Displaying publications 61 - 80 of 278 in total

Abstract:
Sort:
  1. Mirhosseini H, Amid BT
    Molecules, 2012 May 29;17(6):6465-80.
    PMID: 22643356 DOI: 10.3390/molecules17066465
    Durian seed is an agricultural biomass waste of durian fruit. It can be a natural plant source of non-starch polysaccharide gum with potential functional properties. The main goal of the present study was to investigate the effect of chemical extraction variables (i.e., the decolouring time, soaking temperature and soaking time) on the physicochemical properties of durian seed gum. The physicochemical and functional properties of chemically-extracted durian seed gum were assessed by determining the particle size and distribution, solubility and the water- and oil-holding capacity (WHC and OHC). The present work revealed that the soaking time should be considered as the most critical extraction variable affecting the physicochemical properties of crude durian seed gum.
    Matched MeSH terms: Polysaccharides/chemistry*
  2. Atiq A, Parhar I
    Molecules, 2020 Oct 23;25(21).
    PMID: 33113890 DOI: 10.3390/molecules25214895
    Clinically, gliomas are classified into four grades, with grade IV glioblastoma multiforme being the most malignant and deadly, which accounts for 50% of all gliomas. Characteristically, glioblastoma involves the aggressive proliferation of cells and invasion of normal brain tissue, outcomes as poor patient prognosis. With the current standard therapy of glioblastoma; surgical resection and radiotherapy followed by adjuvant chemotherapy with temozolomide, it remains fatal, because of the development of drug resistance, tumor recurrence, and metastasis. Therefore, the need for the effective therapeutic option for glioblastoma remains elusive. Previous studies have demonstrated the chemopreventive role of naturally occurring pharmacological agents through preventing or reversing the initiation phase of carcinogenesis or arresting the cancer progression phase. In this review, we discuss the role of natural phytochemicals in the amelioration of glioblastoma, with the aim to improve therapeutic outcomes, and minimize the adverse side effects to improve patient's prognosis and enhancing their quality of life.
    Matched MeSH terms: Polysaccharides/pharmacology*; Polysaccharides/therapeutic use
  3. Zokti JA, Sham Baharin B, Mohammed AS, Abas F
    Molecules, 2016 Jul 26;21(8).
    PMID: 27472310 DOI: 10.3390/molecules21080940
    Green tea polyphenols have been reported to possess many biological properties. Despite the many potential benefits of green tea extracts, their sensitivity to high temperature, pH and oxygen is a major disadvantage hindering their effective utilization in the food industry. Green tea leaves from the Cameron Highlands Malaysia were extracted using supercritical fluid extraction (SFE). To improve the stability, green tea extracts were encapsulated by spray-drying using different carrier materials including maltodextrin (MD), gum arabic (GA) and chitosan (CTS) and their combinations at different ratios. Encapsulation efficiency, total phenolic content and antioxidant capacity were determined and were found to be in the range of 71.41%-88.04%, 19.32-24.90 (g GAE/100 g), and 29.52%-38.05% respectively. Further analysis of moisture content, water activity, hygroscopicity, bulk density and mean particles size distribution of the microparticles were carried out and the results ranged from; 2.31%-5.11%, 0.28-0.36, 3.22%-4.71%, 0.22-0.28 g/cm³ and 40.43-225.64 µm respectively. The ability of the microparticles to swell in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was determined as 142.00%-188.63% and 207.55%-231.77%, respectively. Release of catechin polyphenol from microparticles in SIF was higher comparable to that of SGF. Storage stability of encapsulated catechin extracts under different temperature conditions was remarkably improved compared to non-encapsulated extract powder. This study showed that total catechin, total phenolic content (TPC) and antioxidant activity did not decrease significantly (p ≥ 0.05) under 4 °C storage conditions. The half-life study results were in the range of 35-60, 34-65 and 231-288 weeks at storage temperatures of 40 °C, 25 °C and 4 °C respectively, therefore, for improved shelf-life stability we recommend that microparticles should be stored at temperatures below 25 °C.
    Matched MeSH terms: Polysaccharides/chemistry
  4. Umar Mustapha M, Halimoon N, Wan Johari WL, Abd Shukor MY
    Molecules, 2020 Jun 16;25(12).
    PMID: 32560037 DOI: 10.3390/molecules25122771
    Extensive use of carbofuran insecticide harms the environment and human health. Carbofuran is an endocrine disruptor and has the highest acute toxicity to humans than all groups of carbamate pesticides used. Carbofuran is highly mobile in soil and soluble in water with a lengthy half-life (50 days). Therefore, it has the potential to contaminate groundwater and nearby water bodies after rainfall events. A bacterial strain BRC05 was isolated from agricultural soil characterized and presumptively identified as Enterobacter sp. The strain was immobilized using gellan gum as an entrapment material. The effect of different heavy metals and the ability of the immobilized cells to degrade carbofuran were compared with their free cell counterparts. The results showed a significant increase in the degradation of carbofuran by immobilized cells compared with freely suspended cells. Carbofuran was completely degraded within 9 h by immobilized cells at 50 mg/L, while it took 12 h for free cells to degrade carbofuran at the same concentration. Besides, the immobilized cells completely degraded carbofuran within 38 h at 100 mg/L. On the other hand, free cells degraded the compound in 68 h. The viability of the freely suspended cell and degradation efficiency was inhibited at a concentration greater than 100 mg/L. Whereas, the immobilized cells almost completely degraded carbofuran at 100 mg/L. At 250 mg/L concentration, the rate of degradation decreased significantly in free cells. The immobilized cells could also be reused for about nine cycles without losing their degradation activity. Hence, the gellan gum-immobilized cells of Enterobacter sp. could be potentially used in the bioremediation of carbofuran in contaminated soil.
    Matched MeSH terms: Polysaccharides, Bacterial
  5. Zheng Y, Wang Q, Zhuang W, Lu X, Miron A, Chai TT, et al.
    Molecules, 2016 Nov 02;21(11).
    PMID: 27827862
    Lotus is an edible and medicinal plant, and the extracts from its different parts exhibit various bioactivities. In the present study, the hot water-soluble polysaccharides from lotus seeds (LSPS) were evaluated for their cancer cell cytotoxicity, immunomodulatory and antitumor activities. LSPS showed significant inhibitory effects on the mouse gastric cancer MFC cells, human liver cancer HuH-7 cells and mouse hepatocarcinoma H22 cells. The animal studies showed that LSPS inhibited tumor growth in H22 tumor-bearing mice with the highest inhibition rate of 45.36%, which is comparable to that induced by cyclophosphamide (30 mg/kg) treatment (50.79%). The concentrations of white blood cells were significantly reduced in cyclophosphamide-treated groups (p < 0.01), while LSPS showed much fewer side effects according to the hematology analysis. LSPS improved the immune response in H22 tumor-bearing mice by enhancing the spleen and thymus indexes, and increasing the levels of serum cytokines including tumor necrosis factor-α and interleukin-2. Moreover, LSPS also showed in vivo antioxidant activity by increasing superoxide dismutase activity, thus reducing the malondialdehyde level in the liver tissue. These results suggested that LSPS can be used as an antitumor and immunomodulatory agent.
    Matched MeSH terms: Polysaccharides/pharmacology*
  6. Khalil ES, Abd Manap MY, Mustafa S, Alhelli AM, Shokryazdan P
    Molecules, 2018 Feb 13;23(2).
    PMID: 29438288 DOI: 10.3390/molecules23020398
    Tempoyak is a functional Malaysian food (an acid-fermented condiment) which is produced from the pulp of the durian (Durio zibethinus) fruit. The current study aimed to isolate and identify potential exopolysaccharide (EPS)-producing Lactobacillus strains from tempoyak for potential use as probiotics. Seven isolates (DUR2, DUR4, DUR5, DUR8, DUR12, DUR18, and DUR20) out of 44 were able to produce EPS, and exhibited resistance to acid and bile salt compared to the reference strains Lactobacillus rhmnosus (ATCC53103) and L. plantarum (ATCC8014). The seven isolated strains belonged to five different species-L. plantarum, L. fermentum, L. crispatus, L. reuteri, and L. pentosus-which were identified using API 50 CHL and 16S rRNA gene sequences (Polymerase chain reaction, PCR - based). The seven strains displayed different ability to produce EPS (100-850 mg/L). Isolates exhibited a high survivability to acid (pH 3.0), bile salts (0.3%), and gastrointestinal tract model (<70%). Results showed that the auto-aggregation and cell surface hydrophobicity ranged from 39.98% to 60.09% and 50.80% to 80.53%, respectively, whereas, the highest co-aggregation value (66.44%) was observed by L. fermentum (DUR8) with Pseudomonas aeruginosa. The isolates showed good inhibitory activity against tested pathogens, high antioxidant activity (32.29% to 73.36%), and good ability to reduce cholesterol (22.55% to 75.15%). Thus, the seven tested strains have value as probiotics.
    Matched MeSH terms: Polysaccharides, Bacterial/biosynthesis*; Polysaccharides, Bacterial/pharmacology; Polysaccharides, Bacterial/chemistry
  7. Everest-Dass AV, Briggs MT, Kaur G, Oehler MK, Hoffmann P, Packer NH
    Mol Cell Proteomics, 2016 09;15(9):3003-16.
    PMID: 27412689 DOI: 10.1074/mcp.M116.059816
    Ovarian cancer is a fatal gynaecological malignancy in adult women with a five-year overall survival rate of only 30%. Glycomic and glycoproteomic profiling studies have reported extensive protein glycosylation pattern alterations in ovarian cancer. Therefore, spatio-temporal investigation of these glycosylation changes may unearth tissue-specific changes that occur in the development and progression of ovarian cancer. A novel method for investigating tissue-specific N-linked glycans is using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) on formalin-fixed paraffin-embedded (FFPE) tissue sections that can spatially profile N-glycan compositions released from proteins in tissue-specific regions. In this study, tissue regions of interest (e.g. tumor, stroma, adipose tissue and necrotic areas) were isolated from FFPE tissue sections of advanced serous ovarian cancers (n = 3). PGC-LC-ESI-MS/MS and MALDI-MSI were used as complementary techniques to firstly generate structural information on the tissue-specific glycans in order to then obtain high resolution images of the glycan structure distribution in ovarian cancer tissue. The N-linked glycan repertoires carried by the proteins in these tissue regions were structurally characterized for the first time in FFPE ovarian cancer tissue regions, using enzymatic peptide-N-glycosidase F (PNGase F) release of N-glycans. The released glycans were analyzed by porous graphitized carbon liquid chromatography (PGC-LC) and collision induced electrospray negative mode MS fragmentation analysis. The N-glycan profiles identified by this analysis were then used to determine the location and distribution of each N-glycan on FFPE ovarian cancer sections that were treated with PNGase F using high resolution MALDI-MSI. A tissue-specific distribution of N-glycan structures identified particular regions of the ovarian cancer sections. For example, high mannose glycans were predominantly expressed in the tumor tissue region whereas complex/hybrid N-glycans were significantly abundant in the intervening stroma. Therefore, tumor and non-tumor tissue regions were clearly demarcated solely on their N-glycan structure distributions.
    Matched MeSH terms: Polysaccharides/analysis*; Polysaccharides/chemistry
  8. Lew SY, Teoh SL, Lim SH, Lim LW, Wong KH
    Mini Rev Med Chem, 2020;20(15):1518-1531.
    PMID: 32452327 DOI: 10.2174/1389557520666200526125534
    Depression is the most common form of mental illness and the major cause of disability worldwide. Symptoms of depression, including feelings of intense sadness and hopelessness, may occur after a specific event or in response to a gradual decline in health and functional status, often associated with aging. Current therapies for treating these symptoms include antidepressant drugs, counseling and behavioral therapy. However, antidepressant drugs are associated with mild to severe adverse effects, which has prompted the need for better treatment options. Medicinal mushrooms are valuable sources of food and medicine and are increasingly being used as supplements or as alternative medicines in standard healthcare. Numerous studies have provided insights into the neuroprotective effects of medicinal mushrooms, which are attributed to their antioxidant, anti-neuroinflammatory, cholinesterase inhibitory and neuroprotective properties. In this review, we comprehensively examine the role of these medicinal mushrooms in the treatment of depression. However, to apply these natural products in clinical settings, the therapeutic agent needs to be properly evaluated, including the active ingredients, the presence of synergistic effects, efficient extraction methods, and stabilization of the active ingredients for delivery into the body as well as crossing the blood-brain barrier.
    Matched MeSH terms: Polysaccharides/isolation & purification; Polysaccharides/pharmacology; Polysaccharides/therapeutic use; Polysaccharides/chemistry
  9. Romero Soto L, Thabet H, Maghembe R, Gameiro D, Van-Thuoc D, Dishisha T, et al.
    Microbiologyopen, 2021 01;10(1):e1160.
    PMID: 33650793 DOI: 10.1002/mbo3.1160
    Yangia sp. ND199 is a moderately halophilic bacterium isolated from mangrove samples in Northern Vietnam, which was earlier reported to grow on several sugars and glycerol to accumulate poly(hydroxyalkanoates) (PHA). In this study, the potential of the bacterium for co-production of exopolysaccharides (EPS) and PHA was investigated. Genome sequence analysis of the closely related Yangia sp. CCB-M3 isolated from mangroves in Malaysia revealed genes encoding enzymes participating in different EPS biosynthetic pathways. The effects of various cultivation parameters on the production of EPS and PHA were studied. The highest level of EPS (288 mg/L) was achieved using sucrose and yeast extract with 5% NaCl and 120 mM phosphate salts but with modest PHA accumulation (32% of cell dry weight, 1.3 g/L). Growth on fructose yielded the highest PHA concentration (85% of CDW, 3.3 g/L) at 90 mM phosphate and higher molecular weight EPS at 251 mg/L yield at 120 mM phosphate concentration. Analysis of EPS showed a predominance of glucose, followed by fructose and galactose, and minor amounts of acidic sugars.
    Matched MeSH terms: Polysaccharides, Bacterial/biosynthesis*
  10. Thong KL, Tang SS, Tan WS, Devi S
    Microbiol. Immunol., 2007;51(11):1045-52.
    PMID: 18037781
    Polyclonal sera from typhoid patients and a monoclonal antibody, mAb ATVi, which recognizes the capsular polysaccharide Vi antigen (ViCPS), were used to select for peptides that mimic the ViCPS by using a phage-displayed random 12-mer peptide library. Two major common mimotopes selected from the library carried the amino acid sequences TSHHDSHGLHRV and ENHSPVNIAHKL. Enzyme-linked immunosorbent assays (ELISAs) showed that these peptides carry mimotopes to ViCPS. Phage clones that contained the 12-mer peptides were also tested against pooled/individual typhoid patients' sera and found to have 3 to 5 times higher binding compared to normal sera. By using Phage-ELISA assays, the derived synthetic peptides, TSHHDSHGLHRV and ENHSPVNIAHKL, were tested against a monoclonal antibody mAb ATVi and over 2-fold difference in binding was found between these peptides and a control unrelated peptide, CTLTTKLYC. Inhibition of the mAb's binding to ViCPS indicated that the synthetic peptides successfully competed with the capsular polysaccharide for antibody binding.
    Matched MeSH terms: Polysaccharides, Bacterial/immunology*
  11. Furusawa G, Hartzell PL, Navaratnam V
    Microbiology (Reading), 2015 Oct;161(10):1933-1941.
    PMID: 26306656 DOI: 10.1099/mic.0.000158
    Ixotrophy is a process that enables certain microbes to prey on other cells. The ability of cells to aggregate or adhere is thought to be a significant initial step in ixotrophy. The gliding, multicellular filamentous bacterium Aureispira sp. CCB-QB1 belongs to the family Saprospiraceae and preys on bacteria such as Vibrio sp. in seawater. Adhesion and cell aggregation were coincident with preying and were hypothesized to play an important role in the ixotrophy in this bacterium. To test this hypothesis, experiments to elucidate the mechanisms of aggregation or adhesion in this bacterium were performed. The ability of Aureispira QB1 to adhere and aggregate to prey bacterium, Vibrio sp., required divalent cations, especially calcium ions. In the presence of calcium, Aureispira QB1 cells captured 99 % of Vibrio sp. cells after 60 min of incubation. Toluidine blue O, which binds acidic polysaccharides, bound to Aureispira QB1 and inhibited adhesion of Aureispira QB1. These results suggest that acidic polysaccharides are needed for aggregation or adhesion of Aureispira and that calcium ions play a significant role in these phenomena.
    Matched MeSH terms: Polysaccharides, Bacterial/metabolism
  12. Tong CY, Derek CJC
    Microb Ecol, 2023 Jul;86(1):549-562.
    PMID: 35978183 DOI: 10.1007/s00248-022-02091-9
    Cell adhesion is always the first step in biofilm development. With the emergence of attached cultivation systems, this study aims to promote a cost-effective approach for sustainable cultivation of microalgae, Navicula incerta, by pre-coating the main substrates, commercial polyvinylidene fluoride (PVDF) membranes with its own washed algal cells and self-produced soluble extracellular polymeric substances (EPS) for strengthened biofilm development. The effects of pH value (6 to 9), cell suspension volume (10 to 30 mL), and EPS volume (10 to 50 mL) were statistically optimized by means of response surface methodology toolkit. Model outputs revealed good agreement with cell adhesion data variation less than 1% at optimized pre-coating conditions (7.20 pH, 30 mL cell suspension volume, and 50 mL EPS volume). Throughout long-term biofilm cultivation, results demonstrated that EPS pre-coating substantially improved the attached microalgae density by as high as 271% than pristine PVDF due to rougher surface and the presence of sticky exopolymer particles. Nutrients absorbed via the available EPS coating from the bulk medium made the immobilized cells to release less polysaccharides on an average of 30% less than uncoated PVDF. This work suggests that adhesive polymer binders derived from organic sources can be effectively integrated into the development of high-performance novel materials as biocoating for immobilized microalgae cultivation.
    Matched MeSH terms: Polysaccharides/metabolism
  13. Pushpamalar J, Sathasivam T, Gugler MC
    Methods Mol Biol, 2021;2211:171-182.
    PMID: 33336277 DOI: 10.1007/978-1-0716-0943-9_12
    Polysaccharides are excellent candidates for drug delivery applications as they are available in abundance from natural sources. Polysaccharides such as starch, cellulose, lignin, chitosan, alginate, and tragacanth gum are used to make hydrogels beads. Hydrogels beads are three-dimensional, cross-linked networks of hydrophilic polymers formed in spherical shape and sized in the range of 0.5-1.0 mm of diameter. Beads are formed by various cross-linking methods such as chemical and irradiation methods. Natural polymer-based hydrogels are biocompatible and biodegradable and have inherently low immunogenicity, which makes them suitable for physiological drug delivery approaches. The cross-linked polysaccharide-based hydrogels are environment-sensitive polymers that can potentially be used for the development of "smart" delivery systems, which are capable of control release of the encapsulated drug at a targeted colon site. This topic focuses on various aspects of fabricating and optimizing the cross-linking of polysaccharides, either by a single polysaccharide or mixtures and also natural-synthetic hybrids to produce polymer-based hydrogel vehicles for colon-targeted drug delivery.
    Matched MeSH terms: Polysaccharides/chemistry
  14. Mehta M, Prasher P, Sharma M, Shastri MD, Khurana N, Vyas M, et al.
    Med Hypotheses, 2020 Nov;144:110254.
    PMID: 33254559 DOI: 10.1016/j.mehy.2020.110254
    The highly contagious coronavirus, which had already affected more than 2 million people in 210 countries, triggered a colossal economic crisis consequently resulting from measures adopted by various goverments to limit transmission. This has placed the lives of many people infected worldwide at great risk. Currently there are no established or validated treatments for COVID-19, that is approved worldwide. Nanocarriers may offer a wide range of applications that could be developed into risk-free approaches for successful therapeutic strategies that may lead to immunisation against the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) which is the primary causative organism that had led to the current COVID-19 pandemic. We address existing as well as emerging therapeutic and prophylactic approaches that may enable us to effectively combat this pandemic, and also may help to identify the key areas where nano-scientists can step in.
    Matched MeSH terms: Polysaccharides/chemistry
  15. Elsayed EA, El Enshasy H, Wadaan MA, Aziz R
    Mediators Inflamm, 2014;2014:805841.
    PMID: 25505823 DOI: 10.1155/2014/805841
    For centuries, macrofungi have been used as food and medicine in different parts of the world. This is mainly attributed to their nutritional value as a potential source of carbohydrates, proteins, amino acids, and minerals. In addition, they also include many bioactive metabolites which make mushrooms and truffles common components in folk medicine, especially in Africa, the Middle East, China, and Japan. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. The aims of this review are to report the different types of bioactive metabolites and their relevant producers, as well as the different mechanisms of action of mushroom compounds as potent anti-inflammatory agents.
    Matched MeSH terms: Polysaccharides/chemistry
  16. Nazarpour F, Abdullah DK, Abdullah N, Zamiri R
    Materials (Basel), 2013 May 15;6(5):2059-2073.
    PMID: 28809260 DOI: 10.3390/ma6052059
    e effects of biological pretreatment on the rubberwood (Hevea brasiliensis), was evaluated after cultivation of white rot fungi Ceriporiopsis subvermispora, Trametes versicolor, and a mixed culture of C. subvermispora and T. versicolor. The analysis of chemical compositions indicated that C. subvermispora had greater selectivity for lignin degradation with the highest lignin and hemicellulose loss at 45.06% and 42.08%, respectively, and lowest cellulose loss (9.50%) after 90 days among the tested samples. X-ray analysis showed that pretreated samples had a higher crystallinity than untreated samples. The sample pretreated by C. subvermispora presented the highest crystallinity of all the samples which might be caused by the selective degradation of amorphous components. Fourier transform infrared (FT-IR) spectroscopy demonstrated that the content of lignin and hemicellulose decreased during the biological pretreatment process. A study on hydrolysis of rubberwood treated with C. subvermispora, T. versicolor, and mixed culture for 90 days resulted in an increased sugar yield of about 27.67%, 16.23%, and 14.20%, respectively, as compared with untreated rubberwood (2.88%). The results obtained demonstrate that rubberwood is a potential raw material for industrial applications and white rot fungus C. subevermispora provides an effective method for improving the enzymatic hydrolysis of rubberwood.
    Matched MeSH terms: Polysaccharides
  17. Azizi S, Namvar F, Mahdavi M, Ahmad MB, Mohamad R
    Materials (Basel), 2013 Dec 18;6(12):5942-5950.
    PMID: 28788431 DOI: 10.3390/ma6125942
    Biological synthesis of nanoparticles is a relatively new emerging field of nanotechnology which has economic and eco-friendly benefits over chemical and physical processes of synthesis. In the present work, for the first time, the brown marine algae Sargassum muticum (S. muticum) aqueous extract was used as a reducing agent for the synthesis of nanostructure silver particles (Ag-NPs). Structural, morphological and optical properties of the synthesized nanoparticles have been characterized systematically by using FTIR, XRD, TEM and UV-Vis spectroscopy. The formation of Ag-NPs was confirmed through the presence of an intense absorption peak at 420 nm using a UV-visible spectrophotometer. A TEM image showed that the particles are spherical in shape with size ranging from 5 to 15 nm. The nanoparticles were crystalline in nature. This was confirmed by the XRD pattern. From the FTIR results, it can be seen that the reduction has mostly been carried out by sulphated polysaccharides present in S. muticum.
    Matched MeSH terms: Polysaccharides
  18. Dinesh B, Lau NS, Furusawa G, Kim SW, Taylor TD, Foong SY, et al.
    Mar Genomics, 2016 Feb;25:115-121.
    PMID: 26795059 DOI: 10.1016/j.margen.2015.12.006
    To date, the genus Mangrovimonas consists of only one species, Mangrovimonas yunxiaonensis strain LY01 that is known to have algicidal effects against harmful algal blooms (HABs) of Alexandrium tamarense. In this study, the whole genome sequence of three Mangrovimonas-like strains, TPBH4(T)(=LMG 28913(T),=JCM 30882(T)), ST2L12(T)(=LMG 28914(T),=JCM 30880(T)) and ST2L15(T)(=LMG 28915(T),=JCM 30881(T)) isolated from estuarine mangrove sediments in Perak, Malaysia were described. The sequenced genomes had a range of assembly size ranging from 3.56 Mb to 4.15 Mb which are significantly larger than that of M. yunxiaonensis LY01 (2.67 Mb). Xylan, xylose, L-arabinan and L-arabinose utilization genes were found in the genome sequences of the three Mangrovimonas-like strains described in this study. In contrast, these carbohydrate metabolism genes were not found in the genome sequence of LY01. In addition, TPBH4(T) and ST2L12(T) show capability to degrade xylan using qualitative plate assay method.
    Matched MeSH terms: Polysaccharides/metabolism*
  19. Chu WL, Phang SM
    Mar Drugs, 2016 Dec 07;14(12).
    PMID: 27941599 DOI: 10.3390/md14120222
    Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans), effect on satiety feeling (e.g., alginates), and inhibition of adipocyte differentiation (e.g., fucoxanthin). Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed.
    Matched MeSH terms: Polysaccharides/pharmacology; Polysaccharides/chemistry
  20. Saraswati, Giriwono PE, Iskandriati D, Tan CP, Andarwulan N
    Mar Drugs, 2019 Oct 17;17(10).
    PMID: 31627414 DOI: 10.3390/md17100590
    Sargassum is recognized both empirically and scientifically as a potential anti-inflammatory agent. Inflammation is an important response in the body that helps to overcome various challenges to body homeostasis such as microbial infections, tissue stress, and certain injuries. Excessive and uncontrolled inflammatory conditions can affect the pathogenesis of various diseases. This review aims to explore the potential of Sargassum's anti-inflammatory activity, not only in crude extracts but also in sulfated polysaccharides and purified compounds. The tropical region has a promising availability of Sargassum biomass because its climate allows for the optimal growth of seaweed throughout the year. This is important for its commercial utilization as functional ingredients for both food and non-food applications. To the best of our knowledge, studies related to Sargassum's anti-inflammatory activity are still dominated by subtropical species. Studies on tropical Sargassum are mainly focused on the polysaccharides group, though there are some other potentially bioactive compounds such as polyphenols, terpenoids, fucoxanthin, fatty acids and their derivatives, typical polar lipids, and other groups. Information on the modulation mechanism of Sargassum's bioactive compounds on the inflammatory response is also discussed here, but specific mechanisms related to the interaction between bioactive compounds and targets in cells still need to be further studied.
    Matched MeSH terms: Polysaccharides/pharmacology; Polysaccharides/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links