Displaying publications 61 - 80 of 233 in total

Abstract:
Sort:
  1. Reddy, Nidyaletchmy Subba, Rashidah Abdul Rahim, Darah Ibrahim, Kumar, K. Sudesh
    Trop Life Sci Res, 2016;27(11):145-150.
    MyJurnal
    We report on the cloning of the lipase gene from Bacillus licheniformis IBRLCHS2
    and the expression of the recombinant lipase. DNA sequencing analysis of the
    cloned lipase gene showed that it shares 99% identity with the lipase gene from
    B. licheniformis ATCC 14580 and belongs to subfamily 1.4 of true lipases based on amino
    acid sequence alignment of various Bacillus lipases. The 612 bp lipase gene was then
    cloned into the pET-15b(+) expression vector and the construct was transformed into
    E. coli BL21 (DE3) for bulk expression of the lipase. Expression was analysed by SDSPAGE
    where the lipase was found to have a molecular weight of about 23 kDa.
    Matched MeSH terms: Sequence Alignment
  2. Lau YL, Lee WC, Chen J, Zhong Z, Jian J, Amir A, et al.
    PLoS One, 2016;11(6):e0157893.
    PMID: 27347683 DOI: 10.1371/journal.pone.0157893
    Anopheles cracens has been incriminated as the vector of human knowlesi malaria in peninsular Malaysia. Besides, it is a good laboratory vector of Plasmodium falciparum and P. vivax. The distribution of An. cracens overlaps with that of An. maculatus, the human malaria vector in peninsular Malaysia that seems to be refractory to P. knowlesi infection in natural settings. Whole genome sequencing was performed on An. cracens and An. maculatus collected here. The draft genome of An. cracens was 395 Mb in size whereas the size of An. maculatus draft genome was 499 Mb. Comparison with the published Malaysian An. maculatus genome suggested the An. maculatus specimen used in this study as a different geographical race. Comparative analyses highlighted the similarities and differences between An. cracens and An. maculatus, providing new insights into their biological behavior and characteristics.
    Matched MeSH terms: Sequence Alignment
  3. Ismail NA, Dom NC, Ismail R, Ahmad AH, Zaki A, Camalxaman SN
    J Am Mosq Control Assoc, 2015 Dec;31(4):305-12.
    PMID: 26675451 DOI: 10.2987/moco-31-04-305-312.1
    A study was conducted to establish polymorphic variation of the mitochondrial DNA encoding the cytochrome oxidase subunit 1 (CO1) gene in Aedes albopictus isolated from 2 hot spot dengue-infested areas in the Subang Jaya District, Malaysia. A phylogenetic analysis was performed with the use of sequences obtained from USJ6 and Taman Subang Mas (TSM). Comparison of the local CO1 sequences with a laboratory strain (USM), alongside reference strains derived from the GenBank database revealed low genetic variation in terms of nucleotide differences and haplotype diversity. Four methods were used to construct a phylogenetic tree and illustrate the genetic relationship of the 37 Ae. albopictus populations based on the CO1 sequences, namely neighbor-joining (NJ), maximum parsimony (MP), maximum likelihood (ML), and Bayesian method, which revealed a distinct relationship between isolates from USJ6 and TSM. Our findings provide new information regarding the genetic diversity among morphologically similar Ae. albopictus, which has not been reported to date.
    Matched MeSH terms: Sequence Alignment
  4. Kumaresan V, Bhatt P, Ganesh MR, Harikrishnan R, Arasu M, Al-Dhabi NA, et al.
    Mol Immunol, 2015 Dec;68(2 Pt B):421-33.
    PMID: 26477736 DOI: 10.1016/j.molimm.2015.10.001
    In aquaculture, accumulation of antibiotics resulted in development of resistance among bacterial pathogens. Consequently, it became mandatory to find alternative to synthetic antibiotics. Antimicrobial peptides (AMPs) which are described as evolutionary ancient weapons have been considered as promising alternates in recent years. In this study, a novel antimicrobial peptide had been derived from goose type lysozyme (LyzG) which was identified from the cDNA library of freshwater fish Channa striatus (Cs). The identified lysozyme cDNA contains 585 nucleotides which encodes a protein of 194 amino acids. CsLyzG was closely related to Siniperca chuatsi with 92.8% homology. The depicted protein sequence contained a GEWL domain with conserved GLMQ motif, 7 active residues and 2 catalytic residues. Gene expression analysis revealed that CsLyzG was distributed in major immune organs with highest expression in head kidney. Results of temporal expression analysis after bacterial (Aeromonas hydrophila) and fungal (Aphanomyces invadans) challenges indicated a stimulant-dependent expression pattern of CsLyzG. Two antimicrobial peptides IK12 and TS10 were identified from CsLyzG and synthesized. Antibiogram showed that IK12 was active against Salmonella enterica, a major multi-drug resistant (MDR) bacterial pathogen which produces beta lactamase. The IK12 induced loss of cell viability in the bacterial pathogen. Flow cytometry assay revealed that IK12 disrupt the membrane of S. enterica which is confirmed by scanning electron microscope (SEM) analysis that reveals blebs around the bacterial cell membrane. Conclusively, CsLyzG is a potential innate immune component and the identified antimicrobial peptide has great caliber to be used as an ecofriendly antibacterial substance in aquaculture.
    Matched MeSH terms: Sequence Alignment
  5. Walker PJ, Widen SG, Firth C, Blasdell KR, Wood TG, Travassos da Rosa AP, et al.
    Am J Trop Med Hyg, 2015 Nov;93(5):1041-51.
    PMID: 26324724 DOI: 10.4269/ajtmh.15-0344
    The genus Nairovirus of arthropod-borne bunyaviruses includes the important emerging human pathogen, Crimean-Congo hemorrhagic fever virus (CCHFV), as well as Nairobi sheep disease virus and many other poorly described viruses isolated from mammals, birds, and ticks. Here, we report genome sequence analysis of six nairoviruses: Thiafora virus (TFAV) that was isolated from a shrew in Senegal; Yogue (YOGV), Kasokero (KKOV), and Gossas (GOSV) viruses isolated from bats in Senegal and Uganda; Issyk-Kul virus (IKV) isolated from bats in Kyrgyzstan; and Keterah virus (KTRV) isolated from ticks infesting a bat in Malaysia. The S, M, and L genome segments of each virus were found to encode proteins corresponding to the nucleoprotein, polyglycoprotein, and polymerase protein of CCHFV. However, as observed in Leopards Hill virus (LPHV) and Erve virus (ERVV), polyglycoproteins encoded in the M segment lack sequences encoding the double-membrane-spanning CCHFV NSm protein. Amino acid sequence identities, complement-fixation tests, and phylogenetic analysis indicated that these viruses cluster into three groups comprising KKOV, YOGV, and LPHV from bats of the suborder Yingochiroptera; KTRV, IKV, and GOSV from bats of the suborder Yangochiroptera; and TFAV and ERVV from shrews (Soricomorpha: Soricidae). This reflects clade-specific host and vector associations that extend across the genus.
    Matched MeSH terms: Sequence Alignment
  6. Arockiaraj J, Bhatt P, Kumaresan V, Dhayanithi NB, Arshad A, Harikrishnan R, et al.
    Fish Shellfish Immunol, 2015 Nov;47(1):221-30.
    PMID: 26363233 DOI: 10.1016/j.fsi.2015.09.015
    In this study, we reported a molecular characterization of three CC chemokines namely, CsCC-Chem14, CsCC-Chem20 and CsCC-Chem25 which are were identified from the established cDNA library of striped murrel Channa striatus. Multiple sequence alignment of all the three chemokines revealed the presence of gene specific domains and motifs including small cytokine domain, IL8 like domain, receptor binding site and glycosaminoglycan (GAG) binding sites. Three dimensional structures of the chemokines under study showed an important facet on their anti-microbial property. Tissue specific mRNA expression showed that the CsCC-Chem14 is highly expressed in spleen, CsCC-Chem20 in liver and CsCC-Chem25 in trunk kidney. On challenge C. striatus with oomycete fungus Aphanomyces invadans, both CsCC-Chem20 and CsCC-Chem25 showed significant (P < 0.05) up-regulation compared to CsCC-Chem14. The increase in the expression levels of CsCC-Chem20 and CsCC-Chem25 due to infection showed that they are antimicrobial proteins. But considering the CsCC-Chem14 expression, it is found to be a constitutive chemokine and is involved in homeostatic function in spleen of C. striatus. C. striatus challenged with bacteria Aeromonas hydrophila also exhibited different up-regulation pattern in all the three chemokines at various time points. However, extensive studies are required to determine the functional activities of CsCC-Chem14, CsCC-Chem20 and CsCC-Chem25 in vitro and in vivo to gain more knowledge at the molecular and proteomic levels.
    Matched MeSH terms: Sequence Alignment
  7. Tan JL, Ngeow YF, Choo SW
    J Clin Microbiol, 2015 Sep;53(9):3042-6.
    PMID: 26157149 DOI: 10.1128/JCM.00541-15
    Mycobacterium abscessus subspecies classification has important clinical implications. We used phylogenomic network and amino acid analyses to provide evidence for the separation of Mycobacterium bolletii and Mycobacterium massiliense into two distinct subspecies which can potentially be differentiated rapidly by their protein signatures.
    Matched MeSH terms: Sequence Alignment
  8. Hudu SA, Harmal NS, Saeed MI, Alshrari AS, Malik YA, Niazlin MT, et al.
    Eur J Clin Microbiol Infect Dis, 2015 Jul;34(7):1349-59.
    PMID: 25792010 DOI: 10.1007/s10096-015-2358-1
    Hepatitis B virus surface mutants are of enormous importance because they are capable of escaping detection by serology and can infect both vaccinated and unvaccinated populations, thus putting the whole population at risk. This study aimed to detect and characterise hepatitis B-escaped mutants among blood donors and vaccinees. One thousand serum samples were collected for this study from blood donors and vaccinees. Hepatitis B surface antigen, antibodies and core antibodies were tested using a commercial enzyme-linked immunosorbent assay (ELISA) kit. DNA detection was performed via nested polymerase chain reaction (PCR), and the S gene was sequenced and analysed using bioinformatics. Of the 1,000 samples that were screened, 5.5% (55/1,000) were found to be HBsAg-negative and anti-HBc- and HBV DNA-positive. All 55 isolates were found to belong to genotype B. Several mutations were found across all the sequences from synonymous and non-synonymous mutations, with the most nucleotide mutations occurring at position 342, where adenine was replaced by guanine, and cytosine at position 46 was replaced by adenine in 96.4% and 98% of the isolates, respectively. Mutation at position 16 of the amino acid sequence was found to be common to all the Malaysian isolates, with 85.7% of the mutations occurring outside the major hydrophilic region. This study revealed a prevalence of 5.5% for hepatitis B-escaped mutations among blood donors and vaccinated undergraduates, with the most common mutation being found at position 16, where glutamine was substituted with lysine.
    Matched MeSH terms: Sequence Alignment
  9. Khew CY, Teo CJ, Chan WS, Wong HL, Namasivayam P, Ho CL
    J Plant Physiol, 2015 Jun 15;182:23-32.
    PMID: 26037695 DOI: 10.1016/j.jplph.2015.05.003
    Brassinosteroid Insensitive 1 (BRI1)-Associated Kinase I (BAK1) has been reported to interact with BRI1 for brassinosteroid (BR) perception and signal transduction that regulate plant growth and development. The aim of this study is to investigate the functions of a rice OsBAK1 homologue, designated as OsI-BAK1, which is highly expressed after heading. Silencing of OsI-BAK1 in rice plants produced a high number of undeveloped green and unfilled grains compared to the untransformed plants. Histological analyses demonstrated that embryos were either absent or retarded in their development in these unfilled rice grains of OsI-BAK1 RNAi plants. Down regulation of OsI-BAK1 caused a reduction in cell number and enlargement in leaf bulliform cells. Furthermore, transgenic rice plants overexpressing OsI-BAK1 were demonstrated to have corrugated and twisted leaves probably due to increased cell number that caused abnormal bulliform cell structure which were enlarged and plugged deep into leaf epidermis. The current findings suggest that OsI-BAK1 may play an important role in the developmental processes of rice grain filling and leaf cell including the bulliform cells.
    Matched MeSH terms: Sequence Alignment
  10. Ang SS, Salleh AB, Chor AL, Normi YM, Tejo BA, Rahman MB
    Comput Biol Chem, 2015 Jun;56:19-29.
    PMID: 25766878 DOI: 10.1016/j.compbiolchem.2015.02.015
    Cytochrome P450s are a superfamily of heme monooxygenases which catalyze a wide range of biochemical reactions. The reactions involve the introduction of an oxygen atom into an inactivated carbon of a compound which is essential to produce an intermediate of a hydroxylated product. The diversity of chemical reactions catalyzed by cytochrome P450s has led to their increased demand in numerous industrial and biotechnology applications. A recent study showed that a gene sequence encoding a CYP was found in the genome of Bacillus lehensis G1, and this gene shared structural similarity with the bacterial vitamin D hydroxylase (Vdh) from Pseudonocardia autotrophica. The objectives of present study was to mine, for a novel CYP from a new isolate B. lehensis G1 alkaliphile and determine the biological properties and functionalities of CYP in this bacterium. Our study employed the usage of computational methods to search for the novel CYP from CYP structural databases to identify the conserved pattern, functional domain and sequence properties of the uncharacterized CYP from B. lehensis G1. A computational homology model of the protein's structure was generated and a docking analysis was performed to provide useful structural knowledge on the enzyme's possible substrate and their interaction. Sequence analysis indicated that the newly identified CYP, termed CYP107CB2, contained the fingerprint heme binding sequence motif FxxGxxxCxG at position 336-345 as well as other highly conserved motifs characteristic of cytochrome P450 proteins. Using docking studies, we identified Ser-79, Leu-81, Val-231, Val-279, Val-383, Ala-232, Thr-236 and Thr-283 as important active site residues capable of stabilizing interactions with several potential substrates, including vitamin D3, 25-hydroxyvitamin D3 and 1α-hydroxyvitamin D3, in which all substrates docked proximally to the enzyme's heme center. Biochemical analysis indicated that CYP107CB2 is a biologically active protein to produce 1α,25-dihydroxyvitamin D3 from 1α-hydroxyvitamin D3. Based on these results, we conclude that the novel CYP107CB2 identified from B. lehensis G1 is a putative vitamin D hydroxylase which is possibly capable of catalyzing the bioconversion of parental vitamin D3 to calcitriol, or related metabolic products.
    Matched MeSH terms: Sequence Alignment
  11. Chem YK, Chua KB, Malik Y, Voon K
    Trop Biomed, 2015 Jun;32(2):344-51.
    PMID: 26691263 MyJurnal
    Monoclonal antibody-escape variant of dengue virus type 1 (MabEV DEN-1) was discovered and isolated in an outbreak of dengue in Klang Valley, Malaysia from December 2004 to March 2005. This study was done to investigate whether DEN152 (an isolate of MabEV DEN-1) is a product of recombination event or not. In addition, the non-synonymous mutations that correlate with the monoclonal antibody-escape variant were determined in this study. The genomes of DEN152 and two new DEN-1 isolates, DENB04 and DENK154 were completely sequenced, aligned, and compared. Phylogenetic tree was plotted and the recombination event on DEN152 was investigated. DEN152 is sub-grouped under genotype I and is closely related genetically to a DEN-1 isolated in Japan in 2004. DEN152 is not a recombinant product of any parental strains. Four amino acid substitutions were unique only to DEN 152. These amino acid substitutions were (Ser)[326](Leu), (Ser)[340](Leu) at the deduced E protein, (Ile)[250](Thr) at NS1 protein, and (Thr)[41](Ser) at NS5 protein. Thus, DEN152 is an isolate of the emerging monoclonal antibody-escape variant DEN-1 that escaped diagnostic laboratory detection.
    Matched MeSH terms: Sequence Alignment
  12. Terao M, Akter S, Yasin MG, Nakao R, Kato H, Alam MZ, et al.
    Infect Genet Evol, 2015 Apr;31:53-60.
    PMID: 25620376 DOI: 10.1016/j.meegid.2015.01.011
    Babesia gibsoni is a tick-borne hemoprotozoan parasite of dogs that often causes fever and hemolytic illness. Detection of B. gibsoni has been predominantly reported in Asian countries, including Japan, Korea, Taiwan, Malaysia, Bangladesh and India. The present study shows the first molecular characterization of B. gibsoni detected from dogs in Bangladesh. Blood samples were collected on FTA® Elute cards from 50 stray dogs in Mymensingh District in Bangladesh. DNA eluted from the cards was subjected to nested PCR for the 18S rRNA gene of Babesia species. Approximately 800bp PCR products were detected in 15 of 50 dogs (30%). Based on restriction fragment length polymorphism (RFLP) and direct sequencing of the PCR products, all parasite isolates were identified as B. gibsoni. Furthermore, the BgTRAP (B. gibsoni thrombospondin-related adhesive protein) gene fragments were detected in 13 of 15 18S rRNA gene PCR positive blood samples. Phylogenetic analysis of the BgTRAP gene revealed that B. gibsoni parasites in Bangladesh formed a cluster, which was genetically different from other Asian B. gibsoni isolates. In addition, tandem repeat analysis of the BgTRAP gene clearly showed considerable genetic variation among Bangladeshi isolates. These results suggested that B. gibsoni parasites in a different genetic clade are endemic in dogs in Bangladesh. Further studies are required to elucidate the origin, distribution, vector and pathogenesis of B. gibsoni parasites circulating in dogs in Bangladesh.
    Matched MeSH terms: Sequence Alignment
  13. Arockiaraj J, Chaurasia MK, Kumaresan V, Palanisamy R, Harikrishnan R, Pasupuleti M, et al.
    Fish Shellfish Immunol, 2015 Apr;43(2):364-74.
    PMID: 25575476 DOI: 10.1016/j.fsi.2014.12.036
    Mannose-binding lectin (MBL), an antimicrobial protein, is an important component of innate immune system which recognizes repetitive sugar groups on the surface of bacteria and viruses leading to activation of the complement system. In this study, we reported a complete molecular characterization of cDNA encoded for MBL from freshwater prawn Macrobrachium rosenbergii (Mr). Two short peptides (MrMBL-N20: (20)AWNTYDYMKREHSLVKPYQG(39) and MrMBL-C16: (307)GGLFYVKHKEQQRKRF(322)) were synthesized from the MrMBL polypeptide. The purity of the MrMBL-N20 (89%) and MrMBL-C16 (93%) peptides were confirmed by MS analysis (MALDI-ToF). The purified peptides were used for further antimicrobial characterization including minimum inhibitory concentration (MIC) assay, kinetics of bactericidal efficiency and analysis of hemolytic capacity. The peptides exhibited antimicrobial activity towards all the Gram-negative bacteria taken for analysis, whereas they showed the activity towards only a few selected Gram-positive bacteria. MrMBL-C16 peptides produced the highest inhibition towards both the Gram-negative and Gram-positive bacteria compared to the MrMBL-N20. Both peptides do not produce any inhibition against Bacillus sps. The kinetics of bactericidal efficiency showed that the peptides drastically reduced the number of surviving bacterial colonies after 24 h incubation. The results of hemolytic activity showed that both peptides produced strong activity at higher concentration. However, MrMBL-C16 peptide produced the highest activity compared to the MrMBL-N20 peptide. Overall, the results indicated that the peptides can be used as bactericidal agents. The MrMBL protein sequence was characterized using various bioinformatics tools including phylogenetic analysis and structure prediction. We also reported the MrMBL gene expression pattern upon viral and bacterial infection in M. rosenbergii gills. It could be concluded that the prawn MBL may be one of the important molecule which is involved in antimicrobial mechanism. Moreover, MrMBL derived MrMBL-N20 and MrMBL-C16 peptides are important antimicrobial peptides for the recognition and eradication of viral and bacterial pathogens.
    Matched MeSH terms: Sequence Alignment
  14. Kuah MK, Jaya-Ram A, Shu-Chien AC
    Biochim. Biophys. Acta, 2015 Mar;1851(3):248-60.
    PMID: 25542509 DOI: 10.1016/j.bbalip.2014.12.012
    The endogenous production of long-chain polyunsaturated fatty acids (LC-PUFA) in carnivorous teleost species inhabiting freshwater environments is poorly understood. Although a predatory lifestyle could potentially supply sufficient LC-PUFA to satisfy the requirements of these species, the nutrient-poor characteristics of the freshwater food web could impede this advantage. In this study, we report the cloning and functional characterisation of an elongase enzyme in the LC-PUFA biosynthesis pathway from striped snakehead (Channa striata), which is a strict freshwater piscivore that shows high deposition of LC-PUFA in its flesh. We also functionally characterised a previously isolated fatty acyl desaturase cDNA from this species. Results showed that the striped snakehead desaturase is capable of Δ4 and Δ5 desaturation activities, while the elongase showed the characteristics of Elovl5 elongases. Collectively, these findings reveal that striped snakehead exhibits the genetic resources to synthesise docosahexaenoic acid (DHA; 22:6n-3) from eicosapentaenoic acid (EPA; 20:5n-3). Both genes are expressed at considerable levels in the brain and the liver. In liver, both genes were up-regulated by dietary C18 PUFA, although this increase did not correspond to a significant rise in the deposition of muscle LC-PUFA. Brain tissue of fish fed with plant oil diets showed higher expression of fads2 gene compared to fish fed with fish oil-based diet, which could ensure DHA levels remain constant under limited dietary DHA intake. This suggests the importance of DHA production from EPA via the ∆4 desaturation step in order to maintain an optimal reserve of DHA in the neuronal tissues of carnivores.
    Matched MeSH terms: Sequence Alignment
  15. Kwan YM, Meon S, Ho CL, Wong MY
    J Plant Physiol, 2015 Feb 01;174:131-6.
    PMID: 25462975 DOI: 10.1016/j.jplph.2014.10.003
    Nitric oxide associated 1 (NOA1) protein is implicated in plant disease resistance and nitric oxide (NO) biosynthesis. A full-length cDNA encoding of NOA1 protein from oil palm (Elaeis guineensis) was isolated and designated as EgNOA1. Sequence analysis suggested that EgNOA1 was a circular permutated GTPase with high similarity to the bacterial YqeH protein of the YawG/YlqF family. The gene expression of EgNOA1 and NO production in oil palm root tissues treated with Ganoderma boninense, the causal agent of basal stem rot (BSR) disease were profiled to investigate the involvement of EgNOA1 during fungal infection and association with NO biosynthesis. Real-time PCR (qPCR) analysis revealed that the transcript abundance of EgNOA1 in root tissues was increased by G. boninense treatment. NO burst in Ganoderma-treated root tissue was detected using Griess reagent, in advance of the up-regulation of the EgNOA1 transcript. This indicates that NO production was independent of EgNOA1. However, the induced expression of EgNOA1 in Ganoderma-treated root tissues implies that it might be involved in plant defense responses against pathogen infection.
    Matched MeSH terms: Sequence Alignment
  16. Lee SY, Park ME, Kim RH, Ko MK, Lee KN, Kim SM, et al.
    Vaccine, 2015 Jan 29;33(5):664-9.
    PMID: 25528521 DOI: 10.1016/j.vaccine.2014.12.007
    Of the seven known serotypes of foot-and-mouth disease virus (FMDV), type A has the most diverse variations. Genetic variations also occur frequently at VP1, VP2, VP3, and VP4 because these proteins constitute the viral capsid. The structural proteins of FMDV, which are closely related to immunologic correlations, are the most easily analyzed because they have highly accessible information. In this study we analyzed the type A vaccine viruses by alignment of available sequences in order to find appropriate vaccine strains. The matching rate of ASIA topotype-specific sites (20 amino acids) located on the viral surface, which are mainly VP1 and VP2, was highly related to immunologic reactivity. Among the available vaccines analyzed in this study, we suggest that A Malaysia 97 could be used as a vaccine virus as it has the highest genetic similarity and immunologic aspects to field strains originating in East Asia.
    Matched MeSH terms: Sequence Alignment
  17. Chaurasia MK, Palanisamy R, Bhatt P, Kumaresan V, Gnanam AJ, Pasupuleti M, et al.
    Microbiol Res, 2015 Jan;170:78-86.
    PMID: 25271126 DOI: 10.1016/j.micres.2014.08.011
    This study investigates the complete molecular characterization including bioinformatics characterization, gene expression, synthesis of N and C terminal peptides and their antimicrobial activity of the core histone 4 (H4) from freshwater giant prawn Macrobrachium rosenbergii (Mr). A cDNA encoding MrH4 was identified from the constructed cDNA library of M. rosenbergii during screening and the sequence was obtained using internal sequencing primers. The MrH4 coding region possesses a polypeptide of 103 amino acids with a calculated molecular weight of 11kDa and an isoelectric point of 11.5. The bioinformatics analysis showed that the MrH4 polypeptide contains a H4 signature at (15)GAKRH(19). Multiple sequence alignment of MrH4 showed that the N-terminal (21-42) and C-terminal (87-101) antimicrobial peptide regions and the pentapeptide or H4 signature (15-19) are highly conserved including in humans. The phylogenetic tree formed two separate clades of vertebrate and invertebrate H4, wherein MrH4 was located within the arthropod monophyletic clade of invertebrate H4 groups. Three-dimensional model of MrH4 was established using I-TASSER program and the model was validated using Ramachandran plot analysis. Schiffer-Edmundson helical wheel modeling was used to predict the helix propensity of N (21-42) and C (87-101) terminal derived Mr peptides. The highest gene expression was observed in gills and is induced by viral [white spot syndrome baculovirus (WSBV) and M. rosenbergii nodovirus (MrNV)] and bacterial (Aeromonas hydrophila and Vibrio harveyi) infections. The N and C terminal peptides were synthesized and their antimicrobial and hemolytic properties were examined. Both peptides showed activity against the tested Gram negative and Gram positive bacteria; however, the highest activity was noticed against Gram negative bacteria. Among the two peptides used in this study, C-terminal peptide yielded better results than the N-terminal peptide. Therefore, C terminal peptide can be recommended for the development of an antimicrobial agent.
    Matched MeSH terms: Sequence Alignment
  18. Kumar S
    BMC Res Notes, 2015;8:9.
    PMID: 25595103 DOI: 10.1186/s13104-015-0976-4
    Cytochrome P450s (CYPs) are important heme-containing proteins, well known for their monooxygenase reaction. The human cytochrome P450 4X1 (CYP4X1) is categorized as "orphan" CYP because of its unknown function. In recent studies it is found that this enzyme is expressed in neurovascular functions of the brain. Also, various studies have found the expression and activity of orphan human cytochrome P450 4X1 in cancer. It is found to be a potential drug target for cancer therapy. However, three-dimensional structure, the active site topology and substrate specificity of CYP4X1 remain unclear.
    Matched MeSH terms: Sequence Alignment
  19. Fong MY, Ahmed MA, Wong SS, Lau YL, Sitam F
    PLoS One, 2015;10(9):e0137734.
    PMID: 26379157 DOI: 10.1371/journal.pone.0137734
    Plasmodium knowlesi is a simian malaria parasite that has been identified to cause malaria in humans. To date, several thousand cases of human knowlesi malaria have been reported around Southeast Asia. Thus far, there is no detailed study on genetic diversity and natural selection of P. knowlesi circumsporozoite protein (CSP), a prominent surface antigen on the sporozoite of the parasite. In the present study, the genetic diversity and natural selection acting on the nonrepeat regions of the gene encoding P. knowlesi CSP were investigated, focusing on the T-cell epitope regions at the C-terminal of the protein.
    Matched MeSH terms: Sequence Alignment
  20. Tan CH, Tan KY, Fung SY, Tan NH
    BMC Genomics, 2015;16:687.
    PMID: 26358635 DOI: 10.1186/s12864-015-1828-2
    The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS.
    Matched MeSH terms: Sequence Alignment
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links