METHODS: Articles from reliable databases such as Science Direct, PubMed, Google Scholar, Scopus, and Ovid were searched. Specific search methods were employed using multiple keywords: ''Medicinal Cannabis; endocannabinoid system; cannabinoids receptors; cannabinoids and cognition; brain disorders; neurodegenerative diseases''. For the inclusion/exclusion criteria, only relevant articles related to medicinal Cannabis and its various compounds were considered.
RESULTS: The current review highlights the role, effects, and involvement of Cannabis, cannabinoids, and endocannabinoids in preventing selected neurodegenerative diseases and possible amelioration of cognitive impairments. Furthermore, it also focuses on Cannabis utilization in many disease conditions such as Alzheimer's and Parkinson's disease among others.
CONCLUSION: In conclusion, the usage of Cannabis should be further explored as accumulating evidence suggests that it could be effective and somewhat safe, especially when adhered to the recommended dosage. Furthermore, in-depth studies should be conducted in order to unravel the specific mechanism underpinning the involvement of cannabinoids at the cellular level and their therapeutic applications.
METHODS: In experiment 1 (n = 10), we tested the direction of force exerted in an isometric aiming task before and after 40 repetitions of 2-s maximal-force ballistic contractions toward a single directional target. In experiment 2 (n = 12), each participant completed three training conditions in a counterbalanced crossover design. In two conditions, both the aiming task and the training were conducted in the same (neutral) forearm posture. In one of these conditions, the training involved weak forces to determine whether the level of neural drive during training influences the degree of bias. In the third condition, high-force training contractions were performed in a 90° pronated forearm posture, whereas the low-force aiming task was performed in a neutral forearm posture. This dissociated the extrinsic training direction from the pulling direction of the trained muscles during the aiming task.
RESULTS: In experiment 1, we found that aiming direction was biased toward the training direction across a large area of the work space (approximately ±135°; tested for 16 targets spaced 22.5° apart), whereas in experiment 2, we found systematic bias in aiming toward the training direction defined in extrinsic space, but only immediately after high-force contractions.
CONCLUSION: Our findings suggest that bias effects of training involving strong neural drive generalize broadly to untrained movement directions and are expressed according to extrinsic rather than muscle-based coordinates.
OBJECTIVE: This systematic review assessed available evidence whether "exergaming" could be a feasible modality for contributing to a recommended exercise prescription according to current ACSM™ or WHO guidelines for physical activity.
METHODS: Strategies used to search for published articles were conducted using separate search engines (Google Scholar™, PubMed™ and Web of Science™) on cardiometabolic responses and perceived exertion during exergaming among neurologically-disabled populations possessing similar physical disabilities. Each study was categorized using the SCIRE-Pedro evidence scale.
RESULTS: Ten of the 144 articles assessed were identified and met specific inclusion criteria. Key outcome measures included responses, such as energy expenditure, heart rate and perceived exertion. Twelve out of the 17 types of exergaming interventions met the ACSM™ or WHO recommendations of "moderate intensity" physical activity. Exergames such as Wii Jogging, Bicycling, Boxing, DDR and GameCycle reported moderate physical activity intensities. While Wii Snowboarding, Skiing and Bowling only produced light intensities.
CONCLUSION: Preliminary cross-sectional evidence in this review suggested that exergames have the potential to provide moderate intensity physical activity as recommended by ACSM™ or WHO in populations with neurological disabilities. However, more research is needed to document exergaming's efficacy from longitudinal observations before definitive conclusions can be drawn. Implications for Rehabilitation Exergaming can be deployed as physical activity or exercise using commercially available game consoles for neurologically disabled individuals in the convenience of their home environment and at a relatively inexpensive cost Moderate-to-vigorous intensity exercises can be achieved during exergaming in this population of persons with neurological disabilities. Exergaming can also be engaging and enjoyable, yet achieve the recommended physical activity guidelines proposed by ACSM™ or WHO for health and fitness benefits. Exergaming as physical activity in this population is feasible for individuals with profound disabilities, since it can be used even in sitting position for wheelchair-dependent users, thus providing variability in terms of exercise options. In the context of comprehensive rehabilitation, exergaming should be viewed by the clinician as "at least as good as" (and likely more enjoyable) than traditional arm-exercise modalities, with equivalent aerobic dose-potency as "traditional" exercise in clinic or home environments.