Displaying publications 61 - 80 of 101 in total

Abstract:
Sort:
  1. Liew AC, Peh KK, Tan BS, Zhao W, Tangiisuran B
    Support Care Cancer, 2019 Dec;27(12):4515-4524.
    PMID: 30911917 DOI: 10.1007/s00520-019-04724-1
    PURPOSE: This observational study aimed to compare the outcome and health-related quality of life (HRQOL) amongst breast cancer patients using Chinese herbal medicine (CHM) and those not using CHM during chemotherapy.

    METHODS: A prospective, non-randomised longitudinal study was conducted in two government integrated hospitals over an 8-month period. Early-stage breast cancer patients who were (1) either already using complementary and alternative medicine (CAM) or not and (2) who were on a regime of 5-fluorouracil, epirubicin, and cyclophosphamide were included in the study. Patients who agreed to receive CHM were assigned to receive individualised CHM prescriptions deemed suitable for the individual at a particular time. Those who were not willing to take Chinese herbal medicines (CHM) were assigned to the non-CHM control group. Blood profile and chemotherapy-induced AE were recorded whilst HRQOL assessment was done using the EORTC QLQ-C30 questionnaire on first, third, and sixth cycles.

    RESULTS: Forty-seven patients [32 female vs. 1 male, p = 0.31; mean year of age: 52.2(SD = 7.6), p = 0.28)}] were recruited during the study period. Demographics of both groups were comparable. Fifty percent of respondents reported using some kind of CAM before chemotherapy. Diet supplements (40.6%) were the most common CAM used by the respondents. The study showed that patients using CHM had significantly less fatigue (p = 0.012), nausea (p = 0.04), and anorexia (p = 0.005) during chemotherapy. There were no significant differences in patients' HRQOL (p = 0.79). There were no AEs reported during the study.

    CONCLUSION: The use of CHM as an adjunct treatment with conventional chemotherapy have been shown to reduce fatigue, nausea, and anorexia in breast cancer patients but did not reduce chemotherapy-associated hematologic toxicity. The sample size of this study was not powered to assess the significance of HRQOL between two groups of patients.

    Matched MeSH terms: Fluorouracil/administration & dosage; Fluorouracil/adverse effects
  2. Guerra GR, Kong JC, Millen RM, Read M, Liu DS, Roth S, et al.
    Cell Death Dis, 2021 Oct 18;12(11):959.
    PMID: 34663790 DOI: 10.1038/s41419-021-04141-5
    Anal cancer is a rare disease that has doubled in incidence over the last four decades. Current treatment and survival of patients with this disease has not changed substantially over this period of time, due, in part, to a paucity of preclinical models to assess new therapeutic options. To address this hiatus, we set-out to establish, validate and characterise a panel of human anal squamous cell carcinoma (ASCC) cell lines by employing an explant technique using fresh human ASCC tumour tissue. The panel of five human ASCC cell lines were validated to confirm their origin, squamous features and tumourigenicity, followed by molecular and genomic (whole-exome sequencing) characterisation. This panel recapitulates the genetic and molecular characteristics previously described in ASCC including phosphoinositide-3-kinase (PI3K) mutations in three of the human papillomavirus (HPV) positive lines and TP53 mutations in the HPV negative line. The cell lines demonstrate the ability to form tumouroids and retain their tumourigenic potential upon xenotransplantation, with varied inducible expression of major histocompatibility complex class I (MHC class I) and Programmed cell death ligand 1 (PD-L1). We observed differential responses to standard chemotherapy, radiotherapy and a PI3K specific molecular targeted agent in vitro, which correlated with the clinical response of the patient tumours from which they were derived. We anticipate this novel panel of human ASCC cell lines will form a valuable resource for future studies into the biology and therapeutics of this rare disease.
    Matched MeSH terms: Fluorouracil/pharmacology; Fluorouracil/therapeutic use
  3. Goh TB, Koh RY, Mordi MN, Mansor SM
    Asian Pac J Cancer Prev, 2014;15(14):5659-65.
    PMID: 25081682
    BACKGROUND: To investigate the antioxidant value and anticancer functions of mitragynine (MTG) and its silane-reduced analogues (SRM) in vitro.

    MATERIALS AND METHODS: MTG and SRM was analyzed for their reducing power ability, ABTS radical inhibition and 1,1-diphenyl-2-picryl hydrazylfree radicals scavenging activities. Furthermore, the antiproliferation efficacy was evaluated using MTT assay on K 562 and HCT116 cancer cell lines versus NIH/3T3 and CCD18-Co normal cell lines respectively.

    RESULTS: SRM and MTG demonstrate moderate antioxidant value with ABTS assay (Trolox equivalent antioxidant capacity (TEAC): 2.25±0.02 mmol trolox / mmol and 1.96±0.04 mmol trolox / mmol respectively) and DPPH (IC50=3.75±0.04 mg/mL and IC50=2.28±0.02 mg/mL respectively). Both MTG and SRM demonstrate equal potency (IC50=25.20±1.53 and IC50= 22.19±1.06 respectively) towards K 562 cell lines, comparable to control, betulinic acid (BA) (IC5024.40±1.26). Both compounds showed concentration-dependent cytototoxicity effects and exert profound antiproliferative efficacy at concentration > 100 μM towards HCT 116 and K 562 cancer cell lines, comparable to those of BA and 5-FU (5-Fluorouracil). Furthermore, both MTG and SRM exhibit high selectivity towards HCT 116 cell lines with selective indexes of 3.14 and 2.93 respectively compared to 5-FU (SI=0.60).

    CONCLUSIONS: These findings revealed that the medicinal and nutitional values of mitragynine obtained from ketum leaves that growth in tropical forest of Southeast Asia and its analogues does not limited to analgesic properties but could be promising antioxidant and anticancer or chemopreventive compounds.

    Matched MeSH terms: Fluorouracil/pharmacology
  4. El-Faham A, Farooq M, Khattab SN, Abutaha N, Wadaan MA, Ghabbour HA, et al.
    Molecules, 2015;20(8):14638-55.
    PMID: 26287132 DOI: 10.3390/molecules200814638
    Eight novel N'-(2-oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazone derivatives 4a-h were synthesized and fully characterized by IR, NMR ((1)H-NMR and (13)C-NMR), elemental analysis, and X-ray crystallography. The cyto-toxicity and in vitro anti-cancer evaluation of the prepared compounds have been assessed against two different human tumour cell lines including human liver (HepG2) and leukaemia (Jurkat), as well as in normal cell lines derived from human embryonic kidney (HEK293) using MTT assay. The compounds 3e, 3f, 4a, 4c, and 4e revealed promising anti-cancer activities in tested human tumour cells lines (IC50 values between 3 and 7 μM) as compared to the known anti-cancer drug 5-Fluorouracil (IC50 32-50 μM). Among the tested compounds, 4a showed specificity against leukaemia (Jurkat) cells, with an IC50 value of 3.14 μM, but this compound was inactive in liver cancer and normal cell lines.
    Matched MeSH terms: Fluorouracil/pharmacology
  5. Rouhollahi E, Moghadamtousi SZ, Al-Henhena N, Kunasegaran T, Hasanpourghadi M, Looi CY, et al.
    Drug Des Devel Ther, 2015;9:3911-22.
    PMID: 26251570 DOI: 10.2147/DDDT.S84560
    Curcuma purpurascens BI. rhizome, a member of the Zingiberaceae family, is a popular spice in Indonesia that is traditionally used in assorted remedies. Dichloromethane extract of C. purpurascens BI. rhizome (DECPR) has previously been shown to have an apoptosis-inducing effect on colon cancer cells. In the present study, we examined the potential of DECPR to prevent colon cancer development in rats treated with azoxymethane (AOM) (15 mg/kg) by determining the percentage inhibition in incidence of aberrant crypt foci (ACF). Starting from the day immediately after AOM treatment, three groups of rats were orally administered once a day for 2 months either 10% Tween 20 (5 mL/kg, cancer control), DECPR (250 mg/kg, low dose), or DECPR (500 mg/kg, high dose). Meanwhile, the control group was intraperitoneally injected with 5-fluorouracil (35 mg/kg) for 5 consecutive days. After euthanizing the rats, the number of ACF was enumerated in colon tissues. Bax, Bcl-2, and proliferating cell nuclear antigen (PCNA) protein expressions were examined using immunohistochemical and Western blot analyses. Antioxidant enzymatic activity was measured in colon tissue homogenates and associated with malondialdehyde level. The percentage inhibition of ACF was 56.04% and 68.68% in the low- and high-dose DECPR-treated groups, respectively. The ACF inhibition in the treatment control group was 74.17%. Results revealed that DECPR exposure at both doses significantly decreased AOM-induced ACF formation, which was accompanied by reduced expression of PCNA. Upregulation of Bax and downregulation of Bcl-2 suggested the involvement of apoptosis in the chemopreventive effect of DECPR. In addition, the oxidative stress resulting from AOM treatment was significantly attenuated after administration of DECPR, which was shown by the elevated antioxidant enzymatic activity and reduced malondialdehyde level. Taken together, the present data clearly indicate that DECPR significantly inhibits ACF formation in AOM-treated rats and may offer protection against colon cancer development.
    Matched MeSH terms: Fluorouracil/pharmacology
  6. Biswal BM, Sain AH, Othman NH, Baba A
    Trop Gastroenterol, 2002 Jul-Sep;23(3):134-7.
    PMID: 12693156
    Colorectal cancer is one of the most common malignancies in the West, but in Asia the incidence is low. However in Malaysia, colorectal cancer is increasing with a reported figure of 15% of all cancer cases. Adjuvant chemo and radiotherapy are now more frequently used in such patients. The present retrospective analysis was performed to document the effect of such therapy among patients with colorectal cancer in Malaysia.
    Matched MeSH terms: Fluorouracil/administration & dosage
  7. Narasimha K
    Gan To Kagaku Ryoho, 1992 Jul;19(8 Suppl):1220-3.
    PMID: 1514835
    Matched MeSH terms: Fluorouracil/administration & dosage
  8. Joishy SK, Bennett JM, Balasegaram M, MacIntyre JM, Falkson G, Moertel C, et al.
    Cancer, 1982 Sep 15;50(6):1065-9.
    PMID: 6286085
    Twenty Malaysian patients with unresectable primary liver cell cancer were prospectively studied at the General Hospital, Kuala Lampur, and were compared for clinical features with an equal number each of African and American patients being studied by the Eastern Cooperative Oncology Group. The patients received intravenous 5-FU and oral MeCCNU which was used for the first time in an Asian country. Most of the Malaysian patients were Chinese, belonged to younger age groups, and presented with massive hepatomegaly, jaundice, and fever. Toxicity to MeCCNU invariably occurred in the form of leukopenia or thrombocytopenia, but none life threatening. Partial response was seen in 20% of Malaysians as compared to 16% in Americans and none in Africans. Malaysians achieved a median survival of 16 weeks compared to 28 weeks in Americans and only eight weeks in Africans. Malaysian Chinese patients were all HBc Ab + ve. Other factors which may have played an etiologic role in the induction of primary liver cancer included alcohol, Chinese herbal medicines, aflatoxin and habitual use of medicated rubbing oils.
    Matched MeSH terms: Fluorouracil/therapeutic use*
  9. Hooi ST, Hooi SH
    Med J Malaysia, 2003 Oct;58(4):565-78.
    PMID: 15190633
    A retrospective study was conducted at the Hospital Sultanah Aminah Johor Bahru to determine the outcome of trabeculectomy surgeries over a period of 4 years. One hundred and two eyes were followed up to a maximum of 63 months (mean 34.2 months). The 2-year survival rates for plain trabeculectomies, 5-Fluorouracil augmented trabeculectomies and Mitomycin-C augmented trabeculectomies were 52.9%, 27.3% and 60.5% respectively. The commonest complications noted were cataract formation (25%) and hyphaema (11%). Mitomycin-C induced complications were rarely seen. At last follow-up, 54% of eyes had intraocular pressures below 21 mmHg without medication, while 34% of eyes had intraocular pressures below 21 mmHg with medication. Vitreous at the trabeculectomy site was a statistically significant predictor of operative failure.
    Matched MeSH terms: Fluorouracil/administration & dosage
  10. Arul M, Roslani AC, Cheah SH
    In Vitro Cell Dev Biol Anim, 2017 May;53(5):435-447.
    PMID: 28120247 DOI: 10.1007/s11626-016-0126-x
    Tumor heterogeneity may give rise to differential responses to chemotherapy drugs. Therefore, unraveling tumor heterogeneity has an implication for biomarker discovery and cancer therapeutics. To test this phenomenon, we investigated the differential responses of three secondary colorectal cancer cell lines of different origins (HCT116, HT29, and SW620 cells) and four novel primary cell lines obtained from different colorectal cancer patients to 5-fluorouracil (5-FU) and oxaliplatin (L-OHP) and explored the differences in gene expression among the primary cell lines in response to exposure to cytotoxic drugs. Cells were exposed to different doses of 5-FU and L-OHP separately or in combinations of equitoxic drug or equimolar drug ratios (median effect of Chou-Talalay principle). Cell viability was assessed using MTT assay and the respective IC50values were determined. Changes in gene expression in primary cell lines after exposure to the same drug doses were compared using real-time PCR array. The sensitivities (IC50) of different cell lines, both secondary and primary, to 5-FU and L-OHP were significantly different, whether in monotherapy or combined treatment. Primary cell lines needed higher doses to reach IC50. There were variations in gene expression among the primary cell lines of different chemosensitivities to the challenge of the same combined dose of 5-FU and L-OHP. The results confirm the heterogeneous nature of colorectal cancer cells from different patient tumors. Studies using primary cancer cells established from patient's tumors rather than secondary cell lines will more closely reflect the actual character of the disease.
    Matched MeSH terms: Fluorouracil/administration & dosage
  11. Rajinikanth PS, Chellian J
    Int J Nanomedicine, 2016 Oct 5;11:5067-5077.
    PMID: 27785014
    The aim of this study was to develop a nanostructured lipid carrier (NLC)-based hydrogel and study its potential for the topical delivery of 5-fluorouracil (5-FU). Precirol(®) ATO 5 (glyceryl palmitostearate) and Labrasol(®) were selected as the solid and liquid lipid phases, respectively. Poloxamer 188 and Solutol(®) HS15 (polyoxyl-15-hydroxystearate) were selected as surfactants. The developed lipid formulations were dispersed in 1% Carbopol(®) 934 (poly[acrylic acid]) gel medium in order to maintain the topical application consistency. The average size, zeta potential, and polydispersity index for the 5-FU-NLC were found to be 208.32±8.21 nm, -21.82±0.40 mV, and 0.352±0.060, respectively. Transmission electron microscopy study revealed that 5-FU-NLC was <200 nm in size, with a spherical shape. In vitro drug permeation studies showed a release pattern with initial burst followed by sustained release, and the rate of 5-FU permeation was significantly improved for 5-FU-NLC gel (10.27±1.82 μg/cm(2)/h) as compared with plain 5-FU gel (2.85±1.12 μg/cm(2)/h). Further, skin retention studies showed a significant retention of 5-FU from the NLC gel (91.256±4.56 μg/cm(2)) as compared with that from the 5-FU plain gel (12.23±3.86 μg/cm(2)) in the rat skin. Skin irritation was also significantly reduced with 5-FU-NLC gel as compared with 5-FU plain gel. These results show that the prepared 5-FU-loaded NLC has high potential to improve the penetration of 5-FU through the stratum corneum, with enormous retention and with minimal skin irritation, which is the prerequisite for topically applied formulations.
    Matched MeSH terms: Fluorouracil/administration & dosage*
  12. Prasad U, Wahid MI, Jalaludin MA, Abdullah BJ, Paramsothy M, Abdul-Kareem S
    Int J Radiat Oncol Biol Phys, 2002 Jul 1;53(3):648-55.
    PMID: 12062608
    To assess the long-term survival of patients with nasopharyngeal carcinoma (NPC) who were treated with conventional radical radiotherapy (RT) followed by adjuvant chemotherapy.
    Matched MeSH terms: Fluorouracil/administration & dosage
  13. Liem LK, Choong LH, Woo KT
    Clin Biochem, 2002 May;35(3):181-7.
    PMID: 12074825
    OBJECTIVE: Dihydropyrimidine dehydrogenase (DPD) catalyzes the degradation of thymine, uracil, and the chemotherapeutic drug 5-Fluorouracil. In general reverse-phase high pressure liquid chromatography is the standard method for separating 5-[2-(14)C]Fluorouracil and 5-[2-(14)C]Fluoro-5,6-dihydrouracil. However, the use of 100% aqueous solution (as HPLC mobile phase) may collapse the C-18 bonded phase and result in a retention time shift. The aim of this study is to develop a rapid, reproducible, sensitive method for screening partial DPD deficiency in healthy volunteers.

    DESIGN AND METHODS: The activity of DPD was measured using 5-[2- (14)C]Fluorouracil (5-[2-(14)C]FUra) followed by separation of substrate and product 5-[2-(14)C]FUraH(2) with a 15 x 4.6 mm I.D., 5 microm particle size (d(p)) porous graphitic carbon (PGC) column (Hypercarb(R)) and HPLC with online detection of the radioactivity. This was standardized using the protein concentration of the cytosol (NanoOrange(R) Protein Quantitation).

    RESULTS: Complete baseline separation of 5-[2-(14)C]Fluorouracil (5-[2-(14)C]FUra) and 5-[2-(14)C]Fluoro-5,6-dihydrouracil (5-[2-(14)C]FUraH(2)) was achieved using a porous graphitic carbon (PGC) column. The detection limit for 5-[2-(14)C]FUraH(2) was 0.4 pmol.

    CONCLUSIONS: By using linear gradient separation (0.1% Trifluoroacetic acid [TFA] in water to 100% Methanol) protocols in concert with PGC columns (Hypercarb(R)), we have demonstrated that a PGC column has a distinct advantage over C-18 reverse phase columns in terms of column stability (pH 1-14). This method provides an improvement on the specific assay for DPD enzyme activity. It is rapid, reproducible and sensitive and can be used for routine screening for healthy and cancer patients for partial and profound DPD deficiency before treatment with 5- FUra.

    Matched MeSH terms: Fluorouracil/metabolism
  14. Nasir SN, Abu N, Ab Mutalib NS, Ishak M, Sagap I, Mazlan L, et al.
    Clin Transl Oncol, 2018 Jun;20(6):775-784.
    PMID: 29098557 DOI: 10.1007/s12094-017-1788-x
    PURPOSE: Colorectal cancer (CRC) is one of the most widely diagnosed cancers in men and women worldwide. With the advancement of next-generation sequencing technologies, many studies have highlighted the involvement of long non-coding RNAs (lncRNAs) in cancer development. Growing evidence demonstrates that lncRNAs play crucial roles in regulating gene and protein expression and are involved in various cancers, including CRC. The field of lncRNAs is still relatively new and a lot of novel lncRNAs have been discovered, but their functional roles are yet to be elucidated. This study aims to characterize the expression and functional roles of a novel lncRNA in CRC.

    METHOD: Several methods were employed to assess the function of LOC285629 such as gene silencing, qPCR, proliferation assay, BrdU assay, transwell migration assay, ELISA and protein profiler.

    RESULTS: Via in silico analyses, we identified significant downregulation of LOC285629, a novel lncRNA, across CRC stages. LOC285629 expression was significantly downregulated in advanced stages (Stage III and IV) compared to Stage I (Kruskal-Wallis Test; p = 0.0093). Further in-house validation showed that the expression of LOC285629 was upregulated in colorectal cancer tissues and cell lines compared to the normal counterparts, but was downregulated in advanced stages. By targeting LOC285629, the viability, proliferative abilities, invasiveness and resistance of colorectal cancer cells towards 5-fluorouracil were reduced. It was also discovered that LOC285629 may regulate cancer progression by targeting several different proteins, namely survivin, BCL-xL, progranulin, PDGF-AA, enolase 2 and p70S6 K.

    CONCLUSION: Our findings suggest that LOC285629 may be further developed as a potential therapeutic target for CRC treatment.

    Matched MeSH terms: Fluorouracil/pharmacology
  15. Ebadi M, Saifullah B, Buskaran K, Hussein MZ, Fakurazi S
    Int J Nanomedicine, 2019;14:6661-6678.
    PMID: 31695362 DOI: 10.2147/IJN.S214923
    BACKGROUND: Cancer treatments are being continually developed. Increasingly more effective and better-targeted treatments are available. As treatment has developed, the outcomes have improved.

    PURPOSE: In this work, polyethylene glycol (PEG), layered double hydroxide (LDH) and 5-fluorouracil (5-FU) were used as a stabilizing agent, a carrier and an anticancer active agent, respectively.

    CHARACTERIZATION AND METHODS: Magnetite nanoparticles (Fe3O4) coated with polyethylene glycol (PEG) and co-coated with 5-fluorouracil/Mg/Al- or Zn/Al-layered double hydroxide were synthesized by co-precipitation technique. Structural, magnetic properties, particle shape, particle size and drug loading percentage of the magnetic nanoparticles were investigated by XRD, TGA, FTIR, DLS, FESEM, TEM, VSM, UV-vis spectroscopy and HPLC techniques.

    RESULTS: XRD, TGA and FTIR studies confirmed the formation of Fe3O4 phase and the presence of iron oxide nanoparticles, polyethylene glycol, LDH and the drug for all the synthesized samples. The size of the nanoparticles co-coated with Mg/Al-LDH is about 27 nm compared to 40 nm when they were co-coated with Zn/Al-LDH, with both showings near uniform spherical shape. The iron oxide nanoparticles retain their superparamagnetic property when they were coated with polyethylene glycol, polyethylene glycol co-coated with Mg/Al-LDH and polyethylene glycol co-coated with Zn/Al-LDH with magnetic saturation value of 56, 40 and 27 emu/g, respectively. The cytotoxicity study reveals that the anticancer nanodelivery system has better anticancer activity than the free drug, 5-FU against liver cancer HepG2 cells and at the same time, it was found to be less toxic to the normal fibroblast 3T3 cells.

    CONCLUSION: These are unique core-shell nanoparticles synthesized with the presence of multiple functionalities are hoped can be used as a multifunctional nanocarrier with the capability of targeted delivery using an external magnetic field and can also be exploited as hypothermia for cancer cells in addition to the chemotherapy property.

    Matched MeSH terms: Fluorouracil/pharmacology*
  16. Gan BK, Rullah K, Yong CY, Ho KL, Omar AR, Alitheen NB, et al.
    Sci Rep, 2020 Oct 08;10(1):16867.
    PMID: 33033330 DOI: 10.1038/s41598-020-73967-4
    Chemotherapy is widely used in cancer treatments. However, non-specific distribution of chemotherapeutic agents to healthy tissues and normal cells in the human body always leads to adverse side effects and disappointing therapeutic outcomes. Therefore, the main aim of this study was to develop a targeted drug delivery system based on the hepatitis B virus-like nanoparticle (VLNP) for specific delivery of 5-fluorouracil-1-acetic acid (5-FA) to cancer cells expressing epithelial growth factor receptor (EGFR). 5-FA was synthesized from 5-fluorouracil (5-FU), and it was found to be less toxic than the latter in cancer cells expressing different levels of EGFR. The cytotoxicity of 5-FA increased significantly after being conjugated on the VLNP. A cell penetrating peptide (CPP) of EGFR was displayed on the VLNP via the nanoglue concept, for targeted delivery of 5-FA to A431, HT29 and HeLa cells. The results showed that the VLNP displaying the CPP and harboring 5-FA internalized the cancer cells and killed them in an EGFR-dependent manner. This study demonstrated that the VLNP can be used to deliver chemically modified 5-FU derivatives to cancer cells overexpressing EGFR, expanding the applications of the VLNP in targeted delivery of chemotherapeutic agents to cancer cells overexpressing this transmembrane receptor.
    Matched MeSH terms: Fluorouracil/administration & dosage*
  17. Cheng AL, Li J, Vaid AK, Ma BB, Teh C, Ahn JB, et al.
    Clin Colorectal Cancer, 2014 Sep;13(3):145-55.
    PMID: 25209093 DOI: 10.1016/j.clcc.2014.06.004
    Colorectal cancer (CRC) is among the most common cancers worldwide, but marked epidemiological differences exist between Asian and non-Asian populations. Hence, a consensus meeting was held in Hong Kong in December 2012 to develop Asia-specific guidelines for the management of metastatic CRC (mCRC). A multidisciplinary expert panel, consisting of 23 participants from 10 Asian and 2 European countries, discussed current guidelines for colon or rectal cancer and developed recommendations for adapting these guidelines to Asian clinical practice. Participants agreed that mCRC management in Asia largely follows international guidelines, but they proposed a number of recommendations based on regional 'real-world' experience. In general, participants agreed that 5-fluorouracil (5-FU) infusion regimens in doublets can be substituted with UFT (capecitabine, tegafur-uracil) and S1 (tegafur, 5-chloro-2,4-dihydroxypyridine and oxonic acid), and that the monoclonal antibodies cetuximab and panitumumab are recommended for KRAS wild type tumors. For KRAS mutant tumors, bevacizumab is the preferred biological therapy. FOLFOX (folinic acid, 5-FU, and oxaliplatin) is preferred for initial therapy in Asian patients. The management of mCRC is evolving, and it must be emphasized that the recommendations presented here reflect current treatment practices and thus might change as more data become available.
    Matched MeSH terms: Fluorouracil/administration & dosage; Fluorouracil/analogs & derivatives; Fluorouracil/therapeutic use
  18. Le CF, Gudimella R, Razali R, Manikam R, Sekaran SD
    Sci Rep, 2016 05 26;6:26828.
    PMID: 27225022 DOI: 10.1038/srep26828
    In our previous studies, we generated a short 13 amino acid antimicrobial peptide (AMP), DM3, showing potent antipneumococcal activity in vitro and in vivo. Here we analyse the underlying mechanisms of action using Next-Generation transcriptome sequencing of penicillin (PEN)-resistant and PEN-susceptible pneumococci treated with DM3, PEN, and combination of DM3 and PEN (DM3PEN). DM3 induced differential expression in cell wall and cell membrane structural and transmembrane processes. Notably, DM3 altered the expression of competence-induction pathways by upregulating CelA, CelB, and CglA while downregulating Ccs16, ComF, and Ccs4 proteins. Capsular polysaccharide subunits were downregulated in DM3-treated cells, however, it was upregulated in PEN- and DM3PEN-treated groups. Additionally, DM3 altered the amino acids biosynthesis pathways, particularly targeting ribosomal rRNA subunits. Downregulation of cationic AMPs resistance pathway suggests that DM3 treatment could autoenhance pneumococci susceptibility to DM3. Gene enrichment analysis showed that unlike PEN and DM3PEN, DM3 treatment exerted no effect on DNA-binding RNA polymerase activity but observed downregulation of RpoD and RNA polymerase sigma factor. In contrast to DM3, DM3PEN altered the regulation of multiple purine/pyrimidine biosynthesis and metabolic pathways. Future studies based on in vitro experiments are proposed to investigate the key pathways leading to pneumococcal cell death caused by DM3.
    Matched MeSH terms: Fluorouracil
  19. Xu-hui Zhang, Lei Liang, Xiao-yan Wang, Li Zhang, Yan-xin Zheng, Hong-zhu Deng, et al.
    Sains Malaysiana, 2016;45:109-113.
    We investigated the antitumor effects of the combination of matrine-a purified alkaloid extracted from Sophora flavescence-and 5-fluorouracil (5-FU) on SW480 cells. This combination inhibited the growth of SW480 cells in a synergistic or additive manner by disrupting their progression through the cell cycle. Exposure of SW480 cells to matrine and 5-FU was followed by an increased rate of expression for caspase-3, caspase-9 and poly-ADP ribose polymerase (PARP) and inhibited the subcutaneous transplantation of SW480 tumors into Balb/c nude mice. Histopathological analysis showed that this effect was most pronounced in the spleens of treated animals. Typical cytotoxic effects observed in 5-FU-treated mice included fibrosis and lymphopenia, whereas in mice treated with 5-FU combined with matrine, the spleen ultrastructure remained intact. These findings indicate that matrine may enhance the therapeutic effectiveness of 5-FU in SW480 tumors by enhancing apoptosis and overcome the threat to immunocompetence associated with 5-FU.
    Matched MeSH terms: Fluorouracil
  20. Quah Y, Mohd Ismail NI, Ooi JLS, Affendi YA, Abd Manan F, Teh LK, et al.
    J Zhejiang Univ Sci B, 2019 1 8;20(1):59-70.
    PMID: 30614230 DOI: 10.1631/jzus.B1700586
    Globally, peptide-based anticancer therapies have drawn much attention. Marine organisms are a reservoir of anticancer peptides that await discovery. In this study, we aimed to identify cytotoxic oligopeptides from Sarcophyton glaucum. Peptides were purified from among the S. glaucum hydrolysates produced by alcalase, chymotrypsin, papain, and trypsin, guided by a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay on the human cervical cancer (HeLa) cell line for cytotoxicity evaluation. Purification techniques adopted were membrane ultrafiltration, gel filtration chromatography, solid phase extraction (SPE), and reversed-phase high-performance liquid chromatography (RP-HPLC). Purified peptides were identified by de novo peptide sequencing. From papain hydrolysate, three peptide sequences were identified: AGAPGG, AERQ, and RDTQ (428.45, 502.53, and 518.53 Da, respectively). Peptides synthesized from these sequences exhibited cytotoxicity on HeLa cells with median effect concentration (EC50) values of 8.6, 4.9, and 5.6 mmol/L, respectively, up to 5.8-fold stronger than the anticancer drug 5-fluorouracil. When tested at their respective EC50, AGAPGG, AERQ, and RDTQ showed only 16%, 25%, and 11% cytotoxicity to non-cancerous Hek293 cells, respectively. In conclusion, AERQ, AGAPGG, and RDTQ are promising candidates for future development as peptide-based anticancer drugs.
    Matched MeSH terms: Fluorouracil
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links