Displaying publications 61 - 80 of 141 in total

Abstract:
Sort:
  1. Saliu IS, Wolswijk G, Satyanarayana B, Fisol MAB, Decannière C, Lucas R, et al.
    Data Brief, 2020 Dec;33:106386.
    PMID: 33102654 DOI: 10.1016/j.dib.2020.106386
    The dataset contains tree height data collected in 200 mangrove and non-mangrove trees sampled in various sites in Malaysia. Different height measurement methods were performed, including visual measurements (stick, thumb rule) and precision field instruments (clinometer, laser rangefinder and altimeter), which were compared against benchmark values obtained using an unmanned aerial vehicle (UAV) and a Leica distometer. The core data have been analysed and interpreted in the paper by Saliu et al. ''An accuracy analysis of mangrove tree height mensuration using forestry techniques, hypsometers and UAVs '' [1], in which the accuracy of each method for tree height measurement was discussed.
    Matched MeSH terms: Lasers
  2. Yusof EM, Abdullah SA, Mohamed NH
    J Conserv Dent, 2021 02 10;23(5):473-478.
    PMID: 33911356 DOI: 10.4103/JCD.JCD_509_20
    Objective: The objective of this study was to compare the effects of light and laser activation of in-office tooth bleaching systems on enamel microhardness and surface roughness.

    Materials and Methods: Twenty-five enamel slabs were divided into three treatment groups: light-activated bleaching, laser-activated bleaching, and control. The baseline data were recorded for enamel microhardness (Vickers microhardness [VMH]) and surface roughness (Roughness average, Ra). The specimens were cured for 10 min upon hydrogen peroxide application for the light-activated bleaching group and activated with a laser source, 8 cycles, 10 s per cycle for the laser-activated group. The changes in VMH and Ra at days 1, 7, and 28 were evaluated. Kruskal-Wallis, Friedman, Wilcoxon, and Mann-Whitney tests were used to analyze both VMH and Ra between the treatment groups at different time intervals.

    Results: There were a significant reduction in VMH values and significant differences between days 1, 7, and 28 against the baseline in the light-activated bleaching group (P = 0.001). The Ra values revealed significant differences in both light- (P = 0.001) and laser-activated (P = 0.033) groups.

    Conclusion: Light activation of a bleaching agent caused a reduction in enamel microhardness and an increase in surface roughness when compared to laser activation.

    Matched MeSH terms: Lasers
  3. Raziff HHA, Tan D, Tan SH, Wong YH, Lim KS, Yeong CH, et al.
    Phys Med, 2021 Feb;82:40-45.
    PMID: 33581616 DOI: 10.1016/j.ejmp.2021.01.067
    PURPOSE: To investigate the efficacy of a newly-developed laser-heated core biopsy needle in the thermal ablation of biopsy tract to reduce hemorrhage after biopsy using in vivo rabbit's liver model.

    MATERIALS AND METHODS: Five male New Zealand White rabbits weighed between 1.5 and 4.0 kg were anesthetized and their livers were exposed. 18 liver biopsies were performed under control group (without tract ablation, n = 9) and study group (with tract ablation, n = 9) settings. The needle insertion depth (~3 cm) and rate of retraction (~3 mm/s) were fixed in all the experiments. For tract ablation, three different needle temperatures (100, 120 and 150 °C) were compared. The blood loss at each biopsy site was measured by weighing the gauze pads before and after blood absorption. The rabbits were euthanized immediately and the liver specimens were stained with hematoxylin-eosin (H&E) for further histopathological examination (HPE).

    RESULTS: The average blood loss in the study group was reduced significantly (p 

    Matched MeSH terms: Lasers
  4. Nee CH, Yap SL, Tou TY, Chang HC, Yap SS
    Sci Rep, 2016 Sep 23;6:33966.
    PMID: 27659184 DOI: 10.1038/srep33966
    Carbon nanomaterials exhibit novel characteristics including enhanced thermal, electrical, mechanical, and biological properties. Nanodiamonds; first discovered in meteorites are found to be biocompatible, non-toxic and have distinct optical properties. Here we show that nanodiamonds with the size of <5 nm are formed directly from ethanol via 1025 nm femtosecond laser irradiation. The absorption of laser energy by ethanol increased non-linearly above 100 μJ accompanied by a white light continuum arises from fs laser filamentation. At laser energy higher than 300 μJ, emission spectra of C, O and H in the plasma were detected, indicating the dissociation of C2H5OH. Nucleation of the carbon species in the confined plasma within the laser filaments leads to the formation of nanodiamonds. The energy dependence and the roles of the nonlinear phenomenon to the formation of homogeneous nanodiamonds are discussed. This work brings new possibility for bottom-up nanomaterials synthesis based on nano and ultrafast laser physics.
    Matched MeSH terms: Lasers
  5. Mahmood, W.A., Watkinson, A.C., Rooney, J.
    Ann Dent, 2000;7(1):-.
    MyJurnal
    The CO2 laser has been actively used clinically for soft tissue surgery. The advantages have been widely acknowledged. In implant related tissue surgery, the use .6f CO2 laser has been debated on whether the heat generated during the procedure would be detrimental to the bone thus losing the implants through disosseointegration. In this preliminary work, CO2 laser was used to perform a simulated gingivectomy of tissue surrounding plasma coated titanium implants. The purpose was to observe the pattern of heat generated at different levels of the implant body. The safe power range and standard precaution was also identified. The results suggested that power output between 6 Watt to 8 Watt in repeated pulsed mode with duration of 5 seconds is considered safe. With this mode the operator
    Matched MeSH terms: Lasers, Gas
  6. Bradley DA, Siti Rozaila Z, Khandaker MU, Almugren KS, Meevasana W, Abdul Sani SF
    Appl Radiat Isot, 2019 May;147:105-112.
    PMID: 30852298 DOI: 10.1016/j.apradiso.2019.02.016
    We explore the utility of controlled low-doses (0.2-100 Gy) of photon irradiation as initiators of structural alteration in carbon-rich materials. To-date our work on carbon has focused on β-, x- and γ-irradiations and the monitoring of radiotherapeutic doses (from a few Gy up to some tens of Gy) on the basis of the thermoluminescence (TL) signal, also via Raman and X-ray photo-spectroscopy (XPS), providing analysis of the dose dependence of single-walled carbon nanotubes (SWCNT). The work has been extended herein to investigate possibilities for analysis of structural alterations in graphite-rich mixtures, use being made of two grades of graphite-rich pencil lead, 8H and 2B, both being in the form produced for mechanical pencils (propelling or clutch pencils). 2B has the greater graphite content (approaching 98 wt %), 8H being a mixture of C, O, Al and Si (with respective weight percentages 39.2, 38.2, 9.8 and 12.8). Working on media pre-annealed at 400 °C, both have subsequently been irradiated to penetrating photon-mediated doses. Raman spectroscopy analysis has been carried out using a 532 nm laser Raman spectrometer, while for samples irradiated to doses from 1 to 40 Gy, XPS spectra were acquired using Al Kα sources (hv ∼1400 eV); carbon KLL Auger peaks were acquired using 50 eV Pass Energy. At these relatively low doses, alterations in order-disorder are clearly observed, defect generation and internal annealing competing as dominating effects across the dose range.
    Matched MeSH terms: Lasers
  7. Suardi N, Germanam SJ, Rahim NAYM
    Lasers Med Sci, 2023 Apr 14;38(1):99.
    PMID: 37059895 DOI: 10.1007/s10103-023-03766-6
    Although positive photobiomodulation response on wound healing, tissue repair, and therapeutic treatment has been widely reported, additional works are still needed to understand its effects on human blood. This research carried out acoustic measurements using A-scan (GAMPT) ultrasonic techniques to elucidate the photobiomodulation effects on in vitro human blood samples as therapeutic treatment measures. The human blood samples were irradiated using a 532-nm laser with different output laser powers (60 and 80 mW) at various exposure times. The ultrasonic velocity measured in the human blood samples after laser irradiation showed significant changes, most of which were within the acceptance limit for soft tissues (1570 [Formula: see text] 30 m/s). Abnormal cells (echinocyte and crenation) were observed due to excessive exposure during laser treatment.
    Matched MeSH terms: Lasers, Semiconductor
  8. Sundera Murthe S, Sreekantan S, Mydin RBSMN, Vasudevan M, Appaturi JN
    Sci Rep, 2023 Sep 01;13(1):14379.
    PMID: 37658068 DOI: 10.1038/s41598-023-41477-8
    The most common material used for blood bags is PVC, which requires the addition of DEHP to increase its flexibility. DEHP is known to cross the polymer barrier and move into the stored blood and, ultimately, the patient's bloodstream. In this work, an alternative prototype composed of SEBS/PP was fabricated through blow-moulding and compared with the commercially available PVC-based blood bag which was designated as the control. The blow-moulded sample layers were welded together using CO2 lasers and optimized to obtain complete sealing of the sides. The samples' performance characteristics were analyzed using water permeability, oxygen permeability, shelf-life, and bioburden tests. The SEBS/PP sample exhibited the highest oxygen permeability rate of 1486.6 cc/m2/24 h after 40 days of ageing, indicating that the sample is conducive for red blood cell (RBC) respiration. On the other hand, the SEBS/PP sample showcased a lower water permeability rate of 0.098 g/h m2 after 40 days of aging, indicating a high-water barrier property and thus preventing water loss during storage. In comparison, the oxygen and water permeability rates of PVC-DEHP were found to be distinctly lower in performance (662.7 cc/m2/24 h and 0.221 g/h m2, respectively). In addition, shelf-life analyses revealed that after 40 days of ageing, polymer samples exhibited no visual damage or degradation. The optimal parameters to obtain adequate welding of the SEBS/PP were determined to be power of 60% (18 W), speed of 70 in/sec and 500 Pulse Per Inch (PPI). Furthermore, the bioburden estimates of SEBS/PP of 115 CFU are markedly lower compared to the bioburden estimate of PVC-DEHP of 213 CFU. The SEBS/PP prototype can potentially be an effective alternative to PVC-based blood bags, particularly for high-risk patients in order to reduce the likelihood of medical issues.
    Matched MeSH terms: Lasers
  9. Lau PS, Bidin N, Krishnan G, Nassir Z, Bahktiar H
    J Cosmet Laser Ther, 2015 Apr;17(2):86-9.
    PMID: 25260140 DOI: 10.3109/14764172.2014.968587
    Low-energy laser irradiance at certain wavelengths is able to stimulate the tissue bio-reaction and enhance the healing process. Collagen deposition is one of the important aspects in healing process because it can increase the strength of the skin. This study was designed to examine the biophotonic effect of irradiance on collagen production of diabetic wound in rat model. The tensile strength of skin was employed as a parameter to describe the wound. Diabetic rat models were induced by streptozotocin via intravenous injection. Skin-breaking strength was measured using an Instron tensile test machine. The experimental animals were treated with 808-nm diode laser at two different powers-0.1 and 0.5 W/cm(2)-and 30, 60, and 120 s for each session. The tensile strength was optimized after treated with high-power diode laser. The photostimulation effect was revealed by accelerated healing process and enhanced tensile strength of wound. Laser photostimulation on tensile strength in diabetic wound suggests that such therapy facilitates collagen production in diabetic wound healing.
    Matched MeSH terms: Lasers, Semiconductor/adverse effects; Lasers, Semiconductor/therapeutic use*
  10. Masoud F, Sapuan SM, Ariffin MKAM, Nukman Y, Bayraktar E
    Polymers (Basel), 2021 Feb 26;13(5).
    PMID: 33652612 DOI: 10.3390/polym13050706
    In this paper, the influence of processing input parameters on the heat-affected zone (HAZ) of three different material thicknesses of sugar palm fiber reinforced unsaturated polyester (SPF-UPE) composites cut with a CO2 laser was investigated. Laser power, traverse speed, and gas pressure were selected as the most influential input parameters on the HAZ to optimize the HAZ response with fixing all of the other input parameters. Taguchi's method was used to determine the levels of parameters that give the best response to the HAZ. The significance of input parameters was also determined by calculating the max-min variance of the average of the signal-to-noise ratio (S/N) ratio for each parameter. Analysis of variation (ANOVA) was used to determine each input parameter's contribution to the influence on HAZ depth. The general results show that the minimum levels of laser power and the highest levels of traverse speed and gas pressure gave the optimum response to the HAZ. Gas pressure had the most significant effect on the HAZ, with contribution decreases as the material thickness increased, followed by the traverse speed with contribution increases with the increase in material thickness. Laser power came third, with a minimal contribution to the effect on the HAZ, and it did not show a clear relationship with the change in material thickness. By applying the optimum parameters, the desired HAZ depth could be obtained at relatively low values.
    Matched MeSH terms: Lasers, Gas
  11. MUHAMMAD SAFIY SABRIL, MUHAMMAD SAFIY SABRIL, FAEZAH JASMAN, NURUL ADILAH ABDUL LATIFF, SEVIA MAHDALIZA IDRUS, WAN HAFIZA WAN HASSAN
    MyJurnal
    Underwater wireless communications refer to transmitting data in an unguided water environment by wireless carriers including acoustic, radio frequency (RF), and optical waves. Relative to acoustic and RF, the optical wave is more promising to offer higher bandwidth at a lower energy consumption rate. However, an optical wave has its challenges such as attenuation due to absorption, scattering and turbulence effects. Therefore, this work attempts to investigate the performance of lightwave propagation for underwater optical wireless communication (UOWC) using simulation and experimental approaches. First, the performance of optical waves was analyzed using MATLAB by simulating the light attenuation model which based on depth-dependent chlorophyll concentration. A depth profile that related to the surface chlorophyll levels for the range 0-4 mg/m3 was used to represent the open ocean. The simulation showed that the attenuation of light less affected for operating wavelength range of 450 – 550 nm. Further, an experimental set-up was developed which consists of a transmitter, receiver, and aquarium to emulate the UOWC channel. Three types of water including clear, sea and cloudy were tested to analyze their interaction with the light emitted by a light-emitting diode (LED) and a laser diode. The emitted light detected by the light sensor and the strength of an audio signal transmitted through the UOWC were measured using a light meter and sound meter respectively. The measured power was plotted against distance and the attenuation constant c was deduced through curve fitting method. The analysis showed irrespective of the light sources, UOWC in cloudy water suffered the highest attenuation relative to still clear and seawater. The received power emitted by laser was at least 41% higher than the LED. This study contributes to identify the potential and limitations of different operating schemes to optimize UOWC performance.
    Matched MeSH terms: Lasers
  12. Kok, T.C., Ong, S.T.
    Ann Dent, 2001;8(1):-.
    MyJurnal
    The purpose of this study is to assess the effectiveness of C02 laser in relieving symptoms associated with Oral lichen planus (aLP) and lichenoid lesions (aLL) and the event of healing. Six patients were selected for this study with 13 sites treated. Each lesion was ablated with C02 laser and the wound allowed to heal undisturbed. Prior to treatment, 4 patients had both unprovoked and provoked pain and 2 patients rated for provoked pain only. After laser ablation, five out of six patients treated recorded no pain / 0 pain score. One month post-laser, the treated area was almost the same colour as the surrounding normal mucosa and soft in texture in all but one patient in which there was some fibrosis and residual plaque-like patch. Weconclude that the use of C02 laser in the treatment of aLP and aLL shows positive results in relieving symptoms associated with these lesions.
    Matched MeSH terms: Lasers
  13. Bradley DA, Nawi SNM, Khandaker MU, Almugren KS, Sani SFA
    Appl Radiat Isot, 2020 Jul;161:109168.
    PMID: 32321700 DOI: 10.1016/j.apradiso.2020.109168
    Present work concerns polymer pencil-lead graphite (PPLG) and the potential use of these in elucidating irradiation-driven structural alterations. The study provides detailed analysis of radiation-induced structural interaction changes and the associated luminescence that originates from the energy absorption. Thermally stimulated emission from the different occupied defect energy levels reflects the received radiation dose, different for the different diameter PPLGs. The PPLG samples have been exposed to photon irradiation, specifically x-ray doses ranging from 1 to 10 Gy, extended to 30-200 Gy through use of a60Co gamma-ray source. Trapping parameters such as order of kinetics, activation energy and frequency factor are estimated using Chen's peak-shape method for a fixed-dose of 30 Gy. X-ray diffractometry was used to characterize the crystal structure of the PPLG, the aim being to identify the degree of structural order, atomic spacing and lattice constants of the various irradiated PPLG samples. The mean atomic spacing and degree of structural order for the different diameter PPLG are found to be 0.3332 nm and 26.6° respectively. Photoluminescence spectra from PPLG arising from diode laser excitation at 532 nm consist of two adjacent peaks, 602 nm (absorption) and 1074 nm (emission), with mean energy band gap values within the range 1.113-1.133 eV.
    Matched MeSH terms: Lasers, Semiconductor
  14. Cheong JK, Popov V, Alchera E, Locatelli I, Alfano M, Menichetti L, et al.
    Comput Biol Med, 2021 11;138:104881.
    PMID: 34583149 DOI: 10.1016/j.compbiomed.2021.104881
    Gold nanorods assisted photothermal therapy (GNR-PTT) is a new cancer treatment technique that has shown promising potential for bladder cancer treatment. The position of the bladder cancer at different locations along the bladder wall lining can potentially affect the treatment efficacy since laser is irradiated externally from the skin surface. The present study investigates the efficacy of GNR-PTT in the treatment of bladder cancer in mice for tumours growing at three different locations on the bladder, i.e., Case 1: closest to skin surface, Case 2: at the bottom half of the bladder, and Case 3: at the side of the bladder. Investigations were carried out numerically using an experimentally validated framework for optical-thermal simulations. An in-silico approach was adopted due to the flexibility in placing the tumour at a desired location along the bladder lining. Results indicate that for the treatment parameters considered (laser power 0.3 W, GNR volume fraction 0.01% v/v), only Case 1 can be used for an effective GNR-PTT. No damage to the tumour was observed in Cases 2 and 3. Analysis of the thermo-physiological responses showed that the effectiveness of GNR-PTT in treating bladder cancer depends not only on the depth of the tumour from the skin surface, but also on the type of tissue that the laser must pass through before reaching the tumour. In addition, the results are reliant on GNRs with a diameter of 10 nm and an aspect ratio of 3.8 - tuned to exhibit peak absorption for the chosen laser wavelength. Results from the present study can be used to highlight the potential for using GNR-PTT for treatment of human bladder cancer. It appears that Cases 2 and 3 suggest that GNR-PTT, where the laser passes through the skin to reach the bladder, may be unfeasible in humans. While this study shows the feasibility of using GNRs for photothermal ablation of bladder cancer, it also identifies the current limitations needed to be overcome for an effective clinical application in the bladder cancer patients.
    Matched MeSH terms: Lasers
  15. Youssouf AS, Hasbullah NF, Saidin N, Habaebi MH, Parthiban R, Bin Mohamed Zin MR, et al.
    PLoS One, 2021;16(12):e0259649.
    PMID: 34972119 DOI: 10.1371/journal.pone.0259649
    This paper provides the details of a study on the effects of electron radiation on the Performance of Inters-satellite Optical Wireless Communication (IsOWC). Academia and industry focus on solutions that can improve performance and reduce the cost of IsWOC systems. Spacecraft, space stations, satellites, and astronauts are exposed to an increased level of radiation when in space, so it is essential to evaluate the risks and performance effects associated with extended radiation exposures in missions and space travel in general. This investigation focuses on LEO, especially in the near-equatorial radiation environment. Radiation experiments supported with simulations have made it possible to obtain and evaluate the electron radiation impact on optoelectronics at the device level and system level performances. The electron radiation has induced a system degradation of 70%. This result demonstrates the importance of such an investigation to predict and take necessary and suitable reliable quality service for future space missions.
    Matched MeSH terms: Lasers
  16. Zamiri R, Zakaria A, Husin MS, Wahab ZA, Nazarpour FK
    Int J Nanomedicine, 2011;6:2221-4.
    PMID: 22114485 DOI: 10.2147/IJN.S23830
    In the present work, we prepared silver nanoparticles by laser ablation of pure silver plate in ethanol and then irradiated the silver nanoparticles using a 532 nm Q-switched Nd:YAG pulsed laser. Transmission electron microscopic images of the sample after irradiation clearly showed formation of big structures, such as microrods and microbelts in ethanol. The obtained microbelts had a width of about 0.166 μm and a length of 1.472 μm. The reason for the formation of such a big structure is the tendency of the nanoparticles to aggregate in ethanol before irradiation, which causes fusion of the nanoparticles.
    Matched MeSH terms: Lasers
  17. Thomas AR, Soe HHK, Silva CS, Kaur H, Ganendrah LD, Gomez LM
    Am J Dent, 2023 Oct;36(5):246-250.
    PMID: 37865812
    PURPOSE: To compare the accuracy and reliability of cone-beam computed tomography (CBCT) and laser scanner in measuring minor volume changes such as the root canal space.

    METHODS: 35 maxillary incisors were endodontically prepared. A dimensionally stable silicone material was injected into the root canal space and scanned with CBCT. The root canal volume was measured using Romexis 3.0.1 R software. Replicas were carefully removed from the teeth and scanned using an extraoral laser scanner. These images were exported to the Rhinoceros software for volume measurement. The volume of each replica was also assessed using the gravimetric method. To determine the accuracy, the volume obtained from both devices was compared with the gravimetric method. Statistical analysis was done using a paired t-test. The reliability was assessed using the intraclass correlation coefficient.

    RESULTS: There was no statistically significant difference between the mean volume of CBCT 27.04 ± 7.25 mm³ and the mean volume of the gravimetric method 27.87 ± 7.17 mm³ (P< 0.05). A statistically significant difference was seen with the laser scanner at 25.31 ± 6.89 mm³ and the gravimetric method at 27.87 ± 7.17 mm³ (P< 0.05). CBCT showed a good degree of agreement (ICC 0.899), while the laser scanner showed a moderate degree of agreement (ICC 0.644) with the gravimetric method. CBCT proved accurate and reliable in measuring minor volumes like the root canal space, ideally in the range of 20-25 mm³. The laser scanner presented acceptable reliability.

    CLINICAL SIGNIFICANCE: The laboratory data showed satisfactory outcomes, providing an evidence-based approach and potentially motivating clinicians to integrate cone-beam computed tomography for volume analysis into clinical practice. The accuracy and reliability of laser scanners for small-volume analysis have not previously been evaluated. Consequently, the findings from this study warrant further clinical investigations.

    Matched MeSH terms: Lasers
  18. Keat WOL, Somani BK, Pietropaolo A, Chew BH, Chai CA, Inoue T, et al.
    World J Urol, 2023 Nov;41(11):2881-2888.
    PMID: 36929407 DOI: 10.1007/s00345-023-04362-7
    PURPOSE: To evaluate outcomes of flexible ureteroscopy for renal stones by comparing hard versus soft stones based on their attenuation on computed tomography (Hounsfield Units-HU).

    METHODS: Patients were divided into two groups according to the type of laser employed [Holmium:YAG (HL) or Thulium fiber laser (TFL)]. Residual fragments (RF) were defined as > 2 mm. Multivariable logistic regression analysis was performed to evaluate factors associated with RF and RF needing further intervention.

    RESULTS: 4208 patients from 20 centers were included. In whole series, age, recurrent stones, stone size, lower pole stones (LPS), and multiple stones were predictors of RF at multivariable analysis and LPS and stone size with RF requiring further treatment. HU and TFL were associated with lesser RF and RF requiring an additional treatment. In HU 

    Matched MeSH terms: Lasers
  19. Gan KB, Yahyavi ES, Ismail MS
    Technol Health Care, 2016 Sep 14;24(5):761-8.
    PMID: 27163300 DOI: 10.3233/THC-161161
    BACKGROUND: At the emergency triage center, assessment of the present of the danger signs and measurement of vital signs are measured according to the guidelines. The respiration rate is still posing a challenge to the doctor as it is impractical to use conventional devices. Attaching measurement devices to the patient will induce artificial measurements (self-awareness stress effects) besides being time-consuming. Currently, the medical officers visually count the number of times the chest movement in a minute, sometimes poses cultural challenges especially for female patients.

    OBJECTIVE: The main objective of this paper is to develop a robust algorithm to extract respiration rate using the contactless displacement sensor.

    METHODS: In this study, chest movements were used as an indicative of inspiration and expiration to measure respiratory rate using the contactless displacement sensor. The contactless optical signals were recorded from 32 healthy subjects in four different controlled breathing conditions: rest, coughing, talking and hand movement to obtain the motion artifacts that the patients may have in the emergency department. The Empirical mode decomposition (EMD) algorithm was used to derive continuous RR signal from the contactless optical signal.

    RESULTS: The analysis showed that there is a good correlation (0.9702) with RMSE of 0.33 breaths per minutes between the contact respiration rate and contactless respiration rate using empirical mode decomposition method.

    CONCLUSION: It can be concluded that the empirical mode decomposition method can extract the respiration rate of the contactless optical signal from chest movement.

    Matched MeSH terms: Lasers*
  20. Kadhim A, Salim ET, Fayadh SM, Al-Amiery AA, Kadhum AA, Mohamad AB
    ScientificWorldJournal, 2014;2014:490951.
    PMID: 24737973 DOI: 10.1155/2014/490951
    Laser shock processing (LSP) is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I > 1 GW/cm(2); t < 50 ns) at the interface between the metallic target and the surrounding medium (a transparent confining material, normally water) forcing a sudden vaporization of the metallic surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water) on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated.
    Matched MeSH terms: Lasers*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links