Displaying publications 61 - 80 of 83 in total

Abstract:
Sort:
  1. Moradihamedani P, Abdullah AH
    Water Sci Technol, 2018 Jan;77(1-2):346-354.
    PMID: 29377819 DOI: 10.2166/wst.2017.545
    Removal of low-concentration ammonia (1-10 ppm) from aquaculture wastewater was investigated via polysulfone (PSf)/zeolite mixed matrix membrane. PSf/zeolite mixed matrix membranes with different weight ratios (90/10, 80/20, 70/30 and 60/40 wt.%) were prepared and characterized. Results indicate that PSf/zeolite (80/20) was the most efficient membrane for removal of low-concentration ammonia. The ammonia elimination by PSf/zeolite (80/20) from aqueous solution for 10, 7, 5, 3 and 1 ppm of ammonia was 100%, 99%, 98.8%, 96% and 95% respectively. The recorded results revealed that pure water flux declined in higher loading of zeolite in the membrane matrix due to surface pore blockage caused by zeolite particles. On the other hand, ammonia elimination from water was decreased in higher contents of zeolite because of formation of cavities and macrovoids in the membrane substructure.
    Matched MeSH terms: Zeolites/chemistry*
  2. Gurdeep Singh HK, Yusup S, Quitain AT, Kida T, Sasaki M, Cheah KW, et al.
    Environ Sci Pollut Res Int, 2019 Nov;26(33):34039-34046.
    PMID: 30232774 DOI: 10.1007/s11356-018-3223-4
    Employment of edible oils as alternative green fuel for vehicles had raised debates on the sustainability of food supply especially in the third-world countries. The non-edible oil obtained from the abundantly available rubber seeds could mitigate this issue and at the same time reduce the environmental impact. Therefore, this paper investigates the catalytic cracking reaction of a model compound named linoleic acid that is enormously present in the rubber seed oil. Batch-scale experiments were conducted using 8.8 mL Inconel batch reactor having a cyclic horizontal swing span of 2 cm with a frequency of 60 cycles per minute at 450 °C under atmospheric condition for 90 min. The performance of HZSM-5, HBeta, HFerrierite, HMordenite and HY catalysts was tested for their efficiency in favouring gasoline range hydrocarbons. The compounds present in the organic liquid product were then analysed using GC-MS and classified based on PIONA which stands for paraffin, isoparaffin, olefin, naphthenes and aromatics respectively. The results obtained show that HZSM-5 catalyst favoured gasoline range hydrocarbons that were rich in aromatics compounds and promoted the production of desired isoparaffin. It also gave a higher cracking activity; however, large gaseous as by-products were produced at the same time.
    Matched MeSH terms: Zeolites/chemistry*
  3. Kardi SN, Ibrahim N, Darzi GN, Rashid NAA, Villaseñor J
    Environ Sci Pollut Res Int, 2017 Aug;24(23):19444-19457.
    PMID: 28580546 DOI: 10.1007/s11356-017-9204-1
    This work studied the performance of a laboratory-scale microbial fuel cell (MFC) using a bioanode that consisted of treated clinoptilolite fine powder coated onto graphite felt (TC-MGF). The results were compared with another similar MFC that used a bare graphite felt (BGF) bioanode. The anode surfaces provided active sites for the adhesion of the bacterial consortium (NAR-2) and the biodegradation of mono azo dye C.I. Acid Red 27. As a result, bioelectricity was generated in both MFCs. A 98% decolourisation rate was achieved using the TC-MGF bioanode under a fed-batch operation mode. Maximum power densities for BGF and TC-MGF bioanodes were 458.8 ± 5.0 and 940.3 ± 4.2 mW m-2, respectively. GC-MS analyses showed that the dye was readily degraded in the presence of the TC-MGF bioanode. The MFC using the TC-MGF bioanode showed a stable biofilm with no biomass leached out for more than 300 h operation. In general, MFC performance was substantially improved by the fabricated TC-MGF bioanode. It was also found that the TC-MGF bioanode with the stable biofilm presented the nature of exopolysaccharide (EPS) structure, which is suitable for the biodegradation of the azo dye. In fact, the EPS facilitated the shuttling of electrons to the bioanode for the generation of bioelectricity.
    Matched MeSH terms: Zeolites/chemistry*
  4. Derakhshankhah H, Hosseini A, Taghavi F, Jafari S, Lotfabadi A, Ejtehadi MR, et al.
    Sci Rep, 2019 02 07;9(1):1558.
    PMID: 30733474 DOI: 10.1038/s41598-018-37621-4
    Fibrinogen is one of the key proteins that participate in the protein corona composition of many types of nanoparticles (NPs), and its conformational changes are crucial for activation of immune systems. Recently, we demonstrated that the fibrinogen highly contributed in the protein corona composition at the surface of zeolite nanoparticles. Therefore, understanding the interaction of fibrinogen with zeolite nanoparticles in more details could shed light of their safe applications in medicine. Thus, we probed the molecular interactions between fibrinogen and zeolite nanoparticles using both experimental and simulation approaches. The results indicated that fibrinogen has a strong and thermodynamically favorable interaction with zeolite nanoparticles in a non-cooperative manner. Additionally, fibrinogen experienced a substantial conformational change in the presence of zeolite nanoparticles through a concentration-dependent manner. Simulation results showed that both E- and D-domain of fibrinogen are bound to the EMT zeolite NPs via strong electrostatic interactions, and undergo structural changes leading to exposing normally buried sequences. D-domain has more contribution in this interaction and the C-terminus of γ chain (γ377-394), located in D-domain, showed the highest level of exposure compared to other sequences/residues.
    Matched MeSH terms: Zeolites/chemistry*
  5. Mojiri A, Ziyang L, Tajuddin RM, Farraji H, Alifar N
    J Environ Manage, 2016 Jan 15;166:124-30.
    PMID: 26496842 DOI: 10.1016/j.jenvman.2015.10.020
    Constructed wetland (CW) is a low-cost alternative technology to treat wastewater. This study was conducted to co-treat landfill leachate and municipal wastewater by using a CW system. Typha domingensis was transplanted to CW, which contains two substrate layers of adsorbents, namely, ZELIAC and zeolite. Response surface methodology and central composite design have been utilized to analyze experimental data. Contact time (h) and leachate-to-wastewater mixing ratio (%; v/v) were considered as independent variables. Colour, COD, ammonia, nickel, and cadmium contents were used as dependent variables. At optimum contact time (50.2 h) and leachate-to-wastewater mixing ratio (20.0%), removal efficiencies of colour, COD, ammonia, nickel, and cadmium contents were 90.3%, 86.7%, 99.2%, 86.0%, and 87.1%, respectively. The accumulation of Ni and Cd in the roots and shoots of T. domingensis was also monitored. Translocation factor (TF) was >1 in several runs; thus, Typha is classified as a hyper-accumulator plant.
    Matched MeSH terms: Zeolites
  6. Tan KH, Cham HY, Awala H, Ling TC, Mukti RR, Wong KL, et al.
    Nanoscale Res Lett, 2015 Dec;10(1):956.
    PMID: 26058517 DOI: 10.1186/s11671-015-0956-6
    Lubricant oils take significant part in current health and environmental considerations since they are an integral and indispensable component of modern technology. Antioxidants are probably the most important additives used in oils because oxidative deterioration plays a major role in oil degradation. Zeolite nanoparticles (NPs) have been proven as another option as green antioxidants in oil formulation. The anti-oxidative behavior of zeolite NPs is obvious; however, the phenomenon is still under investigation. Herein, a study of the effect of extra-framework cations stabilized on Linde Type L (LTL) zeolite NPs (ca. 20 nm) on inhibition of oxidation in palm oil-based lubricant oil is reported. Hydrophilic LTL zeolites with a Si/Al ratio of 3.2 containing four different inorganic cations (Li(+), Na(+), K(+), Ca(2+)) were applied. The oxidation of the lubricant oil was followed by visual observation, colorimetry, fourier transform infrared (FTIR) spectroscopy, (1)H NMR spectroscopy, total acid number (TAN), and rheology analyses. The effect of extra-framework cations to slow down the rate of oil oxidation and to control the viscosity of oil is demonstrated. The degradation rate of the lubricant oil samples is decreased considerably as the polarizability of cation is increased with the presence of zeolite NPs. More importantly, the microporous zeolite NPs have a great influence in halting the steps that lead to the polymerization of the oils and thus increasing the lifetime of oils.
    Matched MeSH terms: Zeolites
  7. Ng TYS, Chew TL, Yeong YF, Jawad ZA, Ho CD
    Sci Rep, 2019 10 21;9(1):15062.
    PMID: 31636339 DOI: 10.1038/s41598-019-51460-x
    In recent years, there are increasing interest on applying ultrasonic irradiation for the synthesis of zeolite due to its advantages including remarkable shortened synthesis duration. In this project, the potential of ultrasonic irradiation treatment on the synthesis of zeolite RHO was investigated. Ultrasonic irradiation treatment time was varied from 30 to 120 minutes for the synthesis of zeolite RHO. The zeolite RHO solid samples were characterized with X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and nitrogen adsorption-desorption analysis. The application of ultrasonic irradiation treatment in this study has accelerated the synthesis of zeolite RHO where the synthesis duration has been significantly shortened to 2 days compared to 8 days required by conventional hydrothermal heating without ultrasonic irradiation treatment. Highly crystalline zeolite RHO crystals in truncated octahedron morphology were successfully formed.
    Matched MeSH terms: Zeolites
  8. Emami Moghaddam SA, Harun R, Mokhtar MN, Zakaria R
    Biomed Res Int, 2018;2018:6563196.
    PMID: 30643814 DOI: 10.1155/2018/6563196
    The interest in utilizing algae for wastewater treatment has been increased due to many advantages. Algae-wastewater treatment system offers a cost-efficient and environmentally friendly alternative to conventional treatment processes such as electrocoagulation and flocculation. In this biosystem, algae can assimilate nutrients in the wastewater for their growth and simultaneously capture the carbon dioxide from the atmosphere during photosynthesis resulting in a decrease in the greenhouse gaseousness. Furthermore, the algal biomass obtained from the treatment process could be further converted to produce high value-added products. However, the recovery of free suspended algae from the treated effluent is one of the most important challenges during the treatment process as the current methods such as centrifugation and filtration are faced with the high cost. Immobilization of algae is a suitable approach to overcome the harvesting issue. However, there are some drawbacks with the common immobilization carriers such as alginate and polyacrylamide related to low stability and toxicity, respectively. Hence, it is necessary to apply a new carrier without the mentioned problems. One of the carriers that can be a suitable candidate for the immobilization is zeolite. To date, various types of zeolite have been used for the immobilization of cells of bacteria and yeast. If there is any possibility to apply them for the immobilization of algae, it needs to be considered in further studies. This article reviews cell immobilization technique, biomass immobilization onto zeolites, and algal immobilization with their applications. Furthermore, the potential application of zeolite as an ideal carrier for algal immobilization has been discussed.
    Matched MeSH terms: Zeolites
  9. Hamid MAA, Aziz HA, Yusoff MS, Rezan SA
    Water Environ Res, 2021 Apr;93(4):596-607.
    PMID: 32991022 DOI: 10.1002/wer.1461
    The high-strength leachate produced from sanitary landfill is a serious issue around the world as it poses adverse effects on aquatic life and human health. Physio-chemical technology is one of the promising options as the leachate normally presents in stabilized form and not fully amendable by biological treatment. In this research, the effectiveness of natural zeolite (clinoptilolite) augmented electrocoagulation process (hybrid system) for removing high-strength ammonia (3,442 mg/L) and color (8,427 Pt-Co) from naturally saline (15 ppt) local landfill leachate was investigated. A batch mode laboratory-scale reactor with parallel-monopolar aluminum electrodes attached to a direct current (DC) electric power was used as an electrocoagulation reactor for performance enhancement purpose. Optimum operational conditions of 146 g/L zeolite dosage, 600 A/m2 current density, 60 min treatment time, 200 rpm stirring speed, 35 min settling duration, and pH 9 were recorded with up to 70% and 88% removals of ammonia and color, respectively. The estimated overall operational cost was 26.22 $/m3 . The biodegradability of the leachate had improved from 0.05 to 0.27 in all post-treatment processes. The findings revealed the ability of the hybrid process as a viable option in eliminating concentrated ammonia and color in natural saline landfill leachate. PRACTITIONER POINTS: Clinoptilolite was augmented on the electrocoagulation process in saline and stabilized landfill leachate (15 ppt). The high strength NH3 -N (3,442 mg/L) and color (8,427 Pt-Co) were 70% and 88% removed, respectively. The optimum conditions occurred at 140 g/L zeolite, 60 mA/cm2 current density, 60 min, and final pH of 8.20. The biodegradability of the leachate improved from 0.05 to 0.27 after the treatment. This hybrid treatment was simple, faster, and did not require auxiliary electrolyte.
    Matched MeSH terms: Zeolites
  10. Jawad AH, Abdulhameed AS, Reghioua A, Yaseen ZM
    Int J Biol Macromol, 2020 Nov 15;163:756-765.
    PMID: 32634511 DOI: 10.1016/j.ijbiomac.2020.07.014
    In this research, an attempt to develop zwitterion composite adsorbent is conducted by modifying chitosan (CHS) with a covalent cross-linker (epichlorohydrin, ECH) and an aluminosilicate mineral (zeolite, ZL). The zwitterion composite adsorbent of chitosan-epichlorohydrin/zeolite (CHS-ECH/ZL) is performed multifunctional tasks by removing two structurally different cationic (methylene blue dye, MB), and anionic (reactive red 120 dye, RR120) dyes from aqueous solutions. The surface property, crystallinity, morphology, functionality, and charge of the CHS-ECH/ZL are analyzed using BET, XRD, SEM, FTIR, and pHpzc, analyses, respectively. The influence of pertinent parameters namely CHS-ECH/ZL dosage (0.02-0.5 g), solution pH (4-10), temperature (303-323K), initial dye concentration (30-400 mg/L), and contact time (0-600 min) on the MB and RR120 removal are tested. The research findings revealed that the adsorption isotherm at equilibrium well explained in according to the Freundlich isotherm model, and the recorded adsorption capacities of CHS-ECH/ZL are 156.1 and 284.2 mg/g for MB and RR120 respectively at 30 °C. The mechanism of MB and RR120 adsorption onto the CHS-ECH/ZL indicates various types of interactions namely, electrostatic interaction, hydrogen bonding, and Yoshida H-bonding in addition to n-π interaction. Overall, this research introduces CHS-ECH/ZL composite as an eco-friendly zwitterion adsorbent with good applicability towards the two structurally different cationic and anionic dyes from aqueous environment.
    Matched MeSH terms: Zeolites
  11. Habiba U, Afifi AM, Salleh A, Ang BC
    J Hazard Mater, 2017 Jan 15;322(Pt A):182-194.
    PMID: 27436300 DOI: 10.1016/j.jhazmat.2016.06.028
    In this study, chitosan/polyvinyl alcohol (PVA)/zeolite nanofibrous composite membrane was fabricated via electrospinning. First, crude chitosan was hydrolyzed with NaOH for 24h. Afterward, hydrolyzed chitosan solution was blended with aqueous PVA solution in different weight ratios. Morphological analysis of chitosan/PVA electrospun nanofiber showed a defect-free nanofiber material with 50:50 weight ratio of chitosan/PVA. Subsequently, 1wt.% of zeolite was added to this blended solution of 50:50 chitosan/PVA. The resulting nanofiber was characterized with field emission scanning electron microscopy, X-Ray diffraction, Fourier transform infrared spectroscopy, swelling test, and adsorption test. Fine, bead-free nanofiber with homogeneous nanofiber was electrospun. The resulting membrane was stable in distilled water, acidic, and basic media in 20 days. Moreover, the adsorption ability of nanofibrous membrane was studied over Cr (VI), Fe (III), and Ni (II) ions using Langmuir isotherm. Kinetic parameters were estimated using the Lagergren first-order, pseudo-second-order, and intraparticle diffusion kinetic models. Kinetic study showed that adsorption rate was high. However, the resulting nanofiber membrane showed less adsorption capacity at high concentration. The adsorption capacity of nanofiber was unaltered after five recycling runs, which indicated the reusability of chitosan/PVA/zeolite nanofibrous membrane. Therefore, chitosan/PVA/zeolite nanofiber can be a useful material for water treatment at moderate concentration of heavy metals.
    Matched MeSH terms: Zeolites
  12. Emami Moghaddam SA, Harun R, Mokhtar MN, Zakaria R
    Int J Biol Macromol, 2019 Jul 01;132:592-599.
    PMID: 30922914 DOI: 10.1016/j.ijbiomac.2019.03.191
    This research aimed to improve the stability of Chlorella-Alginate Beads (CABs) by zeolite molecular sieves 13X. Dissolution time of synthesized Zeolite-Algal-Alginate Beads (ZABs) in a chelating agent revealed a significant improvement on the beads stability (78.5 ± 0.5 min) compared to the control beads (51.5 ± 0.5 min) under the optimum conditions of zeolite/alginate (1.5:1), pH 5 and 2% of beads. Monitoring cell growth during 5 days of incubation showed good biocompatibility of zeolite 13X. Scanning electron microscopy (SEM) indicated rough surface and spherical shapes of ZABs. Energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR) of ZABs confirmed the presence of zeolite 13X within the matrix. The zeta potential value of ZABs indicated that the beads were relatively stable. The findings of this research showed that zeolite molecular sieves 13X have the potential to improve the stability of algal-alginate beads compared to common beads.
    Matched MeSH terms: Zeolites
  13. Iqhrammullah M, Marlina, Hedwig R, Karnadi I, Kurniawan KH, Olaiya NG, et al.
    Polymers (Basel), 2020 Apr 13;12(4).
    PMID: 32294999 DOI: 10.3390/polym12040903
    The use of polymeric material in heavy metal removal from wastewater is trending. Heavy metal removal from wastewater of the industrial process is of utmost importance in green/sustainable manufacturing. Production of absorbent materials from a natural source for industrial wastewater has been on the increase. In this research, polyurethane foam (PUF), an adsorbent used by industries to adsorb heavy metal from wastewater, was prepared from a renewable source. Castor oil-based polyurethane foam (COPUF) was produced and modified for improved adsorption performance using fillers, analyzed with laser-induced breakdown spectroscopy (LIBS). The fillers (zeolite, bentonite, and activated carbon) were added to the COPUF matrix allowing the modification on its surface morphology and charge. The materials were characterized using Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), and thermal gravimetry analysis (TGA), while their adsorption performance was studied by comparing the LIBS spectra. The bentonite-modified COPUF (B/COPUF) gave the highest value of the normalized Pb I (405.7 nm) line intensity (2.3), followed by zeolite-modified COPUF (Z/COPUF) (1.9), and activated carbon-modified COPUF (AC/COPUF) (0.2), which indicates the adsorption performance of Pb2+ on the respective materials. The heavy metal ions' adsorption on the B/COPUF dominantly resulted from the electrostatic attraction. This study demonstrated the potential use of B/COPUF in adsorption and LIBS quantitative analysis of aqueous heavy metal ions.
    Matched MeSH terms: Zeolites
  14. Muhamad N, Abdullah N, Rahman MA, Abas KH, Aziz AA, Othman MHD, et al.
    Environ Sci Pollut Res Int, 2018 Jul;25(19):19054-19064.
    PMID: 29721796 DOI: 10.1007/s11356-018-2074-3
    This work describes the development of supported zeolite-Y membranes, prepared using the hydrothermal method, for the removal of nickel from an aqueous solution. Alumina hollow fibers prepared using the phase inversion and sintering technique were used as an inert support. The supported zeolite-Y membranes were characterized using the field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and the water permeation and rejection test. The performance of the supported zeolite-Y membranes for heavy metal removal using batch adsorption and filtration test was studied using the atomic absorption spectroscopy (AAS). The adsorption study shows that the removal of nickel was pH-dependent but affected by the presence of α-alumina. The seeded zeolite-Y membrane gave the highest adsorption capacity which was 126.2 mg g-1. This enabled the membrane to remove 63% of nickel ions from the aqueous solution within 180 min of contact time. The adsorption mechanism of nickel onto the zeolite-Y membrane was best fitted to the Freundlich isotherm. The kinetic study concluded that the adsorption was best fitted to pseudo-second-order model with higher correlation coefficient (R2 = 0.9996). The filtration study proved that the zeolite-Y membrane enabled to reduce the concentration of heavy metal at parts per billion level.
    Matched MeSH terms: Zeolites
  15. Mojiri A, Aziz HA, Zaman NQ, Aziz SQ, Zahed MA
    J Environ Manage, 2014 Jun 15;139:1-14.
    PMID: 24662109 DOI: 10.1016/j.jenvman.2014.02.017
    Sequencing batch reactor (SBR) is one of the various methods of biological treatments used for treating wastewater and landfill leachate. This study investigated the treatment of landfill leachate and domestic wastewater by adding a new adsorbent (powdered ZELIAC; PZ) to the SBR technique. ZELIAC consists of zeolite, activated carbon, lime stone, rice husk ash, and Portland cement. The response surface methodology and central composite design were used to elucidate the nature of the response surface in the experimental design and describe the optimum conditions of the independent variables, including aeration rate (L/min), contact time (h), and ratio of leachate to wastewater mixture (%; v/v), as well as their responses (dependent variables). Appropriate conditions of operating variables were also optimized to predict the best value of responses. To perform an adequate analysis of the aerobic process, four dependent parameters, namely, chemical oxygen demand (COD), color, ammonia-nitrogen (NH3-N), and phenols, were measured as responses. The results indicated that the PZ-SBR showed higher performance in removing certain pollutants compared with SBR. Given the optimal conditions of aeration rate (1.74 L/min), leachate to wastewater ratio (20%), and contact time (10.31 h) for the PZ-SBR, the removal efficiencies for color, NH3-N, COD, and phenols were 84.11%, 99.01%, 72.84%, and 61.32%, respectively.
    Matched MeSH terms: Zeolites/chemistry*
  16. Khanday WA, Asif M, Hameed BH
    Int J Biol Macromol, 2017 Feb;95:895-902.
    PMID: 27789331 DOI: 10.1016/j.ijbiomac.2016.10.075
    Cross-linked beads of activated oil palm ash zeolite/chitosan (Z-AC/C) composite were prepared through the hydrothermal treatment of NaOH activated oil palm ash followed by beading with chitosan. The effects of initial dye concentration (50-400mg/L), temperature (30°C-50°C) and pH (3-13) on batch adsorption of methylene blue (MB) and acid blue 29 (AB29) were studied. Adsorption of both dyes was better described by Pseudo-second-order kinetics and Freundlich isotherm model. The maximum adsorption capacities of Z-AC/C were 151.51, 169.49, and 199.20mg/g for MB and 212.76, 238.09, and 270.27mg/g for AB29 at 30°C, 40°C, and 50°C, respectively.
    Matched MeSH terms: Zeolites/chemistry*
  17. Ninan N, Muthiah M, Bt Yahaya NA, Park IK, Elain A, Wong TW, et al.
    Colloids Surf B Biointerfaces, 2014 Mar 1;115:244-52.
    PMID: 24362063 DOI: 10.1016/j.colsurfb.2013.11.048
    In this article, gelatin/copper activated faujasites (CAF) composite scaffolds were fabricated by lyophilisation technique for promoting partial thickness wound healing. The optimised scaffold with 0.5% (w/w) of CAF, G (0.5%), demonstrated pore size in the range of 10-350 μm. Agar disc diffusion tests verified the antibacterial role of G (0.5%) and further supported that bacterial lysis was due to copper released from the core of CAF embedded in the gelatin matrix. The change in morphology of bacteria as a function of CAF content in gelatin scaffold was studied using SEM analysis. The confocal images revealed the increase in mortality rate of bacteria with increase in concentration of incorporated CAF in gelatin matrix. Proficient oxygen supply to needy cells is a continuing hurdle faced by tissue engineering scaffolds. The dissolved oxygen measurements revealed that CAF embedded in the scaffold were capable of increasing oxygen supply and thereby promote cell proliferation. Also, G (0.5%) exhibited highest cell viability on NIH 3T3 fibroblast cells which was mainly attributed to the highly porous architecture and its ability to enhance oxygen supply to cells. In vivo studies conducted on Sprague Dawley rats revealed the ability of G (0.5%) to promote skin regeneration in 20 days. Thus, the obtained data suggest that G (0.5%) is an ideal candidate for wound healing applications.
    Matched MeSH terms: Zeolites/pharmacology*
  18. Damayanti A, Ujang Z, Salim MR
    Bioresour Technol, 2011 Mar;102(6):4341-6.
    PMID: 21251818 DOI: 10.1016/j.biortech.2010.12.061
    The main objective of this work was to determine the effectiveness of various biofouling reducers (BFRs) to operational condition in hybrid membrane bioreactor (MBR) of palm oil mill effluent (POME). A series of tests involving three bench scale (100 L) hybrid MBR were operated at sludge retention times (SRTs) of 30 days with biofouling reducer (BFR). Three different biofouling reducers (BFRs) were powdered actived carbon (PAC), zeolite (Ze), and Moringa oleifera (Mo) with doses of 4, 8 and 12 g L(-1) respectively were used. Short-term filtration trials and critical flux tests were conducted. Results showed that, all BFRs successfully removed soluble microbial products (SMP), for PAC, Ze, and Mo at 58%, 42%, and 48%, respectively. At their optimum dosages, PAC provided above 70% reductions and 85% in fouling rates during the short-term filtration and critical flux tests.
    Matched MeSH terms: Zeolites/pharmacology*
  19. Shameli K, Ahmad MB, Zargar M, Yunus WM, Ibrahim NA
    Int J Nanomedicine, 2011;6:331-41.
    PMID: 21383858 DOI: 10.2147/IJN.S16964
    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12-3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO(3). The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller-Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications.
    Matched MeSH terms: Zeolites/chemistry*
  20. Mojiri A, Ahmad Z, Tajuddin RM, Arshad MF, Gholami A
    Environ Monit Assess, 2017 Jul;189(7):337.
    PMID: 28612336 DOI: 10.1007/s10661-017-6052-x
    Water pollution is a global problem. During current study, ammonia, phosphate, phenol, and copper(II) were removed from aqueous solution by subsurface and surface flow constructed wetland. In current investigation, distilled water was polluted with four contaminants including ammonia, phosphate, copper (Cu), and phenol. Response surface methodology and central composite design were applied to optimize pollutant removal during treatment by subsurface flow constructed wetland (SSFCW). Contact time (12 to 80 h) and initial pollutant concentration (20 to 85 mg/L) were selected as independent factors; some upper and lower ranges were also monitored for accuracy. In SSFCW, water hyacinth transplanted in two substrate layers, namely zeolite and cockle shell. SSFCW removed 87.7, 81.4, 74.7, and 54.9% of ammonia, phosphate, Cu, and phenol, respectively, at optimum contact time (64.5 h) and initial pollutant concentration (69.2 mg/L). Aqueous solution was moved to a surface flow constructed wetland (SFCW) after treating via SSFCW at optimum conditions. In SFCW, Typha was transplanted to a fixed powdered substrate layer, including bentonite, zeolite, and cockle shell. SFCW could develop performance of this combined system and could improve elimination efficacy of the four contaminants to 99.99%. So this combined CW showed a good performance in removing pollutants. Graphical abstract Wetlands arrangement for treating aqueous solution in current study.
    Matched MeSH terms: Zeolites
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links