Displaying publications 61 - 80 of 390 in total

Abstract:
Sort:
  1. Lam WN, Huang J, Tay AHT, Sim HJ, Chan PJ, Lim KE, et al.
    New Phytol, 2024 Aug;243(3):881-893.
    PMID: 38840520 DOI: 10.1111/nph.19876
    Differences in demographic and environmental niches facilitate plant species coexistence in tropical forests. However, the adaptations that enable species to achieve higher demographic rates (e.g. growth or survival) or occupy unique environmental niches (e.g. waterlogged conditions) remain poorly understood. Anatomical traits may better predict plant environmental and demographic strategies because they are direct measurements of structures involved in these adaptations. We collected 18 leaf and twig traits from 29 tree species in a tropical freshwater swamp forest in Singapore. We estimated demographic parameters of the 29 species from growth and survival models, and degree of association toward swamp habitats. We examined pairwise trait-trait, trait-demography and trait-environment links while controlling for phylogeny. Leaf and twig anatomical traits were better predictors of all demographic parameters than other commonly measured leaf and wood traits. Plants with wider vessels had faster growth rates but lower survival rates. Leaf and spongy mesophyll thickness predicted swamp association. These findings demonstrate the utility of anatomical traits as indicators of plant hydraulic strategies and their links to growth-mortality trade-offs and waterlogging stress tolerance that underlie species coexistence mechanisms in tropical forest trees.
    Matched MeSH terms: Forests*
  2. Harvey MB, O'connell KA, Barraza G, Riyanto A, Kurniawan N, Smith EN
    Zootaxa, 2015;4020(3):495-516.
    PMID: 26624112 DOI: 10.11646/zootaxa.4020.3.5
    We describe Cyrtodactylus psarops sp. nov. and C. semicinctus sp. nov., two new species of bent-toed geckos from montane forests in the southern Bukit Barisan Range of Sumatra, Indonesia. The new species are closely related to one another and to C. semenanjungensis, a lowland species currently known only from Peninsular Malaysia. Three characters of the new species immediately distinguish them from most congeners in the Sunda Region: they lack transversely enlarged subcaudals, have a precloacal depression, and have a greatly enlarged scale positioned at the apex of a continuous series of femoral and precloacal pore-bearing scales. They differ from one another in cephalic pattern, tuberculation of the brachium, and in numbers of cloacal tubercles, dorsal bands, and ventrals in a transverse row. The greatly enlarged scale at the apex of the precloacal pores appears to be a rare apomorphy of these two species and C. agamensis.
    Matched MeSH terms: Forests
  3. Liew KS, Ho WS, Pang SL, Julaihi A
    Physiol Mol Biol Plants, 2015 Jan;21(1):163-5.
    PMID: 25649417 DOI: 10.1007/s12298-014-0262-2
    Duabanga moluccana (or locally known as sawih) is an indigenous fast growing tropical tree species that confers various advantages for the timber industry and for planted forests development. In this paper, we isolated and characterized 8 polymorphic microsatellite markers from the D. moluccana genome using ISSR-suppression PCR techniques. The number of alleles and PIC values ranged from 3 to 8 alleles per locus and from 0.488 to 0.792, respectively. Three microsatellite loci were deviated from Hardy-Weinberg equilibrium (P 
    Matched MeSH terms: Forests
  4. Kiew R, Sam YY
    PhytoKeys, 2012.
    PMID: 23717186 DOI: 10.3897/phytokeys.18.3487
    Codonoboea personatiflora Kiew & Y.Y.Sam, sp. nov., is described from lowland forest in the foothills in Terengganu, Peninsular Malaysia. It is unique in the genus in its personate flower. Its conservation status falls within the IUCN Endangered category.
    Matched MeSH terms: Forests
  5. Plotkin JB, Chave J, Ashton PS
    Am Nat, 2002 Nov;160(5):629-44.
    PMID: 18707513 DOI: 10.1086/342823
    Tree species in tropical rain forests exhibit a rich panoply of spatial patterns that beg ecological explanation. The analysis of tropical census data typically relies on spatial statistics, which quantify the average aggregation tendency of a species. In this article we develop a cluster-based approach that complements traditional spatial statistics in the exploration and analysis of ecological hypotheses for spatial pattern. We apply this technique to six study species within a fully mapped 50-ha forest census in peninsular Malaysia. For each species we identify the scale(s) of spatial aggregation and the corresponding tree clusters. We study the correlation between cluster locations and abiotic variables such as topography. We find that the distribution of cluster sizes exhibits equilibrium and nonequilibrium behavior depending on species life history. The distribution of tree diameters within clusters also varies according to species life history. At different spatial scales, we find evidence for both niche-based and dispersal-limited processes producing spatial pattern. Our methodology for identifying scales of aggregation and clusters is general; we discuss the method's applicability to spatial problems outside of tropical plant ecology.
    Matched MeSH terms: Forests
  6. Wang WY, Foster WA
    Ecol Evol, 2015 Aug;5(15):3159-70.
    PMID: 26356831 DOI: 10.1002/ece3.1592
    Beta diversity - the variation in species composition among spatially discrete communities - and sampling grain - the size of samples being compared - may alter our perspectives of diversity within and between landscapes before and after agricultural conversion. Such assumptions are usually based on point comparisons, which do not accurately capture actual differences in total diversity. Beta diversity is often not rigorously examined. We investigated the beta diversity of ground-foraging ant communities in fragmented oil palm and forest landscapes in Sabah, Malaysia, using diversity metrics transformed from Hill number equivalents to remove dependences on alpha diversity. We compared the beta diversities of oil palm and forest, across three hierarchically nested sampling grains. We found that oil palm and forest communities had a greater percentage of total shared species when larger samples were compared. Across all grains and disregarding relative abundances, there was higher beta diversity of all species among forest communities. However, there were higher beta diversities of common and very abundant (dominant) species in oil palm as compared to forests. Differences in beta diversities between oil palm and forest were greatest at the largest sampling grain. Larger sampling grains in oil palm may generate bigger species pools, increasing the probability of shared species with forest samples. Greater beta diversity of all species in forest may be attributed to rare species. Oil palm communities may be more heterogeneous in common and dominant species because of variable community assembly events. Rare and also common species are better captured at larger grains, boosting differences in beta diversity between larger samples of forest and oil palm communities. Although agricultural landscapes support a lower total diversity than natural forests, diversity especially of abundant species is still important for maintaining ecosystem stability. Diversity in agricultural landscapes may be greater than expected when beta diversity is accounted for at large spatial scales.
    Matched MeSH terms: Forests
  7. Gustafsson M, Gustafsson L, Alloysius D, Falck J, Yap S, Karlsson A, et al.
    Data Brief, 2016 Mar;6:466-70.
    PMID: 26900591 DOI: 10.1016/j.dib.2015.12.048
    The data presented in this paper is supporting the research article "Life history traits predict the response to increased light among 33 tropical rainforest tree species" [3]. We show basic growth and survival data collected over the 6 years duration of the experiment, as well as data from traits inventories covering 12 tree traits collected prior to and after a canopy reduction treatment in 2013. Further, we also include canopy closure and forest light environment data from measurements with hemispherical photographs before and after the treatment.
    Matched MeSH terms: Forests
  8. Radzi Abas M, Ahmad-Shah A, Nor Awang M
    Environ Pollut, 1992;75(2):209-13.
    PMID: 15092035
    A study was carried out to determine the chemical composition of bulk precipitation, throughfall and stemflow in an urban forest in Kuala Lumpur, Malaysia. The mean weekly rainfall recorded during the period of study was 63.2 mm. Throughfall, stemflow and canopy interception of incident precipitation were 77.1%, 1.2% and 21.7% respectively. Bulk precipitation, througfall and stemflow were acidic, the pH recorded being 4.37, 4.71 and 4.15 respectively. In all cases the dominant ions were NO3, SO4, Cl, NH4, K, Ca and Na. Of the ions studied Ca, K, Cl, SO4, Mg and Mn showed net increases in passing through the forest canopy, while NH4, Na, NO3, Zn, H and Fe showed net retention. This study shows that the urban environment of Kuala Lumpur contributes considerable amounts of materials to the atmosphere, as reflected by the high ionic contents in bulk precipitation, throughfall and stemflow.
    Matched MeSH terms: Forests
  9. Cannon CH, Peart DR, Leighton M
    Science, 1998 Aug 28;281(5381):1366-8.
    PMID: 9721105
    The effects of commercial logging on tree diversity in tropical rainforest are largely unknown. In this study, selectively logged tropical rainforest in Indonesian Borneo is shown to contain high tree species richness, despite severe structural damage. Plots logged 8 years before sampling contained fewer species of trees greater than 20 centimeters in diameter than did similar-sized unlogged plots. However, in samples of the same numbers of trees (requiring a 50 percent larger area), logged forest contained as many tree species as unlogged forest. These findings warrant reassessment of the conservation potential of large tracts of commercially logged tropical rainforest.
    Matched MeSH terms: Forests
  10. Swinfield T, Both S, Riutta T, Bongalov B, Elias D, Majalap-Lee N, et al.
    Glob Chang Biol, 2020 02;26(2):989-1002.
    PMID: 31845482 DOI: 10.1111/gcb.14903
    Logging, pervasive across the lowland tropics, affects millions of hectares of forest, yet its influence on nutrient cycling remains poorly understood. One hypothesis is that logging influences phosphorus (P) cycling, because this scarce nutrient is removed in extracted timber and eroded soil, leading to shifts in ecosystem functioning and community composition. However, testing this is challenging because P varies within landscapes as a function of geology, topography and climate. Superimposed upon these trends are compositional changes in logged forests, with species with more acquisitive traits, characterized by higher foliar P concentrations, more dominant. It is difficult to resolve these patterns using traditional field approaches alone. Here, we use airborne light detection and ranging-guided hyperspectral imagery to map foliar nutrient (i.e. P, nitrogen [N]) concentrations, calibrated using field measured traits, over 400 km2 of northeastern Borneo, including a landscape-level disturbance gradient spanning old-growth to repeatedly logged forests. The maps reveal that canopy foliar P and N concentrations decrease with elevation. These relationships were not identified using traditional field measurements of leaf and soil nutrients. After controlling for topography, canopy foliar nutrient concentrations were lower in logged forest than in old-growth areas, reflecting decreased nutrient availability. However, foliar nutrient concentrations and specific leaf area were greatest in relatively short patches in logged areas, reflecting a shift in composition to pioneer species with acquisitive traits. N:P ratio increased in logged forest, suggesting reduced soil P availability through disturbance. Through the first landscape scale assessment of how functional leaf traits change in response to logging, we find that differences from old-growth forest become more pronounced as logged forests increase in stature over time, suggesting exacerbated phosphorus limitation as forests recover.
    Matched MeSH terms: Forests
  11. Jasmani L, Rusli R, Khadiran T, Jalil R, Adnan S
    Nanoscale Res Lett, 2020 Nov 04;15(1):207.
    PMID: 33146807 DOI: 10.1186/s11671-020-03438-2
    Wood-based industry is one of the main drivers of economic growth in Malaysia. Forest being the source of various lignocellulosic materials has many untapped potentials that could be exploited to produce sustainable and biodegradable nanosized material that possesses very interesting features for use in wood-based industry itself or across many different application fields. Wood-based products sector could also utilise various readily available nanomaterials to enhance the performance of existing products or to create new value added products from the forest. This review highlights recent developments in nanotechnology application in the wood-based products industry.
    Matched MeSH terms: Forests
  12. Deva MP
    Int Psychiatry, 2005 Apr;2(8):14-16.
    PMID: 31507809
    Malaysia is a tropical country in the heart of South East Asia, at the crossroads of the ancient east-west sea trade routes. Although independent from British colonial rule only in 1957, it has a recorded history dating back to at least the first century CE, when the region was already the source of valuable mineral and forest produce that found markets in China, India and further west.
    Matched MeSH terms: Forests
  13. Kiew R, Lim CL
    PhytoKeys, 2019;131:1-26.
    PMID: 31537960 DOI: 10.3897/phytokeys.131.35944
    Of the 92 Codonoboea species that occur in Peninsular Malaysia, 20 are recorded from the state of Terengganu, of which 9 are endemic to Terengganu including three new species, C. norakhirrudiniana Kiew, C. rheophytica Kiew and C. sallehuddiniana C.L.Lim, that are here described and illustrated. A key and checklist to all the Terengganu species are provided. The majority of species grow in lowland rain forest, amongst which C. densifolia and C. rheophytica are rheophytic. Only four grow in montane forest. The flora of Terengganu is still incompletely known, especially in the northern part of the state and in mountainous areas and so, with botanical exploration, more new species can be expected in this speciose genus.
    Matched MeSH terms: Forests
  14. Norhazrina N, Syazwana N, Aisyah M, Aznani H, Maideen H, M S Nizam
    PhytoKeys, 2019;128:57-72.
    PMID: 31388328 DOI: 10.3897/phytokeys.128.33860
    Gunung Senyum Recreational Forest harbours 59 species, two subspecies and five varieties of mosses in 32 genera and 16 families that had been identified from a total of 589 specimens collected from the area. These figures represent 11.8% out of the 558 taxa, 20.2% out of the 158 genera and 34.7% out of the 46 families of mosses reported for Peninsular Malaysia. The total also represents 14.9% of the 442 taxa, 24.0% of the 133 genera and 40.0% of the 40 families of mosses recorded in Pahang. The largest family of mosses found in this limestone forest is Calymperaceae followed by Fissidentaceae. There are two new records for Pahang, Calymperespallidum Mitt. and Taxitheliumbinsteadii Broth. & Dixon. The analysis of species similarities of mosses found in the study area with some other selected areas showed that Gunung Senyum Recreational Forest had a high percentage of species similarity with Perlis State Park at Wang Kelian, another limestone forest, at 38%. Corticol is the main habitat utilised by mosses in Gunung Senyum Recreational Forest with 47 taxa, followed by the lignicol and calcicol each with 35 and 26 taxa, respectively.
    Matched MeSH terms: Forests
  15. Tang ACI, Melling L, Stoy PC, Musin KK, Aeries EB, Waili JW, et al.
    Glob Chang Biol, 2020 Dec;26(12):6931-6944.
    PMID: 32881141 DOI: 10.1111/gcb.15332
    Tropical peat forests are a globally important reservoir of carbon, but little is known about CO2 exchange on an annual basis. We measured CO2 exchange between the atmosphere and tropical peat swamp forest in Sarawak, Malaysia using the eddy covariance technique over 4 years from 2011 to 2014. The CO2 fluxes varied between seasons and years. A small carbon uptake took place during the rainy season at the beginning of 2011, while a substantial net efflux of >600 g C/m2 occurred over a 2 month period in the middle of the dry season. Conversely, the peat ecosystem was a source of carbon during both the dry and rainy seasons in subsequent years and more carbon was lost during the rainy season relative to the dry season. Our results demonstrate that the forest was a net source of CO2 to the atmosphere during every year of measurement with annual efflux ranging from 183 to 632 g C m-2  year-1 , noting that annual flux values were sensitive to gap filling methodology. This is in contrast to the typical view of tropical peat forests which must have acted as net C sinks over time scales of centuries to millennia to create the peat deposits. Path analyses revealed that the gross primary productivity (GPP) and ecosystem respiration (RE) were primarily affected by vapour pressure deficit (VPD). Results suggest that future increases in VPD could further reduce the C sink strength and result in additional net CO2 losses from this tropical peat swamp forest in the absence of plant acclimation to such changes in atmospheric dryness.
    Matched MeSH terms: Forests
  16. Too CC, Ong KS, Lee SM, Yule CM, Keller A
    Microbiol Resour Announc, 2018 Sep;7(12).
    PMID: 30533674 DOI: 10.1128/MRA.01083-18
    The bacterium Dyella sp. strain C9 was isolated from North Selangor Peat Swamp Forest, Malaysia, and studied using whole-genome sequencing. The putative genes involved in biogeochemical processes were annotated, and the genome sequence is publicly available in the NCBI database.
    Matched MeSH terms: Forests
  17. McCalmont J, Kho LK, Teh YA, Lewis K, Chocholek M, Rumpang E, et al.
    Glob Chang Biol, 2021 Jun;27(11):2361-2376.
    PMID: 33528067 DOI: 10.1111/gcb.15544
    Need for regional economic development and global demand for agro-industrial commodities have resulted in large-scale conversion of forested landscapes to industrial agriculture across South East Asia. However, net emissions of CO2 from tropical peatland conversions may be significant and remain poorly quantified, resulting in controversy around the magnitude of carbon release following conversion. Here we present long-term, whole ecosystem monitoring of carbon exchange from two oil palm plantations on converted tropical peat swamp forest. Our sites compare a newly converted oil palm plantation (OPnew) to a mature oil palm plantation (OPmature) and combine them in the context of existing emission factors. Mean annual net emission (NEE) of CO2 measured at OPnew during the conversion period (137.8 Mg CO2  ha-1  year-1 ) was an order of magnitude lower during the measurement period at OPmature (17.5 Mg CO2  ha-1  year-1 ). However, mean water table depth (WTD) was shallower (0.26 m) than a typical drainage target of 0.6 m suggesting our emissions may be a conservative estimate for mature plantations, mean WTD at OPnew was more typical at 0.54 m. Reductions in net emissions were primarily driven by increasing biomass accumulation into highly productive palms. Further analysis suggested annual peat carbon losses of 24.9 Mg CO2 -C ha-1  year-1 over the first 6 years, lower than previous estimates for this early period from subsidence studies, losses reduced to 12.8 Mg CO2 -C ha-1  year-1 in the later, mature phase. Despite reductions in NEE and carbon loss over time, the system remained a large net source of carbon to the atmosphere after 12 years with the remaining 8 years of a typical plantation's rotation unlikely to recoup losses. These results emphasize the need for effective protection of tropical peatlands globally and strengthening of legislative enforcement where moratoria on peatland conversion already exist.
    Matched MeSH terms: Forests
  18. AINA NADIA NAJWA MOHAMD JAFFAR, MOHD EFFENDI WASLI, MUGUNTHAN PERUMAL
    MyJurnal
    Soil hardness plays a vital role in evaluating the physical properties of soil structure. With regards to the impact of compaction on practical forest management issues, most report and review forms were available. Thus, the aim of this study was to evaluate the soil condition in riparian forest restoration planted with indigenous species along Kayan Ulu River with special reference to soil hardness. Soil hardness was measured by using Hasegawa-type cone penetrometer from the surface soils to 100 cm depth, with a total of 48 random points for both study sites surveyed; restoration sites planted with Shorea macrophylla in year 1996 and 1998 (SPD96 and SPD98, respectively) for both on and between planting lines. Our findings indicated that, soil hardness in SPD98 was harder as compared to SPD96 at shallow depth presented in one drop penetrability. Likewise, soil penetration resistance on planting line in SPD98 was significantly higher than SPD96 at surface soils (0-20 cm) and subsurface soils (20-40 cm). A high number of strikes and soil penetration resistance indicate that the soils were highly compacted. However, there was no significant difference in term of soil penetration resistance between planting line. In order to avoid effects on tree productivity, it is recommended that in future, the evaluation of soil hardness should be determined during the early establishment for future restoration of riparian ecosystem. 
    Matched MeSH terms: Forests
  19. Mansor MS, Sah SA
    Trop Life Sci Res, 2012 May;23(1):1-14.
    PMID: 24575221 MyJurnal
    Bird surveys were conducted in the Bukit Kepala Gajah limestone area in Lenggong, Perak from July 2010 to January 2011. The study area was divided into three zones: forest edge, forest intermediate and forest interior. A point-count distance sampling method was used in the bird surveys. The study recorded 7789 detections, representing 100 bird species belonging to 28 families. Pycnonotidae, Timaliidae and Nectariniidae were the dominant families overall and showed the highest number of observations recorded in the study area whereas Motacillidae showed the fewest observations. The bird species were grouped into three feeding guilds: insectivores, frugivores and others (omnivores, carnivores, nectarivores and granivores). The species richness of insectivorous birds differed significantly among the forest zones sampled (Kruskal-Wallis: α=0.05, H=10.979, d.f.=2, p=0.004), with more insectivorous birds occurring in the forest interior. No significant differences were found among the zones in the species richness of either the frugivore guild or the composite others guild.
    Matched MeSH terms: Forests
  20. Mansor MS, Sah SA, Koon LC, Rahman MA
    Trop Life Sci Res, 2011 Dec;22(2):65-80.
    PMID: 24575218 MyJurnal
    Bird surveys were conducted in the Padawan Limestone Area for seven days at each of two study sites, Giam and Danu, from August to December 2008. The purpose of the study was to compare the area's bird species richness and abundance of bird species in other limestone areas and in other forest types. The study also compared the species richness and relative abundance of birds in undisturbed and disturbed areas at both study sites. Twenty mist nets were deployed for 12 hours daily. During this study period, direct observations of birds were also made. In all, 80 species from 34 families were recorded at both sites. At Giam, 120 birds were mist-netted. These birds represented 31 species from 16 families. The direct observations at Giam recorded 13 species from 11 families. In the undisturbed area, 21 species from 13 families were mist-netted, whereas in the disturbed area, 21 species from 10 families were mist-netted. In Danu, a total of 48 birds, representing 25 species from 12 families, were mist-netted. The observations at Danu recorded 34 species from 19 families. Twelve species from 7 families were mist-netted in the undisturbed area, whereas 18 species from 11 families were mist-netted in the disturbed area. Statistical analysis showed that the species diversity index differed significantly between undisturbed and disturbed areas.
    Matched MeSH terms: Forests
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links