Displaying publications 61 - 80 of 80 in total

Abstract:
Sort:
  1. Benavente ED, de Sessions PF, Moon RW, Grainger M, Holder AA, Blackman MJ, et al.
    Int J Parasitol, 2018 03;48(3-4):191-196.
    PMID: 29258833 DOI: 10.1016/j.ijpara.2017.09.008
    Plasmodium knowlesi, a common parasite of macaques, is recognised as a significant cause of human malaria in Malaysia. The P. knowlesi A1H1 line has been adapted to continuous culture in human erythrocytes, successfully providing an in vitro model to study the parasite. We have assembled a reference genome for the PkA1-H.1 line using PacBio long read combined with Illumina short read sequence data. Compared with the H-strain reference, the new reference has improved genome coverage and a novel description of methylation sites. The PkA1-H.1 reference will enhance the capabilities of the in vitro model to improve the understanding of P. knowlesi infection in humans.
    Matched MeSH terms: Plasmodium knowlesi/genetics*
  2. Moraes Barros RR, Thawnashom K, Gibson TJ, Armistead JS, Caleon RL, Kaneko M, et al.
    Malar J, 2021 Jun 05;20(1):247.
    PMID: 34090438 DOI: 10.1186/s12936-021-03773-4
    BACKGROUND: Plasmodium knowlesi is now the major cause of human malaria in Malaysia, complicating malaria control efforts that must attend to the elimination of multiple Plasmodium species. Recent advances in the cultivation of P. knowlesi erythrocytic-stage parasites in vitro, transformation with exogenous DNA, and infection of mosquitoes with gametocytes from culture have opened up studies of this pathogen without the need for resource-intensive and costly non-human primate (NHP) models. For further understanding and development of methods for parasite transformation in malaria research, this study examined the activity of various trans-species transcriptional control sequences and the influence of Plasmodium vivax centromeric (pvcen) repeats in plasmid-transfected P. knowlesi parasites.

    METHODS: In vitro cultivated P. knowlesi parasites were transfected with plasmid constructs that incorporated Plasmodium vivax or Plasmodium falciparum 5' UTRs driving the expression of bioluminescence markers (firefly luciferase or Nanoluc). Promoter activities were assessed by bioluminescence, and parasites transformed with human resistant allele dihydrofolate reductase-expressing plasmids were selected using antifolates. The stability of transformants carrying pvcen-stabilized episomes was assessed by bioluminescence over a complete parasite life cycle through a rhesus macaque monkey, mosquitoes, and a second rhesus monkey.

    RESULTS: Luciferase expression assessments show that certain P. vivax promoter regions, not functional in the more evolutionarily-distant P. falciparum, can drive transgene expression in P. knowlesi. Further, pvcen repeats may improve the stability of episomal plasmids in P. knowlesi and support detection of NanoLuc-expressing elements over the full parasite life cycle from rhesus macaque monkeys to Anopheles dirus mosquitoes and back again to monkeys. In assays of drug responses to chloroquine, G418 and WR9910, anti-malarial half-inhibitory concentration (IC50) values of blood stages measured by NanoLuc activity proved comparable to IC50 values measured by the standard SYBR Green method.

    CONCLUSION: All three P. vivax promoters tested in this study functioned in P. knowlesi, whereas two of the three were inactive in P. falciparum. NanoLuc-expressing, centromere-stabilized plasmids may support high-throughput screenings of P. knowlesi for new anti-malarial agents, including compounds that can block the development of mosquito- and/or liver-stage parasites.

    Matched MeSH terms: Plasmodium knowlesi/genetics*
  3. Yap NJ, Goh XT, Koehler AV, William T, Yeo TW, Vythilingam I, et al.
    Infect Genet Evol, 2017 10;54:39-46.
    PMID: 28634105 DOI: 10.1016/j.meegid.2017.06.019
    Plasmodium knowlesi, a malaria parasite of macaques, has emerged as an important parasite of humans. Despite the significance of P. knowlesi malaria in parts of Southeast Asia, very little is known about the genetic variation in this parasite. Our aim here was to explore sequence variation in a molecule called the 42kDa merozoite surface protein-1 (MSP-1), which is found on the surface of blood stages of Plasmodium spp. and plays a key role in erythrocyte invasion. Several studies of P. falciparum have reported that the C-terminus (a 42kDa fragment) of merozoite surface protein-1 (MSP-142; consisting of MSP-119 and MSP-133) is a potential candidate for a malaria vaccine. However, to date, no study has yet investigated the sequence diversity of the gene encoding P. knowlesi MSP-142 (comprising Pk-msp-119 and Pk-msp-133) among isolates in Malaysia. The present study explored this aspect. Twelve P. knowlesi isolates were collected from patients from hospitals in Selangor and Sabah Borneo, Malaysia, between 2012 and 2014. The Pk-msp-142 gene was amplified by PCR and directly sequenced. Haplotype diversity (Hd) and nucleotide diversity (л) were studied among the isolates. There was relatively high genetic variation among P. knowlesi isolates; overall Hd and л were 1±0.034 and 0.01132±0.00124, respectively. A total of nine different haplotypes related to amino acid alterations at 13 positions, and the Pk-MSP-119 sequence was found to be more conserved than Pk-msp-133. We have found evidence for negative selection in Pk-msp-42 as well as the 33kDa and 19kDa fragments by comparing the rate of non-synonymous versus synonymous substitutions. Future investigations should study large numbers of samples from disparate geographical locations to critically assess whether this molecule might be a potential vaccine target for P. knowlesi.
    Matched MeSH terms: Plasmodium knowlesi/genetics*
  4. Ahmed MA, Chu KB, Vythilingam I, Quan FS
    Malar J, 2018 Nov 29;17(1):442.
    PMID: 30497496 DOI: 10.1186/s12936-018-2583-z
    BACKGROUND: The C-terminal 42 kDa domain of Plasmodium knowlesi merozoite surface protein 1 (PkMSP1) is a potential asexual blood-stage vaccine candidate, however, only a limited number of clinical isolates have been analysed from Malaysia and no inter-country comparative diversity study has been conducted. In the present study, nucleotide diversity, haplotypes and natural selection levels of pkmsp1 in clinical samples from geographically distinct regions of Malaysia and Thailand were investigated. The overall population structure of the parasite from the region was determined.

    METHODS: Eleven full-length pkmsp1 sequences obtained from clinical isolates of Malaysia along with the H-strain were downloaded from the database for domain wise characterization of pkmsp1 gene. Additionally, 76 pkmsp-142 sequences from Thailand and Malaysia were downloaded from the database for intra and inter-population analysis. DnaSP 5.10 and MEGA 5.0 software were used to determine genetic diversity, polymorphism, haplotypes and natural selection. Genealogical relationships were determined using haplotype network tree in NETWORK software v5.0. Population genetic differentiation index (FST) of parasites were analysed using Arlequin v3.5.

    RESULTS: Sequence analysis of 11 full-length pkmsp1 sequences along with the H-strain identified 477 (8.4%) polymorphic sites, of which 107 were singleton sites. The overall diversity observed in the full-length genes were high in comparison to its ortholog pvmsp1 and the 4 variable domains showed extensive size variations. The nucleotide diversity was low towards the pkmsp1-42 compared to the conserved domains. The 19 kDa domain was less diverse and completely conserved among isolates from Malaysian Borneo. The nucleotide diversity of isolates from Peninsular Malaysia and Thailand were higher than Malaysian Borneo. Network analysis of pkmsp1-42 haplotypes showed geographical clustering of the isolates from Malaysian Borneo and grouping of isolates from Peninsular Malaysia and Thailand. Population differentiation analysis indicated high FST values between parasite populations originating from Malaysian Borneo, Peninsular Malaysia and Thailand attributing to geographical distance. Moderate genetic differentiation was observed for parasite populations from Thailand and Peninsular Malaysia. Evidence of population expansion and purifying selection were observed in all conserved domains with strongest selection within the pkmsp1-42 domain.

    CONCLUSIONS: This study is the first to report on inter country genetic diversity and population structure of P. knowlesi based on msp1. Strong evidence of negative selection was observed in the 42 kDa domain, indicating functional constrains. Geographical clustering of P. knowlesi and moderate to high genetic differentiation values between populations identified in this study highlights the importance of further evaluation using larger number of clinical samples from Southeast Asian countries.

    Matched MeSH terms: Plasmodium knowlesi/genetics*
  5. Goh CKW, Silvester J, Wan Mahadi WNS, Chin LP, Ying LT, Leow TC, et al.
    Protein Eng. Des. Sel., 2018 12 01;31(12):489-498.
    PMID: 31120120 DOI: 10.1093/protein/gzz008
    The FK506-binding protein of Plasmodium knowlesi (Pk-FKBP35) is considerably a viable antimalarial drug target, which belongs to the peptidyl-prolyl cis-trans isomerase (PPIase) protein family member. Structurally, this protein consists of an N-terminal FK506-binding domain (FKBD) and a C-terminal tetratricopeptide repeat domain (TPRD). This study aims to decipher functional properties of these domains as a platform for development of novel antimalarial drugs. Accordingly, full-length Pk-FKBP35 as well as its isolated domains, Pk-FKBD and Pk-TPRD were overexpressed, purified, and characterized. The results showed that catalytic PPIase activity was confined to the full-length Pk-FKBP35 and Pk-FKBD, suggesting that the catalytic activity is structurally regulated by the FKBD. Meanwhile, oligomerization analysis revealed that Pk-TPRD is essential for dimerization. Asp55, Arg60, Trp77 and Phe117 in the Pk-FKBD were considerably important for catalysis as underlined by significant reduction of PPIase activity upon mutations at these residues. Further, inhibition activity of Pk-FKBP35 towards calcineurin phosphatase activity revealed that the presence of FKBD is essential for the inhibitory property, while TPRD may be important for efficient binding to calcineurin. We then discussed possible roles of FKBP35 in Plasmodium cells and proposed mechanisms by which the immunosuppressive drug, FK506, interacts with the protein.
    Matched MeSH terms: Plasmodium knowlesi/genetics
  6. Lubis IND, Wijaya H, Lubis M, Lubis CP, Divis PCS, Beshir KB, et al.
    J Infect Dis, 2017 Apr 01;215(7):1148-1155.
    PMID: 28201638 DOI: 10.1093/infdis/jix091
    Background: As Indonesia works toward the goal of malaria elimination, information is lacking on malaria epidemiology from some western provinces. As a basis for studies of antimalarial efficacy, we set out to survey parasite carriage in 3 communities in North Sumatera Province.

    Methods: A combination of active and passive detection of infection was carried out among communities in Batubara, Langkat, and South Nias regencies. Finger-prick blood samples from consenting individuals of all ages provided blood films for microscopic examination and blood spots on filter paper. Plasmodium species were identified using nested polymerase chain reaction (PCR) of ribosomal RNA genes and a novel assay that amplifies a conserved sequence specific for the sicavar gene family of Plasmodium knowlesi.

    Results: Of 3731 participants, 614 (16.5%) were positive for malaria parasites by microscopy. PCR detected parasite DNA in samples from 1169 individuals (31.3%). In total, 377 participants (11.8%) harbored P. knowlesi. Also present were Plasmodium vivax (14.3%), Plasmodium falciparum (10.5%) and Plasmodium malariae (3.4%).

    Conclusions: Amplification of sicavar is a specific and sensitive test for the presence of P. knowlesi DNA in humans. Subpatent and asymptomatic multispecies parasitemia is relatively common in North Sumatera, so PCR-based surveillance is required to support control and elimination activities.

    Matched MeSH terms: Plasmodium knowlesi/genetics*
  7. Divis PC, Lin LC, Rovie-Ryan JJ, Kadir KA, Anderios F, Hisam S, et al.
    Emerg Infect Dis, 2017 04;23(4):616-624.
    PMID: 28322705 DOI: 10.3201/eid2304.161738
    Multilocus microsatellite genotyping of Plasmodium knowlesi isolates previously indicated 2 divergent parasite subpopulations in humans on the island of Borneo, each associated with a different macaque reservoir host species. Geographic divergence was also apparent, and independent sequence data have indicated particularly deep divergence between parasites from mainland Southeast Asia and Borneo. To resolve the overall population structure, multilocus microsatellite genotyping was conducted on a new sample of 182 P. knowlesi infections (obtained from 134 humans and 48 wild macaques) from diverse areas of Malaysia, first analyzed separately and then in combination with previous data. All analyses confirmed 2 divergent clusters of human cases in Malaysian Borneo, associated with long-tailed macaques and pig-tailed macaques, and a third cluster in humans and most macaques in peninsular Malaysia. High levels of pairwise divergence between each of these sympatric and allopatric subpopulations have implications for the epidemiology and control of this zoonotic species.
    Matched MeSH terms: Plasmodium knowlesi/genetics*
  8. Chong ETJ, Neoh JWF, Lau TY, Lim YA, Chua KH, Lee PC
    Acta Trop, 2018 May;181:35-39.
    PMID: 29409854 DOI: 10.1016/j.actatropica.2018.01.018
    Malaria is a notorious disease which causes major global morbidity and mortality. This study aims to investigate the genetic and haplotype differences of Plasmodium knowlesi (P. knowlesi) isolates in Malaysian Borneo and Peninsular Malaysia based on the molecular analysis of the cytochrome b (cyt b) gene. The cyt b gene of 49 P. knowlesi isolates collected from Sabah, Malaysian Borneo and Peninsular Malaysia was amplified using PCR, cloned into a commercialized vector and sequenced. In addition, 45 cyt b sequences were retrieved from humans and macaques bringing to a total of 94 cyt b gene nucleotide sequences for phylogenetic analysis. Genetic and haplotype analyses of the cyt b were analyzed using MEGA6 and DnaSP ver. 5.10.01. The haplotype genealogical linkage of cyt b was generated using NETWORK ver. 4.6.1.3. Our phylogenetic tree revealed the conservation of the cyt b coding sequences with no distinct cluster across different geographic regions. Nucleotide analysis of cyt b showed that the P. knowlesi isolates underwent purifying selection with population expansion, which was further supported by extensive haplotype sharing between the macaques and humans from Malaysian Borneo and Peninsular Malaysia in the median-joining network analysis. This study expands knowledge on conservation of the zoonotic P. knowlesi cyt b gene between Malaysian Borneo and Peninsular Malaysia.
    Matched MeSH terms: Plasmodium knowlesi/genetics*
  9. De Silva JR, Lau YL, Fong MY
    Parasit Vectors, 2017 01 03;10(1):2.
    PMID: 28049516 DOI: 10.1186/s13071-016-1935-1
    BACKGROUND: The simian malaria parasite Plasmodium knowlesi has been reported to cause significant numbers of human infection in South East Asia. Its merozoite surface protein-3 (MSP3) is a protein that belongs to a multi-gene family of proteins first found in Plasmodium falciparum. Several studies have evaluated the potential of P. falciparum MSP3 as a potential vaccine candidate. However, to date no detailed studies have been carried out on P. knowlesi MSP3 gene (pkmsp3). The present study investigates the genetic diversity, and haplotypes groups of pkmsp3 in P. knowlesi clinical samples from Peninsular Malaysia.

    METHODS: Blood samples were collected from P. knowlesi malaria patients within a period of 4 years (2008-2012). The pkmsp3 gene of the isolates was amplified via PCR, and subsequently cloned and sequenced. The full length pkmsp3 sequence was divided into Domain A and Domain B. Natural selection, genetic diversity, and haplotypes of pkmsp3 were analysed using MEGA6 and DnaSP ver. 5.10.00 programmes.

    RESULTS: From 23 samples, 48 pkmsp3 sequences were successfully obtained. At the nucleotide level, 101 synonymous and 238 non-synonymous mutations were observed. Tests of neutrality were not significant for the full length, Domain A or Domain B sequences. However, the dN/dS ratio of Domain B indicates purifying selection for this domain. Analysis of the deduced amino acid sequences revealed 42 different haplotypes. Neighbour Joining phylogenetic tree and haplotype network analyses revealed that the haplotypes clustered into two distinct groups.

    CONCLUSIONS: A moderate level of genetic diversity was observed in the pkmsp3 and only the C-terminal region (Domain B) appeared to be under purifying selection. The separation of the pkmsp3 into two haplotype groups provides further evidence of the existence of two distinct P. knowlesi types or lineages. Future studies should investigate the diversity of pkmsp3 among P. knowlesi isolates in North Borneo, where large numbers of human knowlesi malaria infection still occur.

    Matched MeSH terms: Plasmodium knowlesi/genetics*
  10. Ahmed MA, Fauzi M, Han ET
    Malar J, 2018 Mar 14;17(1):115.
    PMID: 29540177 DOI: 10.1186/s12936-018-2256-y
    BACKGROUND: Human infections due to the monkey malaria parasite Plasmodium knowlesi is on the rise in most Southeast Asian countries specifically Malaysia. The C-terminal 19 kDa domain of PvMSP1P is a potential vaccine candidate, however, no study has been conducted in the orthologous gene of P. knowlesi. This study investigates level of polymorphisms, haplotypes and natural selection of full-length pkmsp1p in clinical samples from Malaysia.

    METHODS: A total of 36 full-length pkmsp1p sequences along with the reference H-strain and 40 C-terminal pkmsp1p sequences from clinical isolates of Malaysia were downloaded from published genomes. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 and MEGA 5.0 software. Genealogical relationships were determined using haplotype network tree in NETWORK software v5.0. Population genetic differentiation index (F ST ) and population structure of parasite was determined using Arlequin v3.5 and STRUCTURE v2.3.4 software.

    RESULTS: Comparison of 36 full-length pkmsp1p sequences along with the H-strain identified 339 SNPs (175 non-synonymous and 164 synonymous substitutions). The nucleotide diversity across the full-length gene was low compared to its ortholog pvmsp1p. The nucleotide diversity was higher toward the N-terminal domains (pkmsp1p-83 and 30) compared to the C-terminal domains (pkmsp1p-38, 33 and 19). Phylogenetic analysis of full-length genes identified 2 distinct clusters of P. knowlesi from Malaysian Borneo. The 40 pkmsp1p-19 sequences showed low polymorphisms with 16 polymorphisms leading to 18 haplotypes. In total there were 10 synonymous and 6 non-synonymous substitutions and 12 cysteine residues were intact within the two EGF domains. Evidence of strong purifying selection was observed within the full-length sequences as well in all the domains. Shared haplotypes of 40 pkmsp1p-19 were identified within Malaysian Borneo haplotypes.

    CONCLUSIONS: This study is the first to report on the genetic diversity and natural selection of pkmsp1p. A low level of genetic diversity and strong evidence of negative selection was detected and observed in all the domains of pkmsp1p of P. knowlesi indicating functional constrains. Shared haplotypes were identified within pkmsp1p-19 highlighting further evaluation using larger number of clinical samples from Malaysia.

    Matched MeSH terms: Plasmodium knowlesi/genetics*
  11. De Ang JX, Yaman K, Kadir KA, Matusop A, Singh B
    Sci Rep, 2021 Apr 08;11(1):7739.
    PMID: 33833272 DOI: 10.1038/s41598-021-86107-3
    Plasmodium knowlesi is the main cause of malaria in Sarawak, where studies on vectors of P. knowlesi have been conducted in only two districts. Anopheles balabacensis and An. donaldi were incriminated as vectors in Lawas and An. latens in Kapit. We studied a third location in Sarawak, Betong, where of 2169 mosquitoes collected over 36 days using human-landing catches, 169 (7.8%) were Anopheles spp. PCR and phylogenetic analyses identified P. knowlesi and/or P. cynomolgi, P. fieldi, P. inui, P. coatneyi and possibly novel Plasmodium spp. in salivary glands of An. latens and An. introlatus from the Leucosphyrus Group and in An. collessi and An. roperi from the Umbrosus Group. Phylogenetic analyses of cytochrome oxidase subunit I sequences indicated three P. knowlesi-positive An. introlatus had been misidentified morphologically as An. latens, while An. collessi and An. roperi could not be delineated using the region sequenced. Almost all vectors from the Leucosphyrus Group were biting after 1800 h but those belonging to the Umbrosus Group were also biting between 0700 and 1100 h. Our study incriminated new vectors of knowlesi malaria in Sarawak and underscores the importance of including entomological studies during the daytime to obtain a comprehensive understanding of the transmission dynamics of malaria.
    Matched MeSH terms: Plasmodium knowlesi/genetics
  12. Divis PC, Shokoples SE, Singh B, Yanow SK
    Malar J, 2010 Nov 30;9:344.
    PMID: 21114872 DOI: 10.1186/1475-2875-9-344
    BACKGROUND: The misdiagnosis of Plasmodium knowlesi by microscopy has prompted a re-evaluation of the geographic distribution, prevalence and pathogenesis of this species using molecular diagnostic tools. In this report, a specific probe for P. knowlesi, that can be used in a previously described TaqMan real-time PCR assay for detection of Plasmodium spp., and Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale, was designed and validated against clinical samples.

    METHODS: A hydrolysis probe for a real-time PCR assay was designed to recognize a specific DNA sequence within the P. knowlesi small subunit ribosomal RNA gene. The sensitivity, linearity and specificity of the assay were determined using plasmids containing P. knowlesi DNA and genomic DNA of P. falciparum, P. knowlesi, P. malariae, P. ovale and P. vivax isolated from clinical samples. DNA samples of the simian malaria parasites Plasmodium cynomolgi and Plasmodium inui that can infect humans under experimental conditions were also examined together with human DNA samples.

    RESULTS: Analytical sensitivity of the P. knowlesi-specific assay was 10 copies/μL and quantitation was linear over a range of 10-106 copies. The sensitivity of the assay is equivalent to nested PCR and P. knowlesi DNA was detected from all 40 clinical P. knowlesi specimens, including one from a patient with a parasitaemia of three parasites/μL of blood. No cross-reactivity was observed with 67 Plasmodium DNA samples (31 P. falciparum, 23 P. vivax, six P. ovale, three P. malariae, one P. malariae/P. ovale, one P. falciparum/P. malariae, one P. inui and one P. cynomolgi) and four samples of human DNA.

    CONCLUSIONS: This test demonstrated excellent sensitivity and specificity, and adds P. knowlesi to the repertoire of Plasmodium targets for the clinical diagnosis of malaria by real-time PCR assays. Furthermore, quantitation of DNA copy number provides a useful advantage over other molecular assays to investigate the correlation between levels of infection and the spectrum of disease.

    Matched MeSH terms: Plasmodium knowlesi/genetics
  13. Moon RW, Sharaf H, Hastings CH, Ho YS, Nair MB, Rchiad Z, et al.
    Proc Natl Acad Sci U S A, 2016 Jun 28;113(26):7231-6.
    PMID: 27303038 DOI: 10.1073/pnas.1522469113
    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.
    Matched MeSH terms: Plasmodium knowlesi/genetics*
  14. Fong MY, Rashdi SA, Yusof R, Lau YL
    Malar J, 2015;14:91.
    PMID: 25890095 DOI: 10.1186/s12936-015-0610-x
    Plasmodium knowlesi is one of the monkey malaria parasites that can cause human malaria. The Duffy binding protein of P. knowlesi (PkDBPαII) is essential for the parasite's invasion into human and monkey erythrocytes. A previous study on P. knowlesi clinical isolates from Peninsular Malaysia reported high level of genetic diversity in the PkDBPαII. Furthermore, 36 amino acid haplotypes were identified and these haplotypes could be separated into allele group I and allele group II. In the present study, the PkDBPαII of clinical isolates from the Malaysian states of Sarawak and Sabah in North Borneo was investigated, and compared with the PkDBPαII of Peninsular Malaysia isolates.
    Matched MeSH terms: Plasmodium knowlesi/genetics*
  15. Ahmed MA, Lau YL, Quan FS
    Malar J, 2018 Jul 27;17(1):274.
    PMID: 30053885 DOI: 10.1186/s12936-018-2423-1
    BACKGROUND: Plasmodium knowlesi a parasite of the macaques is currently the most common cause of human malaria in Malaysia. The thrombospondin-related adhesive protein (TRAP) gene is pre-erythrocytic stage antigen. It is a well-characterized vaccine candidate in Plasmodium vivax and Plasmodium falciparum, however, no study has been done in the orthologous gene of P. knowlesi. This study investigates nucleotide diversity, haplotypes, natural selection and population differentiation of full-length pktrap genes in clinical samples from Malaysia.

    METHODS: Forty full-length pktrap sequences from clinical isolates of Malaysia along with the reference H-strain were downloaded from published databases. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 software. McDonald-Kreitman test was conducted using P. vivax and Plasmodium coatneyi as ortholog sequence in DnaSP 5.10 software. Population genetic differentiation index (FST) of parasite populations was determined using Arlequin v3.5. Phylogenetic relationships between trap ortholog genes were determined using MEGA 5.0 software.

    RESULTS: Comparison of 40 full-length pktrap sequences along with the H-strain identified 74 SNPs (53 non-synonymous and 21 synonymous substitutions) resulting in 29 haplotypes. Analysis of the full-length gene showed that the nucleotide diversity was lower compared to its nearest ortholog pvtrap. Domain-wise analysis indicated that the proline/asparagine rich region had higher nucleotide diversity compared to the von Willebrand factor domain and the thrombospondin-type-1 domain. McDonald-Kreitman test identified that the ratio of the number of nonsynonymous to synonymous polymorphic sites within P. knowlesi was significantly higher than that of the number of nonsynonymous to synonymous fixed sites between P. knowlesi and P. vivax. The von Willebrand factor domain also indicated balancing selection using MK test, however, it did not give significant results when tested with P. coatneyi as an outgroup. Phylogenetic analysis of full-length genes identified three distinct sub-clusters of P. knowlesi, one originating from Peninsular Malaysia and two originating from Malaysian Borneo. High population differentiation values was observed within samples from Peninsular Malaysia and Malaysian Borneo.

    CONCLUSIONS: This study is the first to report on the genetic diversity and natural selection of full-length pktrap. Low level of genetic diversity was found across the full-length gene of pktrap. Balancing selection of the von Willebrand factor domain indicated that TRAP could be a target in inducing immune response against P. knowlesi infections. However, higher number of samples would be necessary to further confirm the findings.

    Matched MeSH terms: Plasmodium knowlesi/genetics*
  16. Saleh Huddin A, Md Yusuf N, Razak MRMA, Ogu Salim N, Hisam S
    Infect Genet Evol, 2019 11;75:103952.
    PMID: 31279818 DOI: 10.1016/j.meegid.2019.103952
    It has been discovered that Plasmodium knowlesi (P. knowlesi) is transmitted from macaque to man. Thus, the aim of the present study was to determine P. knowlesi genetic diversity in both human (n = 147) and long-tailed macaque (n = 26) samples from high- and low-endemicity localities. Genotyping was performed using seven neutral microsatellite loci markers. The size of the alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (HE), linkage disequilibrium (LD), and genetic differentiation (FST) were determined. In highly endemic P. knowlesi localities, the MOI for human and long-tailed macaque isolates was 1.04 and 1.15, respectively, while the Na was 11.14 and 7.86, respectively. Based on the allele frequency distribution for all loci, and with FST knowlesi endemicity, the MOI for human and long-tailed macaque isolates was 1.05 and 1.11, respectively, while the Na was 6.14 and 2.71, respectively. Further molecular analysis of the allele frequencies indicated that there was a significant genetic differentiation in human P. knowlesi isolates as compared to long-tailed macaque isolates, with a very low fixation index (FST = 0.016, p knowlesi of a single genotype, while long-tailed macaque tend to acquire polyclonal infections, which supports the assumption that there is a higher rate of transmission among long-tailed macaque. Understanding the genetic diversity of P. knowlesi isolates can provide invaluable information for characterising patterns of the population structure and the migration rate of P. knowlesi in peninsular Malaysia.
    Matched MeSH terms: Plasmodium knowlesi/genetics*
  17. Lai MY, Ooi CH, Lau YL
    Am J Trop Med Hyg, 2018 03;98(3):700-703.
    PMID: 29260656 DOI: 10.4269/ajtmh.17-0738
    The aim of this study was to develop a recombinase polymerase amplification (RPA) combined with a lateral flow (LF) strip method for specific diagnosis of Plasmodium knowlesi. With incubation at 37°C, the 18S rRNA gene of P. knowlesi was successfully amplified within 12 minutes. By adding a specifically designed probe to the reaction solution, the amplified RPA product can be visualized on a LF strip. The RPA assay exhibited high sensitivity with limits of detection down to 10 parasites/μL of P. knowlesi. Nonetheless, it was demonstrated that all P. knowlesi (N = 41) and other Plasmodium sp. (N = 25) were positive while negative samples (N = 8) were negative. Therefore, a combination of RPA and LF strip detection is a highly promising approach with the potential to be suitable for use in resource-limited settings.
    Matched MeSH terms: Plasmodium knowlesi/genetics
  18. Loh JP, Gao QH, Lee VJ, Tetteh K, Drakeley C
    Singapore Med J, 2016 Dec;57(12):686-689.
    PMID: 26805667 DOI: 10.11622/smedj.2016016
    INTRODUCTION: Although there have been several phylogenetic studies on Plasmodium knowlesi (P. knowlesi), only cytochrome c oxidase subunit 1 (COX1) gene analysis has shown some geographical differentiation between the isolates of different countries.

    METHODS: Phylogenetic analysis of locally acquired P. knowlesi infections, based on circumsporozoite, small subunit ribosomal ribonucleic acid (SSU rRNA), merozoite surface protein 1 and COX1 gene targets, was performed. The results were compared with the published sequences of regional isolates from Malaysia and Thailand.

    RESULTS: Phylogenetic analysis of the circumsporozoite, SSU rRNA and merozoite surface protein 1 gene sequences for regional P. knowlesi isolates showed no obvious differentiation that could be attributed to their geographical origin. However, COX1 gene analysis showed that it was possible to differentiate between Singapore-acquired P. knowlesi infections and P. knowlesi infections from Peninsular Malaysia and Sarawak, Borneo, Malaysia.

    CONCLUSION: The ability to differentiate between locally acquired P. knowlesi infections and imported P. knowlesi infections has important utility for the monitoring of P. knowlesi malaria control programmes in Singapore.

    Matched MeSH terms: Plasmodium knowlesi/genetics*
  19. Assefa S, Lim C, Preston MD, Duffy CW, Nair MB, Adroub SA, et al.
    Proc Natl Acad Sci U S A, 2015 Oct 20;112(42):13027-32.
    PMID: 26438871 DOI: 10.1073/pnas.1509534112
    Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10(-3)) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (FST) = 0.21, with 9,293 SNPs having fixed differences of FST = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean FST values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima's D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima's D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection.
    Matched MeSH terms: Plasmodium knowlesi/genetics*
  20. Chong ETJ, Neoh JWF, Lau TY, Lim YA, Chai HC, Chua KH, et al.
    Malar J, 2020 Oct 22;19(1):377.
    PMID: 33092594 DOI: 10.1186/s12936-020-03451-x
    BACKGROUND: Understanding the genetic diversity of candidate genes for malaria vaccines such as circumsporozoite protein (csp) may enhance the development of vaccines for treating Plasmodium knowlesi. Hence, the aim of this study is to investigate the genetic diversity of non-repeat regions of csp in P. knowlesi from Malaysian Borneo and Peninsular Malaysia.

    METHODS: A total of 46 csp genes were subjected to polymerase chain reaction amplification. The genes were obtained from P. knowlesi isolates collected from different divisions of Sabah, Malaysian Borneo, and Peninsular Malaysia. The targeted gene fragments were cloned into a commercial vector and sequenced, and a phylogenetic tree was constructed while incorporating 168 csp sequences retrieved from the GenBank database. The genetic diversity and natural evolution of the csp sequences were analysed using MEGA6 and DnaSP ver. 5.10.01. A genealogical network of the csp haplotypes was generated using NETWORK ver. 4.6.1.3.

    RESULTS: The phylogenetic analysis revealed indistinguishable clusters of P. knowlesi isolates across different geographic regions, including Malaysian Borneo and Peninsular Malaysia. Nucleotide analysis showed that the csp non-repeat regions of zoonotic P. knowlesi isolates obtained in this study underwent purifying selection with population expansion, which was supported by extensive haplotype sharing observed between humans and macaques. Novel variations were observed in the C-terminal non-repeat region of csp.

    CONCLUSIONS: The csp non-repeat regions are relatively conserved and there is no distinct cluster of P. knowlesi isolates from Malaysian Borneo and Peninsular Malaysia. Distinctive variation data obtained in the C-terminal non-repeat region of csp could be beneficial for the design and development of vaccines to treat P. knowlesi.

    Matched MeSH terms: Plasmodium knowlesi/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links