Displaying publications 61 - 80 of 594 in total

Abstract:
Sort:
  1. Tijani MM, Aqsha A, Mahinpey N
    Data Brief, 2018 Apr;17:200-209.
    PMID: 29876387 DOI: 10.1016/j.dib.2017.12.044
    Synthesis and characterization of supported metal-based oxygen carriers were carried out to provide information related to the use of oxygen carriers for chemical looping combustion processes. The Cu, Co, Fe, Ni metals supported with Al2O3, CeO2, TiO2, ZrO2 were prepared using the wetness impregnation technique. Then, the X-ray Diffraction (XRD) characterization of oxidized and reduced samples was obtained and presented. The kinetic analysis using Thermogravimetric analyzer (TGA) of the synthesized samples was conducted. The kinetics of reduction reaction of all samples were estimated and explained.
    Matched MeSH terms: X-Ray Diffraction
  2. Zainuddin N, Karpukhina N, Law RV, Hill RG
    Dent Mater, 2012 Oct;28(10):1051-8.
    PMID: 22841162 DOI: 10.1016/j.dental.2012.06.011
    The purpose of this study was to characterize commercial glass polyalkenoate cement (GPC) or glass ionomer cement (GIC), Glass Carbomer(®), which is designed to promote remineralization to fluorapatite (FAp) in the mouth. The setting reaction of the cement was followed using magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy.
    Matched MeSH terms: X-Ray Diffraction
  3. Daood U, Akram Z, Matinlinna JP, Fawzy AS
    Dent Mater, 2019 07;35(7):1017-1030.
    PMID: 31064669 DOI: 10.1016/j.dental.2019.04.005
    OBJECTIVE: The aim of this study was to investigate EDC-assisted collagen crosslinking effect with different concentrations of tiopronin-protected gold (TPAu) nanoparticles on demineralized dentine.

    METHODS: TPAu nanoparticles were fabricated from 0.31-g tetrachloroauric acid and 0.38-g of N-(2-mercaptopropionyl) glycine (2.4-mmol). Then co-dissolved using 35-mL of 6:1 methanol/acetic acid and mixed using NaBH4. EDC (0.3-M) was conjugated to TPAu nanoparticles at TPAU/EDC-0.25:1, and TPAU/EDC-0.5:1 treatment formulations ratios. Dentin specimens treated with 0.3-M EDC solution alone or left untreated were used as control. Nanoparticles formulations were characterized in term of particles morphology and size, Zeta potential, thermogravimetric analysis and small-angle X-ray scattering. Dentin substrates were characterized in term of TEM investigation, dentin proteases characterization, hydroxyproline liberation, elastic modulus measurement, Raman analysis and confocal microscopy viewing.

    RESULTS: TEM evaluation of tiopronin protected gold nanoparticles dispersion revealed nano-clusters formations in both groups. However, based on our TEM measurements, the particle-size was ranging from ˜20 to 50 nm with spherical core-shape which were almost similar for both TPAu/EDC ratios (0.5:1 and 0.25:1). Zeta potential measurements indicate negative nanoparticles surface charge. SAXS profiles for both formulations, suggest a typical profile for uni-lamellar nanoparticles. Superior dentin collagen cross-linking effect was found with the TPAu/EDC nanoparticles formulations compared to the control and EDC treated groups.

    SIGNIFICANCE: Cross-linking of dentin collagen using TPAu coupled with EDC through TPAu/EDC nanoparticles formulations is of potential significance in improving the biodegradation resistance, proteases inhibition, mechanical and structural stability of demineralized dentin substrates. In addition, the cross-linking effect is dependent on TPAu/EDC ratio, whereas higher cross-linking effect was found at TPAu/EDC ratio of 0.5:1.

    Matched MeSH terms: X-Ray Diffraction
  4. Ndlovu ST, Ullah N, Khan S, Ramharack P, Soliman M, de Matas M, et al.
    Drug Deliv Transl Res, 2019 Feb;9(1):284-297.
    PMID: 30387048 DOI: 10.1007/s13346-018-00596-w
    The aim of this study was to employ experimental and molecular modelling approaches to use molecular level interactions to rationalise the selection of suitable polymers for use in the production of stable domperidone (DOMP) nanocrystals with enhanced bioavailability. A low-energy antisolvent precipitation method was used for the preparation and screening of polymers for stable nanocrystals of DOMP. Ethyl cellulose was found to be very efficient in producing stable DOMP nanocrystals with particle size of 130 ± 3 nm. Moreover, the combination of hydroxypropyl methylcellulose and polyvinyl alcohol was also shown to be better in producing DOMP nanocrystals with smaller particle size (200 ± 3.5 nm). DOMP nanosuspension stored at 2-8 °C and at room temperature (25 °C) exhibited better stability compared to the samples stored at 40 °C. Crystallinity of the unprocessed and processed DOMP was monitored by differential scanning calorimetry and powder X-ray diffraction. DOMP nanocrystals gave enhanced dissolution rate compared to the unprocessed drug substance. DOMP nanocrystals at a dose of 10 mg/kg in rats showed enhanced bioavailability compared to the raw drug substance and marketed formulation. A significant increase in plasma concentration of 2.6 μg/mL with a significant decrease in time (1 h) to reach maximum plasma concentration was observed for DOMP nanocrystals compared to the raw DOMP. Molecular modelling studies provided underpinning knowledge at the molecular level of the DOMP-polymer nanocrystal interactions and substantiated the experimental studies. This included an understanding of the impact of polymers on the size of nanocrystals and their associated stability characteristics.
    Matched MeSH terms: X-Ray Diffraction
  5. Saifullah B, Hussein MZ, Hussein-Al-Ali SH, Arulselvan P, Fakurazi S
    Drug Des Devel Ther, 2013;7:1365-75.
    PMID: 24255593 DOI: 10.2147/DDDT.S50665
    We report the intercalation and characterization of para-amino salicylic acid (PASA) into zinc/aluminum-layered double hydroxides (ZLDHs) by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D) and PASA nanocomposite prepared by an indirect method (PASA-I). Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation) between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays) was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours.
    Matched MeSH terms: X-Ray Diffraction
  6. Mohd Amin MC, Ahmad N, Pandey M, Jue Xin C
    Drug Dev Ind Pharm, 2014 Oct;40(10):1340-9.
    PMID: 23875787 DOI: 10.3109/03639045.2013.819882
    This study evaluated the potential of stimuli-responsive bacterial cellulose-g-poly(acrylic acid-co-acrylamide) hydrogels as oral controlled-release drug delivery carriers. Hydrogels were synthesized by graft copolymerization of the monomers onto bacterial cellulose (BC) fibers by using a microwave irradiation technique. The hydrogels were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). FT-IR spectroscopy confirmed the grafting. XRD showed that the crystallinity of BC was reduced by grafting, whereas an increase in the thermal stability profile was observed in TGA. SEM showed that the hydrogels exhibited a highly porous morphology, which is suitable for drug loading. The hydrogels demonstrated a pH-responsive swelling behavior, with decreased swelling in acidic media, which increased with increase in pH of the media, reaching maximum swelling at pH 7. The release profile of the hydrogels was investigated in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The hydrogels showed lesser release in SGF than in SIF, suggesting that hydrogels may be suitable drug carriers for oral controlled release of drug delivery in the lower gastrointestinal tract.
    Matched MeSH terms: X-Ray Diffraction
  7. Prathumratana L, Kim R, Kim KW
    Environ Geochem Health, 2020 Mar;42(3):1033-1044.
    PMID: 30206754 DOI: 10.1007/s10653-018-0186-9
    Lead contamination in topsoil of the mining and smelting area of Mitrovica, Kosovo, was investigated for total concentrations and chemical fractions by sequential extraction analysis, mineralogical fractions by X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive X-ray spectrometer (SEM-EDX). The study revealed that all samples contained Pb exceeding USEPA standard of 400 mg kg-1. The highest total concentration of Pb (125,000 mg kg-1) was the soil from the former smelter. Sequential extraction results showed that the predominant form of Pb was associated with Fe-Mn oxide-bound fraction which ranged from 45.37 to 71.61% of total concentrations, while carbonate and silicate Pb-binding fractions were dominant when physical measurements (XRD and SEM-EDX) were applied. Application of Pb isotope ratios (206Pb/207Pb and 208Pb/206Pb), measured by inductively coupled plasma mass spectrometry, identified that Pb contamination is originated from similar anthropogenic source. The results reflected that the Pb contamination in the soil of this area is serious. In order to provide proper approaches on remediation and prevention of health impacts to the people in this area, a continuous monitoring and health risk assessment are recommended.
    Matched MeSH terms: X-Ray Diffraction
  8. Akinyemi SA, Gitari WM, Thobakgale R, Petrik LF, Nyakuma BB, Hower JC, et al.
    Environ Geochem Health, 2020 Sep;42(9):2771-2788.
    PMID: 31900823 DOI: 10.1007/s10653-019-00511-3
    The chemical reactions of dry-disposed ash dump, ingressed oxygen, carbon dioxide, and infiltrating rainwater affect mineralogical transformation, redistribution, and migration of chemical species. Composite samples of weathered coal fly ash taken at various depths and fresh coal fly ash were examined using organic petrographic, X-ray diffraction, X-ray fluorescence techniques, and successive extraction procedures. Results obtained show relative enrichment of glass, Al-Fe-oxides, calcite, and tridymite in the weathered CFA, but the fresh CFA is enriched in mullite, inertinite, maghemite, and ettringite. The enrichment of the weathered CFA in amorphous glass suggests higher reactivity when compared to fresh CFA. The evident depletion of soluble oxides in the weathered CFA is attributed to flushing of the soluble salts by percolating rainwater. Comparative enrichment of examined elements in water-soluble, exchangeable, reducible, and residual fractions of the weathered CFA is partly due to the slow release of adsorbed chemical species from the alumina-silicate matrix and diffusion from the deeper sections of the particles of coal fly ash. Sodium and potassium show enrichment in the oxidisable fraction of fresh CFA. The estimated mobility factor indicates mobility for Ca, Mg, Na, Se, Mo, and Sb and K, Sr, V, Cu, Cr, Se, and B in fresh and weathered CFAs, respectively.
    Matched MeSH terms: X-Ray Diffraction
  9. Mengting Z, Kurniawan TA, Fei S, Ouyang T, Othman MHD, Rezakazemi M, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113182.
    PMID: 31541840 DOI: 10.1016/j.envpol.2019.113182
    Methylene blue (MB) is a dye pollutant commonly present in textile wastewater. We investigate and critically evaluate the applicability of BaTiO3/GO composite for photodegradation of MB in synthetic wastewater under UV-vis irradiation. To enhance its performance, the BaTiO3/GO composite is varied based on the BaTiO3 weight. To compare and evaluate any changes in their morphologies and crystalline structures before and after treatment, BET (Brunauer-Emmett-Teller), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) tests are conducted, while the effects of reaction time, pH, dose of photocatalyst and initial MB concentration on its photodegradation by the composite are also investigated under identical conditions. The degradation pathways and removal mechanisms of MB by the BaTiO3/GO are elaborated. It is evident from this study that the BaTiO3/GO composite is promising for MB photodegradation through ·OH. Under optimized conditions (0.5 g/L of dose, pH 9.0, and 5 mg/L of MB concentration), the composite with 1:2 dose ratio of BaTiO3/GO has the highest MB degradation rate (95%) after 3 h of UV vis irradiation. However, its treated effluents still could not comply with the discharge standard limit of less than 0.2 mg/L imposed by national environmental legislation. This suggests that additional biological treatments are still required to deal with the remaining oxidation by-products of MB, still present in the wastewater samples such as 3,7-bis (dimethyl-amino)-10H-phenothiazine 5-oxide.
    Matched MeSH terms: X-Ray Diffraction
  10. Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR
    Environ Sci Technol, 2008 Mar 01;42(5):1499-504.
    PMID: 18441794
    The SO2 sorption capacity (SSC) of sorbents prepared from rice husk ash (RHA) with NaOH as additive was studied in a fixed-bed reactor. The sorbents were prepared using a water hydration method by slurrying RHA, CaO, and NaOH. Response surface methodology (RSM) based on four-variable central composite face centered design (CCFCD) was employed in the synthesis of the sorbents. The correlation between the sorbent SSC (as response) with four independent sorbent preparation variables, i.e. hydration period, RHA/CaO ratio, NaOH amount, and drying temperature, were presented as empirical mathematical models. Among all the variables studied, the amount of NaOH used was found to be the most significant variable affecting the SSC of the sorbents prepared. The SSC for sorbent prepared with the addition of NaOH was found to be significantly higher than sorbents prepared without NaOH. This is probably because NaOH is a deliquescent material, and its existence increases the amount of water collected on the surface of the sorbent, a condition required for sorbent-SO2 reaction to occur at low temperature. The effect of further treatment of RHA at 600 degrees C was also investigated. Although pretreated RHA sorbents demonstrated higher SSC as compared to untreated RHA sorbents, nevertheless, at optimum conditions, sorbents prepared from untreated RHA was found to be more favorable due to practical and economic concerns.
    Matched MeSH terms: X-Ray Diffraction
  11. Yusof MSM, Othman MHD, Mustafa A, Rahman MA, Jaafar J, Ismail AF
    Environ Sci Pollut Res Int, 2018 Aug;25(22):21644-21655.
    PMID: 29785602 DOI: 10.1007/s11356-018-2286-6
    Palm oil fuel ash (POFA) is an agricultural waste which was employed in this study to produce novel adsorptive ceramic hollow fibre membranes. The membranes were fabricated using phase inversion-based extrusion technique and sintered at 1150 °C. The membranes were then evaluated on their ability to adsorb cadmium (Cd(II)). These membranes were characterised using (nitrogen) N2 adsorption-desorption analysis, field emission scanning electron microscopy-energy-dispersive X-ray spectroscopy (FESEM-EDX) mapping, X-ray fluorescence (XRF), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses while adsorptivity activity was examined by batch adsorption studies. The adsorption test results show that the quantity of hollow fibre used and water pH level significantly affected the adsorption performance with the 3-fibre membrane yielding 96.4% Cd(II) removal in 30 min equilibrium time at pH 7. These results are comparable to those reported by other studies, and hence demonstrate a promising alternative of low-cost hollow fibre adsorbent membrane. Graphical abstract Figure of FESEM image of the hollow fibre, proposed mechanism and the graph of percentage removal of Cd(II) using POFA.
    Matched MeSH terms: X-Ray Diffraction
  12. Ong CB, Mohammad AW, Ng LY
    Environ Sci Pollut Res Int, 2019 Nov;26(33):33856-33869.
    PMID: 29943245 DOI: 10.1007/s11356-018-2557-2
    In this work, synergistic effect of solar photocatalysis integrated with adsorption process towards the degradation of Congo red (CR) was investigated via two different approaches using a photocatalytic membrane reactor. In the first approach, sequential treatments were conducted through the adsorption by graphene oxide (GO) and then followed by photocatalytic oxidation using Fe-doped ZnO nanocomposites (NCs). In the second approach, however, CR solution was treated by photocatalytic oxidation using Fe-doped ZnO/rGO NCs. These nanocomposites were synthesized by a sol-gel method. The NCs were characterized by X-ray diffraction (XRD), photoluminescence (PL), Fourier transmission infrared (FTIR), ultraviolet-visible (UV-vis) spectroscopy, and field emission scanning electron microscopy (FESEM). It was observed that Fe-doped ZnO could enhance the photoactivity of ZnO under solar light. When Fe-doped ZnO were decorated on GO sheets, however, this provided a surface enhancement for adsorption of organic pollutants. The photocatalytic performances using both approaches were evaluated based on the degradation of CR molecules in aqueous solution under solar irradiation. Nanofiltration (NF) performance in terms of CR residual removal from water and their fouling behavior during post-separation of photocatalysts was studied. Serious flux declined and thicker fouling layer on membrane were found in photocatalytic membrane reactor using Fe-doped ZnO/rGO NCs which could be attributed to the stronger π-π interaction between rGO and CR solution.
    Matched MeSH terms: X-Ray Diffraction
  13. Yusuff AS, Gbadamosi AO, Lala MA, Ngochindo JF
    Environ Sci Pollut Res Int, 2018 Jul;25(19):19143-19154.
    PMID: 29725925 DOI: 10.1007/s11356-018-2075-2
    In this study, adsorption behavior of anthill-eggshell composite (AEC) for the removal of hexavalent chromium (Cr6+) from aqueous solution was investigated. The raw AEC sample was thermally treated at 864 °C for 4 h and characterized using Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and X-ray fluorescence (XRF) techniques. The effects of adsorption process variables including initial Cr6+ concentration, contact time, and adsorbent dosage on the Cr6+ removal efficiency were investigated using central composite design (CCD) of response surface methodology (RSM). Equilibrium adsorption isotherm and kinetic were also studied. From the analysis of variance (ANOVA), the three variables proved to be significant and the optimum conditions for Cr6+ adsorption were obtained to be 150 mg/L initial Cr6+ concentration, 45.04-min contact time, and 0.5 g adsorbent dosage, which resulted in 86.21% of Cr6+ adsorbed. Equilibrium isotherm study showed that Freundlich model fitted well to the experimental data. The pseudo-second-order kinetic model appeared to better describe the experimental data. The study showed that mixed anthill-eggshell is a promising adsorbent for removing Cr6+ from aqueous solution.
    Matched MeSH terms: X-Ray Diffraction
  14. Muhamad N, Abdullah N, Rahman MA, Abas KH, Aziz AA, Othman MHD, et al.
    Environ Sci Pollut Res Int, 2018 Jul;25(19):19054-19064.
    PMID: 29721796 DOI: 10.1007/s11356-018-2074-3
    This work describes the development of supported zeolite-Y membranes, prepared using the hydrothermal method, for the removal of nickel from an aqueous solution. Alumina hollow fibers prepared using the phase inversion and sintering technique were used as an inert support. The supported zeolite-Y membranes were characterized using the field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and the water permeation and rejection test. The performance of the supported zeolite-Y membranes for heavy metal removal using batch adsorption and filtration test was studied using the atomic absorption spectroscopy (AAS). The adsorption study shows that the removal of nickel was pH-dependent but affected by the presence of α-alumina. The seeded zeolite-Y membrane gave the highest adsorption capacity which was 126.2 mg g-1. This enabled the membrane to remove 63% of nickel ions from the aqueous solution within 180 min of contact time. The adsorption mechanism of nickel onto the zeolite-Y membrane was best fitted to the Freundlich isotherm. The kinetic study concluded that the adsorption was best fitted to pseudo-second-order model with higher correlation coefficient (R2 = 0.9996). The filtration study proved that the zeolite-Y membrane enabled to reduce the concentration of heavy metal at parts per billion level.
    Matched MeSH terms: X-Ray Diffraction
  15. Jaffari ZH, Lam SM, Sin JC, Mohamed AR
    Environ Sci Pollut Res Int, 2019 Apr;26(10):10204-10218.
    PMID: 30758796 DOI: 10.1007/s11356-019-04503-9
    Visible light-responsive Pt-loaded coral-like BiFeO3 (Pt-BFO) nanocomposite at different Pt loadings was synthesized via a two-step hydrothermal synthesis method. The as-synthesized photocatalyst was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and magnetic hysteresis loop (M-H loop) analyses. The FESEM images revealed that Pt nanoparticles were evenly distributed on the coral-like BFO. The UV-vis DRS results indicated that the addition of Pt dopant modified the optical properties of the BFO. The as-synthesized Pt-BFO nanocomposite was effectively applied for the photodegradation of malachite green (MG) dye under visible light irradiation. Specifically, 0.5 wt% Pt-BFO nanocomposite presented boosted photocatalytic performance than those of the pure BFO and commercial TiO2. Such a remarkably improved photoactivity could be mainly attributed to the formation of good interface between Pt and BFO, which not only boosted the separation efficiency of charge carriers but also possessed great redox ability for significant photocatalytic reaction. Moreover, the strong magnetic property of the Pt-BFO nanocomposite was helpful in the particle separation along with its great recyclability. The radical scavenger test indicated that hole (h+), hydroxyl (·OH) radical, and hydrogen peroxide (H2O2) were the main oxidative species for the Pt-BFO photodegradation of MG. Finally, the Pt-BFO nanocomposite was revealed high antibacterial activity towards Bacillus cereus (B. cereus) and Escherichia coli (E. coli) microorganisms, highlighting its potential photocatalytic and antibacterial properties at different industrial and biomedical applications.
    Matched MeSH terms: X-Ray Diffraction
  16. Tehubijuluw H, Subagyo R, Yulita MF, Nugraha RE, Kusumawati Y, Bahruji H, et al.
    PMID: 33712959 DOI: 10.1007/s11356-021-13285-y
    Red mud as industrial waste from bauxite was utilized as a precursor for the synthesis of mesoporous ZSM-5. A high concentration of iron oxide in red mud was successfully removed using alkali fusion treatment. Mesoporous ZSM-5 was synthesized using cetyltrimethylammonium bromide (CTABr) as a template via dual-hydrothermal method, and the effect of crystallization time was investigated towards the formation of mesopores. Characterization using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) indicated the formation of cubic crystallite ZSM-5 with high surface area and mesopore volume within 6 h of crystallization. Increasing the crystallization time revealed the evolution of highly crystalline ZSM-5; however, the surface area and mesoporosity were significantly reduced. The effect of mesoporosity was investigated on the adsorption of methylene blue (MB). Kinetic and thermodynamic analysis of MB adsorption on mesoporous ZSM-5 was carried out at a variation of adsorption parameters such as the concentration of MB solution, the temperatures of solution, and the amount of adsorbent. Finally, methanol, 1-butanol, acetone, hydrochloric acid (HCl), and acetonitrile were used as desorbing agents to investigate the reusability and stability of mesoporous ZSM-5 as an adsorbent for MB removal.
    Matched MeSH terms: X-Ray Diffraction
  17. Nordin N, Ho LN, Ong SA, Ibrahim AH, Wong YS, Lee SL, et al.
    Environ Sci Pollut Res Int, 2017 Oct;24(29):23331-23340.
    PMID: 28840563 DOI: 10.1007/s11356-017-9964-7
    A novel sustainable hybrid system of photocatalytic fuel cell (PFC) and Fenton process is an alternative wastewater treatment technology for energy-saving and efficient treatment of organic pollutants. The electrons generated from PFC photoanode are used to produce H2O2 in the Fenton reactor and react with the in situ generation of Fe2+ from sacrificial iron for hydroxyl radical formation. In this study, the effect of different initial Amaranth dye concentrations on degradation and electricity generation were investigated. ZnO/Zn photoanode was prepared by anodizing method and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Results revealed that the maximum power density (9.53 mW/m2) and current density (0.0178 mA/m2) were achieved at 10 mg/L of Amaranth. The correlation between dye degradation, voltage output, and kinetic photocatalytic degradation were also investigated and discussed.
    Matched MeSH terms: X-Ray Diffraction
  18. Rezaei Ardani M, Azwina F, Wern TY, Ramli SF, Rezan SA, Aziz HA, et al.
    Environ Sci Pollut Res Int, 2021 Apr;28(14):17587-17601.
    PMID: 33403630 DOI: 10.1007/s11356-020-12097-w
    This study investigated the coagulation performance of titanium tetrachloride (TiCl4) for leachate treatment and preparation of titanium oxide (TiO2) from generated sludge through calcination process at different temperatures and times. TiCl4 with chitosan as coagulant aid employed to perform coagulation process on Alor Ponhsu Landfill leachate. Further calcination process was done to synthesize TiO2 from produced sludge for photocatalytic applications. The studied factors included pH, TiCl4 dosage, and chitosan dosage. The results indicated that maximum reduction in suspended solids was 92.02% at pH 4, 1200 mg/L TiCl4, and 250 mg/L chitosan addition, and maximum reduction in chemical oxygen demand was 71.92% at experimental condition of 1200 mg/L TiCl4 and 500 mg/L chitosan with pH 10. The maximum and minimum band gaps of prepared TiO2 achieved at 3.35 eV and 2.75 eV, respectively. Morphology and phase analysis of prepared TiO2 characterized using scanning electron microscope (SEM) and X-ray diffraction (XRD). The XRD spectrums showed the anatase phase at lower calcination temperature and the rutile phase at elevated temperature. The photocatalysis activity of produced TiO2 investigated under UV irradiation and showed almost fast degradation similar to commercial TiO2. The results indicated that TiO2 powder was successfully prepared from generated sludge from TiCl4 coagulation for photocatalytic applications.
    Matched MeSH terms: X-Ray Diffraction
  19. Goh CF, Boyd BJ, Craig DQM, Lane ME
    Expert Opin Drug Deliv, 2020 09;17(9):1321-1334.
    PMID: 32634033 DOI: 10.1080/17425247.2020.1792440
    BACKGROUND: Drug crystallization following application of transdermal and topical formulations may potentially compromise the delivery of drugs to the skin. This phenomenon was found to be limited to the superficial layers of the stratum corneum (~7 µm) in our recent reports and tape stripping of the skin samples was necessary. It remains a significant challenge to profile drug crystallization in situ without damaging the skin samples.

    METHODS: This work reports the application of an X-ray microbeam via synchrotron SAXS/WAXS analysis to monitor drug crystallization in the skin, especially in the deeper skin layers. Confocal Raman spectroscopy (CRS) was employed to examine drug distribution in the skin to complement the detection of drug crystallization using SAXS/WAXS analysis.

    RESULTS: Following application of saturated drug solutions (ibuprofen, diclofenac acid, and salts), CRS depth profiles confirmed that the drugs generally were delivered to a depth of ~15 - 20 µm in the skin. This was compared with the WAXS profiles that measured drug crystal diffraction at a depth of up to ~25 µm of the skin.

    CONCLUSION: This study demonstrates the potential of synchrotron SAXS/WAXS analysis for profiling of drug crystallization in situ in the deeper skin layers without pre-treatment for the skin samples. [Figure: see text].

    Matched MeSH terms: X-Ray Diffraction
  20. Mohmad AR, Hamzah AA, Yang J, Wang Y, Bozkurt I, Shin HS, et al.
    Faraday Discuss, 2021 Apr 01;227:332-340.
    PMID: 33523053 DOI: 10.1039/c9fd00132h
    In this work, we report the synthesis and characterization of mixed phase Nb1+xS2 nanoflakes prepared by chemical vapor deposition. The as-grown samples show a high density of flakes (thickness ∼50 nm) that form a continuous film. Raman and X-ray diffraction data show that the samples consist of both 2H and 3R phases, with the 2H phase containing a high concentration of Nb interstitials. These Nb interstitials sit in between the NbS2 layers to form Nb1+xS2. Cross-sectional Energy Dispersive Spectroscopy analysis with transmission electron microscopy suggests that the 2H Nb1+xS2 region is found in thinner flakes, while 3R NbS2 is observed in thicker regions of the films. The evolution of the phase from 2H Nb1+xS2 to 3R NbS2 may be attributed to the change of the growth environment from Nb-rich at the start of the growth to sulfur-rich at the latter stage. It was also found that the incorporation of Nb interstitials is highly dependent on the temperature of the NbCl5 precursor and the position of the substrate in the furnace. Samples grown at high NbCl5 temperature and with substrate located closer to the NbCl5 source show higher incorporation of Nb interstitials. Electrical measurements show linear I-V characteristics, indicating the metallic nature of the Nb1+xS2 film with relatively low resistivity of 4.1 × 10-3Ω cm.
    Matched MeSH terms: X-Ray Diffraction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links