METHODS: This study examined the composition purity of PCAV through a decomplexation proteomic approach, applying size-exclusion chromatography (SEC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and tandem mass spectrometry liquid chromatography-tandem mass spectrometry (LC-MS/MS).
RESULTS: SDS-PAGE and SEC showed that the major protein in PCAV (constituting ∼80% of total proteins) is approximately 110 kDa, consistent with the F(ab')2 molecule. This protein is reducible into two subunits suggestive of the light and heavy chains of immunoglobulin G. LC-MS/MS further identified the proteins as equine immunoglobulins, representing the key therapeutic ingredient of this biologic product. However, protein impurities, including fibrinogens, alpha-2-macroglobulins, albumin, transferrin, fibronectin and plasminogen, were detected at ∼20% of the total antivenom proteins, unveiling a concern for hypersensitivity reactions.
CONCLUSIONS: Together, the findings show that PCAV contains a favorable content of F(ab')2 for neutralization, while the antibody purification process awaits improvement to minimize the presence of protein impurities.
BIOLOGICAL SIGNIFICANCE: Advents in proteomics and bioinformatics have vigorously propelled the scientific discoveries of toxins from various lineages of venomous snakes. The Malayan pit viper, Calloselasma rhodostoma, is a medically important species in Southeast Asia as its bite can cause envenomation, while the venom is also a source of bioactive compounds for drug discovery. Detailed profiling of the venom, however, is inadequate possibly due to the complex nature of the venom and technical limitation in separating the constituents into details. Integrating a multi-step fractionation method, this study successfully revealed a comprehensive and quantitative profile of the composition of the venom of this medically important venomous snake. The relative abundance of the various venom proteins is determined in a global profile, providing useful information for understanding the pathogenic roles of the different toxins in C. rhodostoma envenomation. Notably, the principal hemotoxins were identified in great details, including the variety of toxin subunits and isoforms. The findings indicate that these toxins are the principal targets for effective antivenom neutralization, and should be addressed in the production of a pan-regional polyspecific antivenom. In addition, minor toxin components not reported previously in the venom were also detected in this study, enriching the current toxin database for the venomous snakes.
METHODS: These plants were collected, identified and the extracts were prepared by using conventional Soxhlet ethanol extraction technique. The venom neutralization activity was accessed in mice (20-25g) and number of mortalities was observed against clinically important snake (Naja nigricollis) venom. Present study also deals with in vitro membrane stabilizing activity of these plants against hyposaline induced human red blood corpuscles (HRBC).
RESULTS: Extracts of H. javanica and G. superba gave 80 % and 90 % protection to mice treated with minimum lethal dose of venom (LD(99)). These two plants showed significant neutralization effect against the venoms of Naja nigricollis venom. H. javanica and G. superba (25-100 mg/mL) produced significant changes of membrane stabilization of human red blood cells (HRBC) exposed to hyposaline-induced haemolysis.
CONCLUSIONS: We conclude that probably due to presence of various phytochemicals plays an important role in the anti-venom potential of these Indian medicinal plants against Naja nigricollis venom. The above observations confirmed that A. paniculata, C. magna, G. superba and H. javanica plant extracts possess potent snake venom neutralizing capacity and could potentially be used as an adjuvants for antivenin therapy in case of snakebite envenomation, especially against the local effects of cobra venoms.