GeneCards® - Human Gene Database' and 'Human Gene Mutation Database' (HGMD®). These PTC-containing genes can be potential targets amenable for different readthrough therapeutic strategies in the future.
    Matched MeSH terms: Mutation/drug effects*
  7. Adamu A, Abdul Wahab R, Aliyu F, Abdul Razak FI, Mienda BS, Shamsir MS, et al.
    J Mol Graph Model, 2019 11;92:131-139.
    PMID: 31352207 DOI: 10.1016/j.jmgm.2019.07.012
    Dehalogenases continue to garner interest of the scientific community due to their potential applications in bioremediation of halogen-contaminated environment and in synthesis of various industrially relevant products. Example of such enzymes is DehL, an L-2-haloacid dehalogenase (EC 3.8.1.2) from Rhizobium sp. RC1 that catalyses the specific cleavage of halide ion from L-2-halocarboxylic acids to produce the corresponding D-2-hydroxycarboxylic acids. Recently, the catalytic residues of DehL have been identified and its catalytic mechanism has been fully elucidated. However, the enantiospecificity determinants of the enzyme remain unclear. This information alongside a well-defined catalytic mechanism are required for rational engineering of DehL for substrate enantiospecificity. Therefore, using quantum mechanics/molecular mechanics and molecular mechanics Poisson-Boltzmann surface area calculations, the current study theoretically investigated the molecular basis of DehL enantiospecificity. The study found that R51L mutation cancelled out the dehalogenation activity of DehL towards it natural substrate, L-2-chloropropionate. The M48R mutation, however introduced a new activity towards D-2-chloropropionate, conveying the possibility of inverting the enantiospecificity of DehL from L-to d-enantiomer with a minimum of two simultaneous mutations. The findings presented here will play important role in the rational design of DehL dehalogenase for improving substrate utility.
    Matched MeSH terms: Mutation
  8. Momynaliev KT, Govorun VM, Gnedenko O, Ivanov YD, Archakov AI
    J. Mol. Recognit., 2003 Jan-Feb;16(1):1-8.
    PMID: 12557232
    The possibility of using the resonant mirror biosensor to detect point substitutions in oligonucleotides was demonstrated with a fragment of the Helicobacter pylori 23S rRNA gene, point mutations in which are responsible for clarythromycin resistance. Conditions were optimized for the interaction of a probe immobilized on the sensing surface with targets containing various nucleotide substitutions. A probe allowing reliable discrimination of mutant targets was selected. The mismatch position in the probe was shown to affect the kinetic parameters (response) of hybridization with mutant targets, reporting not only the position, but also the character (G or C) of a substitution.
    Matched MeSH terms: Point Mutation*
  9. Chan YF, Tan KL, Wong YC, Wee YC, Yap SF, Tan JAMA
    PMID: 12041567
    Molecular characterization and prenatal diagnosis for beta-thalassemia can be carried out using the Amplification Refractory Mutation System (ARMS). The ARMS is a rapid and direct molecular technique in which beta-thalassemia mutations are visualized immediately after DNA amplification by gel electrophoresis. In the University of Malaya Medical Center, molecular characterization and prenatal diagnosis for beta-thalassemia is carried out using ARMS for about 96% of the Chinese and 84.6% of the Malay patients. The remaining 4% and 15.4% of the uncharacterized mutations in the Chinese and Malay patients respectively are detected using DNA sequencing. DNA sequencing is an accurate technique but it is more time-consuming and expensive compared with the ARMS. The ARMS for the rare Chinese beta-mutations at position -29 (A-->G) and the ATG-->AGG base substitution at the initiator codon for translation in the beta-gene was developed. In the Malays, ARMS was optimized for the beta-mutations at codon 8/9 (+G), Cap (+1) (A-->C) and the AATAAA-->AATAGA base substitution in the polyadenylation region of the beta-gene. The ARMS protocols were developed by optimization of the parameters for DNA amplification to ensure sensitivity, specificity and reproducibility. ARMS primers (sequences and concentration), magnesium chloride concentration, Taq DNA polymerase and PCR cycling parameters were optimized for the specific amplification of each rare beta-thalassemia mutation. The newly-developed ARMS for the 5 rare beta-thalassemia mutations in the Chinese and Malays in Malaysia will allow for more rapid and cost-effective molecular characterization and prenatal diagnosis for beta-thalassemia in Malaysia.
    Matched MeSH terms: Mutation*
  10. Teh LK, Lee TY, Tan JA, Lai MI, George E
    Int J Lab Hematol, 2015 Feb;37(1):79-89.
    PMID: 24725998 DOI: 10.1111/ijlh.12240
    In Malaysia, β-thalassaemia is a common inherited blood disorder in haemoglobin synthesis with a carrier rate of 4.5%. Currently, PCR-incorporating techniques such as amplification refractory mutation system (ARMS) or reverse dot blot hybridization (RDBH) are used in β-thalassaemia mutation detection. ARMS allows single-mutation identification using two reactions, one for wild type and another for mutant alleles. RDBH requires probe immobilization and optimization of hybridization and washing temperatures which is time consuming. The aim of our study was to investigate whether β-thalassaemia mutations can be identified in samples with low DNA concentrations.
    Matched MeSH terms: Mutation*
  11. Sadat Mohajer F, Parvizpour S, Razmara J, Shahir Shamsir M
    J Biomol Struct Dyn, 2019 Feb;37(2):372-382.
    PMID: 29338614 DOI: 10.1080/07391102.2018.1427630
    Congenital myopathy is a broad category of muscular diseases with symptoms appearing at the time of birth. One type of congenital myopathy is Congenital Fiber Type Disproportion (CFTD), a severely debilitating disease. The G48D and G48C mutations in the D-loop and the actin-myosin interface are the two causes of CFTD. These mutations have been shown to significantly affect the structure and function of muscle fibers. To the author's knowledge, the effects of these mutations have not yet been studied. In this work, the power stroke structure of the head domain of myosin and the wild and mutated types of actin were modeled. Then, a MD simulation was run for the modeled structures to study the effects of these mutations on the structure, function, and molecular dynamics of actin. The wild and mutated actins docked with myosin showed differences in hydrogen bonding patterns, free binding energies, and hydrogen bond occupation frequencies. The G48D and G48C mutations significantly impacted the conformation of D-loops because of their larger size compared to Glycine and their ability to interfere with the polarity or hydrophobicity of this neutralized and hydrophobic loop. Therefore, the mutated loops were unable to fit properly into the hydrophobic groove of the adjacent G-actin. The abnormal structure of D-loops seems to result in the abnormal assembly of F-actins, giving rise to the symptoms of CFTD. It was also noted that G48C and G48D did not form hydrogen bonds with myosin in the residue 48 location. Nevertheless, in this case, muscles are unable to contract properly due to muscle atrophy.
    Matched MeSH terms: Mutation*
  12. Giunti P, Sweeney MG, Spadaro M, Jodice C, Novelletto A, Malaspina P, et al.
    Brain, 1994 Aug;117 ( Pt 4):645-9.
    PMID: 7922453
    Affected members of 73 families with a variety of autosomal dominant late onset cerebellar ataxias (ADCAs) were investigated for the trinucleotide (CAG) repeat expansion which is found in pedigrees exhibiting linkage to the SCA1 locus on chromosome 6. Most of the families were too small for linkage analysis. The mutation was only found in ADCA type I, in 19 out of 38 such kindreds investigated (50%). It was slightly more common in Italian (59%) than British (50%) families, and was also found in Malaysian, Bangladeshi and Jamaican kindreds. Overall, ADCA type I patients with the expansion had a lower incidence of hyporeflexia and facial fasciculation than those without. The trinucleotide expansion was not found in eight families with ADCA and maculopathy or 24 kindreds with a pure type of ADCA, confirming that these syndromes are genetically distinct. It was also not detected in 12 patients with sporadic degenerative ataxias. DNA analysis for the SCA1 mutation is useful diagnostically in single patients or small families, and can be used for presymptomatic testing where appropriate.
    Matched MeSH terms: Mutation
  13. Nopparatana C, Panich V, Saechan V, Sriroongrueng V, Nopparatana C, Rungjeadpha J, et al.
    PMID: 8629112
    Beta-thalassemia mutations in 282 alleles of 253 unrelated individuals originating from various provinces in the south of Thailand were characterized by dot blot hybridization, specific PCR-amplification and direct DNA sequencing. It was possible to characterize the mutations in 274 (97.2%) of alleles studied. Twelve different point mutations and two different large deletions of the beta-globin gene were identified. Seven common mutations, namely 4 bp deletion at codons 41/42. IVS1 position 5 (G-C), codon 19 (AAC-AGC), codon 17 (AAG-TAG), IVS1 position 1 (G-T), position -28 (A-G) and 3.5 kb deletion, accounted for about 91.5%. The mutations at mRNA cap site + 1 (A-C) and IVS1 position 1 (G-A), previously undescribed in Thailand, were found in 1 and 2 individuals, respectively. A novel mutation of 105 bp deletion at the 5' end of beta-globin gene was detected in a family originating from this area. The knowledge from this study should be useful for planning of genetic counseling and prenatal diagnosis programs for patients with beta-thalassemia in the south of Thailand.
    Matched MeSH terms: Mutation*; Point Mutation
  14. Thong MK, Soo TL
    Singapore Med J, 2005 Jul;46(7):340-3.
    PMID: 15968446
    Beta-thalassaemia major is one of the commonest genetic disorders in South East Asia. The strategy for the community control of beta-thalassaemia major requires the characterisation of the spectrum of beta-globin gene mutations in any multi-ethnic population. There is only a single report of mutation analyses of the beta-globin gene in an isolated Kadazandusun community in Kota Belud, Sabah, Malaysia, which showed the presence of a common 45 kb deletion.
    Matched MeSH terms: Mutation
  15. Ashley SE, Tan HT, Vuillermin P, Dharmage SC, Tang MLK, Koplin J, et al.
    Allergy, 2017 Sep;72(9):1356-1364.
    PMID: 28213955 DOI: 10.1111/all.13143
    BACKGROUND: A defective skin barrier is hypothesized to be an important route of sensitization to dietary antigens and may lead to food allergy in some children. Missense mutations in the serine peptidase inhibitor Kazal type 5 (SPINK5) skin barrier gene have previously been associated with allergic conditions.

    OBJECTIVE: To determine whether genetic variants in and around SPINK5 are associated with IgE-mediated food allergy.

    METHOD: We genotyped 71 "tag" single nucleotide polymorphisms (tag-SNPs) within a region spanning ~263 kb including SPINK5 (~61 kb) in n=722 (n=367 food-allergic, n=199 food-sensitized-tolerant and n=156 non-food-allergic controls) 12-month-old infants (discovery sample) phenotyped for food allergy with the gold standard oral food challenge. Transepidermal water loss (TEWL) measures were collected at 12 months from a subset (n=150) of these individuals. SNPs were tested for association with food allergy using the Cochran-Mantel-Haenszel test adjusting for ancestry strata. Association analyses were replicated in an independent sample group derived from four paediatric cohorts, total n=533 (n=203 food-allergic, n=330 non-food-allergic), mean age 2.5 years, with food allergy defined by either clinical history of reactivity, 95% positive predictive value (PPV) or challenge, corrected for ancestry by principal components.

    RESULTS: SPINK5 variant rs9325071 (A⟶G) was associated with challenge-proven food allergy in the discovery sample (P=.001, OR=2.95, CI=1.49-5.83). This association was further supported by replication (P=.007, OR=1.58, CI=1.13-2.20) and by meta-analysis (P=.0004, OR=1.65). Variant rs9325071 is associated with decreased SPINK5 gene expression in the skin in publicly available genotype-tissue expression data, and we generated preliminary evidence for association of this SNP with elevated TEWL also.

    CONCLUSIONS: We report, for the first time, association between SPINK5 variant rs9325071 and challenge-proven IgE-mediated food allergy.

    Matched MeSH terms: Mutation/immunology*
  16. Abdul Rahim FH, Thambiah CS, Samsudin IN, Mohamed Mokhtar N
    Malays J Pathol, 2020 Aug;42(2):297-300.
    PMID: 32860386
    INTRODUCTION: Cystic fibrosis (CF) is a life-limiting autosomal recessive disorder as a result of CF transmembrane conductance regulator gene mutation. It has a wide range of disease severity in patients with the same genotype.

    CASE REPORT: A 5-year-old Malay boy with a history of recurrent pneumonia, presented with productive cough, fever and worsening tachypnoea. Physical examination revealed coarse crepitations, reduced breath sounds and clubbing. Biochemical investigations showed that he had respiratory type 2 failure as a result of bronchiectasis. Sweat conductivity done twice was raised supporting a diagnosis of CF. Other investigations such as bronchoscopy to look for congenital anomaly of the lung, infectious disease screening and tuberculosis, fungal and viral culture and sensitivity were negative. Further cascade screening revealed high sweat conductivity results in his siblings.

    DISCUSSION: Although CF prevalence is low in Malaysia, it is nevertheless an important diagnosis to be recognised as it is associated with increased morbidity.

    Matched MeSH terms: Mutation
  17. Madkhali AM, Abdulhaq AA, Atroosh WM, Ghzwani AH, Zain KA, Ghailan KY, et al.
    Parasitol Res, 2021 Nov;120(11):3771-3781.
    PMID: 34561749 DOI: 10.1007/s00436-021-07323-4
    This study investigated the polymorphism in the P. falciparum chloroquine resistance transporter (pfcrt) gene 11 years after chloroquine (CQ) cessation in Jazan region, southwestern Saudi Arabia. Two hundred and thirty-five P. falciparum isolates were amplified to detect mutations in the pfcrt gene. The pfcrt 76 T molecular marker for CQ resistance was detected in 66.4% (156/235) of the isolates, while the K76 CQ-sensitive wild type was detected in 33.6%. The pfcrt 74I and pfcrt 75E point mutations were each found to be present in 56.2% of isolates, while only four isolates (1.7%) were found to carry the pfcrt 72S mutation. Moreover, four pfcrt haplotypes were identified as follows: the CVIET triple-allele (56.2%), SVMET double-allele (1.7%) and CVMNT single-allele (8.5%) mutant haplotypes and the CVMNK wild haplotype (33.6%). The analysis also revealed significant associations between the prevalence of mutant pfcrt alleles and haplotypes and the age group, governorate and nationality of the patients as well as the parasitaemia level (p 
    Matched MeSH terms: Mutation
  18. Ling KH, Rosli R, Duraisamy G, Mohd Nasir MT
    Med J Malaysia, 2003 Jun;58(2):243-54.
    PMID: 14569745
    The missense mutation of the methylenetetrahydrofolate reductase (MTHFR) gene 677C-->T is associated with modest elevation of homocysteine levels. The bio-ecogenetics factors of total homocysteine levels (tHcy) were investigated in a cross sectional study involving 53 randomly selected healthy Malay subjects. Results indicated that the prevalence of the homozygous 677T/T was 3.8% and heterozygous 677C/T was 17.0%. The levels of tHcy was higher in subjects aged more than 50 years (n = 7, 11.53 +/- 4.45 mumol/l) and in males (10.99 +/- 3.77 mumol/l) especially smoking males (12.19 +/- 3.62 mumol/l). THcy levels were low in the 3 pregnant subjects (4.44 mumol/l, p = 0.036) who were under folate supplementation.
    Matched MeSH terms: Mutation, Missense/genetics*
  19. Lakeman IMM, van den Broek AJ, Vos JAM, Barnes DR, Adlard J, Andrulis IL, et al.
    Genet Med, 2021 Sep;23(9):1726-1737.
    PMID: 34113011 DOI: 10.1038/s41436-021-01198-7
    PURPOSE: To evaluate the association between a previously published 313 variant-based breast cancer (BC) polygenic risk score (PRS313) and contralateral breast cancer (CBC) risk, in BRCA1 and BRCA2 pathogenic variant heterozygotes.

    METHODS: We included women of European ancestry with a prevalent first primary invasive BC (BRCA1 = 6,591 with 1,402 prevalent CBC cases; BRCA2 = 4,208 with 647 prevalent CBC cases) from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA), a large international retrospective series. Cox regression analysis was performed to assess the association between overall and ER-specific PRS313 and CBC risk.

    RESULTS: For BRCA1 heterozygotes the estrogen receptor (ER)-negative PRS313 showed the largest association with CBC risk, hazard ratio (HR) per SD = 1.12, 95% confidence interval (CI) (1.06-1.18), C-index = 0.53; for BRCA2 heterozygotes, this was the ER-positive PRS313, HR = 1.15, 95% CI (1.07-1.25), C-index = 0.57. Adjusting for family history, age at diagnosis, treatment, or pathological characteristics for the first BC did not change association effect sizes. For women developing first BC 

    Matched MeSH terms: Mutation
  20. Yap LF, Lee D, Khairuddin A, Pairan MF, Puspita B, Siar CH, et al.
    Oral Dis, 2015 Oct;21(7):850-7.
    PMID: 25580884 DOI: 10.1111/odi.12309
    NOTCH signalling can exert oncogenic or tumour suppressive effects in both solid and haematological malignancies. Similar to T-cell acute lymphoblastic leukaemia (T-ALL), early studies suggested a pro-tumorigenic role of NOTCH in head and neck squamous cell carcinoma (HNSCC), mainly based on the increased expression levels of the genes within the pathway. Recently, data from exome sequencing analyses unexpectedly pointed to a tumour suppressor role for NOTCH in HNSCC by identifying loss-of-function mutations in the NOTCH1 gene in a significant proportion of patients. These data have questioned the accepted role of NOTCH in HNSCC and the possible rationale of targeting NOTCH in this disease. This review summarises the current information on NOTCH signalling in HNSCC and discusses how this pathway can apparently exert opposing effects within the same disease.
    Matched MeSH terms: Mutation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links