Displaying publications 821 - 840 of 959 in total

Abstract:
Sort:
  1. Ghasemzadeh A, Jaafar HZ
    Molecules, 2013 May 21;18(5):5965-79.
    PMID: 23698049 DOI: 10.3390/molecules18055965
    The effect of foliar salicylic acid (SA) applications (10⁻³ and 10⁻⁵ M) on activities of nitrate reductase, guaiacol peroxidase (POD), superoxide dismutases (SOD), catalase (CAT) and proline enzymes and physiological parameters was evaluated in two ginger varieties (Halia Bentong and Halia Bara) under greenhouse conditions. In both varieties, tested treatments generally enhanced photosynthetic rate and total dry weight. Photosynthetic rate increases were generally accompanied by increased or unchanged stomatal conductance levels, although intercellular CO₂ concentrations of treated plants were typically lower than in controls. Lower SA concentrations were generally more effective in enhancing photosynthetic rate and plant growth. Exogenous application of SA increased antioxidant enzyme activities and proline content; the greatest responses were obtained in plants sprayed with 10⁻⁵ M SA, with significant increases observed in CAT (20.1%), POD (45.2%), SOD (44.1%) and proline (43.1%) activities. Increased CAT activity in leaves is naturally expected to increase photosynthetic efficiency and thus net photosynthesis by maintaining a constant CO₂ supply. Our results support the idea that low SA concentrations (10⁻⁵ M) may induce nitrite reductase synthesis by mobilizing intracellular NO³⁻ and can provide protection to nitrite reductase degradation in vivo in the absence of NO³⁻. Observed positive correlations among proline, SOD, CAT and POD activities in the studied varieties suggest that increased SOD activity was accompanied by increases in CAT and POD activities because of the high demands of H₂O₂ quenching.
  2. Mahdavi M, Namvar F, Ahmad MB, Mohamad R
    Molecules, 2013 May 21;18(5):5954-64.
    PMID: 23698048 DOI: 10.3390/molecules18055954
    The synthesis of nanoparticles has become a matter of great interest in recent times due to their various advantageous properties and applications in a variety of fields. The exploitation of different plant materials for the biosynthesis of nanoparticles is considered a green technology because it does not involve any harmful chemicals. In this study, iron oxide nanoparticles (Fe3O4-NPs) were synthesized using a rapid, single step and completely green biosynthetic method by reduction of ferric chloride solution with brown seaweed (BS, Sargassum muticum) water extract containing sulphated polysaccharides as a main factor which acts as reducing agent and efficient stabilizer. The structural and properties of the Fe3O4-NPs were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray fluorescence spectrometry (EDXRF), vibrating sample magnetometry (VSM) and transmission electron microscopy. The average particle diameter as determined by TEM was found to be 18 ± 4 nm. X-ray diffraction showed that the nanoparticles are crystalline in nature, with a cubic shape. The nanoparticles synthesized through this biosynthesis method can potentially useful in various applications.
  3. Kalantari K, Moniri M, Boroumand Moghaddam A, Abdul Rahim R, Bin Ariff A, Izadiyan Z, et al.
    Molecules, 2017 Sep 30;22(10).
    PMID: 28974019 DOI: 10.3390/molecules22101645
    Zerumbone (ZER) is a phytochemical isolated from the subtropical Zingiberaceae family and as a natural compound it has different biomedical properties such as antioxidant, anti-inflammatory anti-proliferative activity. ZER also has effects on angiogenesis and acts as an antitumor drug in the treatment of cancer, showing selective toxicity toward various cancer cell lines. Several techniques also have been established for extraction of ZER from the rhizomes of ginger. This review paper is an overview of recent research about different extraction methods and their efficiencies, in vivo and vitro investigations of ZER and also its prominent chemopreventive properties and treatment mechanisms. Most of the studies mentioned in this review paper may be useful use as a knowledge summary to explain ZER extraction and anticancer activities, which will show a way for the development of strategies in the treatment of malignancies using ZER.
  4. Akili AWR, Hardianto A, Latip J, Permana A, Herlina T
    Molecules, 2023 Dec 08;28(24).
    PMID: 38138500 DOI: 10.3390/molecules28248010
    The emergence of antimicrobial resistance due to the widespread and inappropriate use of antibiotics has now become the global health challenge. Flavonoids have long been reported to be a potent antimicrobial agent against a wide range of pathogenic microorganisms in vitro. Therefore, new antibiotics development based on flavonoid structures could be a potential strategy to fight against antibiotic-resistant infections. This research aims to screen the potency of flavonoids of the genus Erythrina as an inhibitor of bacterial ATPase DNA gyrase B. From the 378 flavonoids being screened, 49 flavonoids show potential as an inhibitor of ATPase DNA gyrase B due to their lower binding affinity compared to the inhibitor and ATP. Further screening for their toxicity, we identified 6 flavonoids from these 49 flavonoids, which are predicted to have low toxicity. Among these flavonoids, erystagallin B (334) is predicted to have the best pharmacokinetic properties, and therefore, could be further developed as new antibacterial agent.
  5. Jiang Y, Wu H, Ho PCL, Tang X, Ao H, Chen L, et al.
    Molecules, 2023 Nov 28;28(23).
    PMID: 38067553 DOI: 10.3390/molecules28237824
    Seahorse is a valuable marine-animal drug widely used in traditional Chinese medicine (TCM), and which was first documented in the "Ben Cao Jing Ji Zhu" during the Liang Dynasty. Hippocampus kelloggi (HK) is the most common seahorse species in the medicinal material market and is one of the genuine sources of medicinal seahorse documented in the Chinese pharmacopeia. It is mainly cultivated in the Shandong, Fujian, and Guangxi Provinces in China. However, pseudo-HK, represented by Hippocampus ingens (HI) due to its similar appearance and traits, is often found in the market, compromising the safety and efficacy of clinical use. Currently, there is a lack of reliable methods for identifying these species based on their chemical composition. In this study, we employed, for the first time, a strategy combining gas chromatography-mass spectrometry (GC-MS) fingerprints and chemical patterns in order to identify HK and HI; it is also the first metabolomic study to date of HI as to chemical components. The obtained results revealed remarkable similarities in the chemical fingerprints, while significant differences were also observed. By employing hierarchical cluster analysis (HCA) and principal component analysis (PCA), based on the relative contents of their characteristic peaks, all 34 samples were successfully differentiated according to their species of origin, with samples from the same species forming distinct clusters. Moreover, nonadecanoic acid and behenic acid were exclusively detected in HK samples, further distinguishing them from HI samples. Additionally, the relative contents of lauric acid, tetradecanoic acid, pentadecanoic acid, n-hexadecanoic acid, palmitoleic acid, margaric acid, oleic acid, fenozan acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) exhibited significant differences between HK and HI (p < 0.0001), as determined by an unpaired t-test. Orthogonal partial least squares discriminant analysis (OPLS-DA) identified seven components (DHA, EPA, n-hexadecanoic acid, tetradecanoic acid, palmitoleic acid, octadecanoic acid, and margaric acid) with high discriminatory value (VIP value > 1). Thus, nonadecanoic acid, behenic acid, and these seven compounds can be utilized as chemical markers for distinguishing HK from HI. In conclusion, our study successfully developed a combined strategy of GC-MS fingerprinting and chemical pattern recognition for the identification of HK and HI, and we also discovered chemical markers that can directly differentiate between the two species. This study can provide a foundation for the authentication of Hippocampus and holds significant importance for the conservation of wild seahorse resources.
  6. Amran S, Salleh MZM, Hizaddin HF, Luthfi AAI, Alhadid A, Hadj-Kali MK
    Molecules, 2023 Dec 16;28(24).
    PMID: 38138617 DOI: 10.3390/molecules28248129
    The conventional hydrodenitrogenation method is expensive and involves the use of catalysts and harsh procedures. In the last few years, ionic liquids (ILs) have gained attention as a promising alternative solvent for fuel oil extractive denitrogenation. In this work, the Conductor-like Screening Model for Real Solvents (COSMO-RS) was used to screen 173 potential ILs as solvents for fuel oil. Two ILs (1-ethyl-3-methylimidazolium dicyanamide ([EMIM][N(CN)2]) and 1-ethyl-3-methylimidazolium methanesulfonate ([EMIM][MeSO3])) were selected for experimental investigation. The experimental liquid-liquid extraction of pyrrole (taken as the model nitrogen compound) from n-hexadecane (the model fuel) was conducted at 298 K and 1 atm with feed concentrations of pyrrole ranging from 10 to 50 wt%, using either the two pure ILs or their mixtures with dimethylformamide or ethylene glycol. Moreover, the NRTL model was effectively used to correlate the experimental tie lines. This work shows that the use of a binary mixture of ILs with a conventional solvent results in good selectivity, but has a low capacity for extracting pyrrole compounds. On the other hand, using an IL-IL mixture exhibits good results for both capacity and selectivity. All the ternary systems tested showed positive slopes, indicating that the nitrogen compounds had a higher affinity for the IL and binary mixture extract phase. In fact, the extraction efficiency for all the systems shows promising results. This characteristic is advantageous, as it requires less solvent to remove nitrogen compounds.
  7. Mohd Sahardi NFN, Makpol S
    Molecules, 2023 Aug 03;28(15).
    PMID: 37570837 DOI: 10.3390/molecules28155867
    Inflammation or inflamm-aging is a chronic low-grade inflammation that contributes to numerous types of degenerative diseases among the elderly and might be impeded by introducing an anti-inflammatory agent like Moringa oleifera Lam (moringa) and Zingiber officinale Roscoe (ginger). Therefore, this paper aims to review the role of moringa and ginger in suppressing inflamm-aging to prevent degenerative diseases. Various peer-reviewed publications were searched and downloaded using the reputed search engine "Pubmed" and "Google Scholar". These materials were reviewed and tabulated. A comparison between these previous findings was made based on the mechanism of action of moringa and ginger against degenerative diseases, focusing on their anti-inflammatory properties. Many studies have reported the efficacy of moringa and ginger in type 2 diabetes mellitus, neurodegenerative disease, cardiovascular disease, cancer, and kidney disease by reducing inflammatory cytokines activities, mainly of TNF-α and IL-6. They also enhanced the activity of antioxidant enzymes, including catalase, glutathione, and superoxide dismutase. The anti-inflammatory activities can be seen by inhibiting NF-κβ activity. Thus, the anti-inflammatory potential of moringa and ginger in various types of degenerative diseases due to inflamm-aging has been shown in many recent types of research.
  8. Adamu A, Ahmad K, Siddiqui Y, Ismail IS, Asib N, Bashir Kutawa A, et al.
    Molecules, 2021 Jun 25;26(13).
    PMID: 34202405 DOI: 10.3390/molecules26133902
    The bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious rice diseases, causing huge yield losses worldwide. Several technologies and approaches have been opted to reduce the damage; however, these have had limited success. Recently, scientists have been focusing their efforts on developing efficient and environmentally friendly nanobactericides for controlling bacterial diseases in rice fields. In the present study, a scanning electron microscope (SEM), transmission electron microscope (TEM), and a confocal laser scanning microscope (CLSM) were utilized to investigate the mode of actions of ginger EOs on the cell structure of Xoo. The ginger EOs caused the cells to grow abnormally, resulting in an irregular form with hollow layers, whereas the dimethylsulfoxide (DMSO) treatment showed a typical rod shape for the Xoo cell. Ginger EOs restricted the growth and production of biofilms by reducing the number of biofilms generated as indicated by CLSM. Due to the instability, poor solubility, and durability of ginger EOs, a nanoemulsions approach was used, and a glasshouse trial was performed to assess their efficacy on BLB disease control. The in vitro antibacterial activity of the developed nanobactericides was promising at different concentration (50-125 µL/mL) tested. The efficacy was concentration-dependent. There was significant antibacterial activity recorded at higher concentrations. A glasshouse trial revealed that developed nanobactericides managed to suppress BLB disease severity effectively. Treatment at a concentration of 125 μL/mL was the best based on the suppression of disease severity index, AUDPC value, disease reduction (DR), and protection index (PI). Furthermore, findings on plant growth, physiological features, and yield parameters were significantly enhanced compared to the positive control treatment. In conclusion, the results indicated that ginger essential oils loaded-nanoemulsions are a promising alternative to synthetic antibiotics in suppressing Xoo growth, regulating the BLB disease, and enhancing rice yield under a glasshouse trial.
  9. Nazarudin MF, Alias NH, Balakrishnan S, Wan Hasnan WNI, Noor Mazli NAI, Ahmad MI, et al.
    Molecules, 2021 Aug 27;26(17).
    PMID: 34500650 DOI: 10.3390/molecules26175216
    Recent increased interest in seaweed is motivated by attention generated in their bioactive components that have potential applications in the functional food and nutraceutical industries. In the present study, nutritional composition, metabolite profiles, phytochemical screening and physicochemical properties of freeze-dried brown seaweed, Sargassum polycystum were evaluated. Results showed that the S. polycystum had protein content of 8.65 ± 1.06%, lipid of 3.42 ± 0.01%, carbohydrate of 36.55 ± 1.09% and total dietary fibre content of 2.75 ± 0.58% on dry weight basis. The mineral content of S. polycystum including Na, K, Ca, Mg Fe, Se and Mn were 8876.45 ± 0.47, 1711.05 ± 0.07, 1079.75 ± 0.30, 213.85 ± 0.02, 277.6 ± 0.12, 4.70 ± 0.00 and 4.45 ± 0.00 mg 100/g DW, respectively. Total carotenoid, chlorophyll a and b content in S. polycystum were detected at 45.28 ± 1.77, 141.98 ± 1.18 and 111.29 µg/g respectively. The total amino acid content was 74.90 ± 1.45%. The study revealed various secondary metabolites and major constituents of S. polycystum fibre to include fucose, mannose, galactose, xylose and rhamnose. The metabolites extracted from the seaweeds comprised n-hexadecanoic acid, 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester, benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy- methyl ester, 1-dodecanol, 3,7,11-trimethyl-, which were the most abundant. The physicochemical properties of S. polycystum such as water-holding and swelling capacity were comparable to several commercial fibre-rich products. In conclusion, results of this study indicate that S. polycystum is a potential candidate as functional food sources for human consumption and its cultivation needs to be encouraged.
  10. Leong SW, Chia SL, Abas F, Yusoff K
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858795 DOI: 10.3390/molecules25173877
    In the present study, we investigated the in-vitro anti-cancer potential of six diarylpentanoids against a panel of BRAF- and KRAS-mutated colorectal cancer cell lines including T84, SW620, LoVo, HT29, NCI-H508, RKO, and LS411N cells. Structure-activity relationship study suggested that the insertions of tetrahydro-4H-thiopyran-4-one and brominated phenyl moieties are essential for better cytotoxicity. Among the evaluated analogs, 2e has been identified as the lead compound due to its low IC50 values of approximately 1 µM across all cancer cell lines and high chemotherapeutic index of 7.1. Anti-proliferative studies on LoVo cells showed that 2e could inhibit cell proliferation and colony formations by inducing G2/M cell cycle arrest. Subsequent cell apoptosis assay confirmed that 2e is a Bcl-2 inhibitor that could induce intrinsic cell apoptosis by creating a cellular redox imbalance through its direct inhibition on the Bcl-2 protein. Further molecular docking studies revealed that the bromophenyl moieties of 2e could interact with the Bcl-2 surface pocket through hydrophobic interaction, while the tetrahydro-4H-thiopyran-4-one fragment could form additional Pi-sulfur and Pi-alkyl interactions in the same binding site. In all, the present results suggest that 2e could be a potent lead that deserves further modification and investigation in the development of a new Bcl-2 inhibitor.
  11. Rubnawaz S, Kayani WK, Akhtar N, Mahmood R, Khan A, Okla MK, et al.
    Molecules, 2021 Aug 11;26(16).
    PMID: 34443462 DOI: 10.3390/molecules26164874
    Ajuga bracteosa Wall. ex Benth. is an endangered medicinal herb traditionally used against different ailments. The present study aimed to create new insight into the fundamental mechanisms of genetic transformation and the biological activities of this plant. We transformed the A. bracteosa plant with rol genes of Agrobacterium rhizogenes and raised the regenerants from the hairy roots. These transgenic regenerants were screened for in vitro antioxidant activities, a range of in vivo assays, elemental analysis, polyphenol content, and different phytochemicals found through HPLC. Among 18 polyphenolic standards, kaempferol was most abundant in all transgenic lines. Furthermore, transgenic line 3 (ABRL3) showed maximum phenolics and flavonoids content among all tested plant extracts. ABRL3 also demonstrated the highest total antioxidant capacity (8.16 ± 1 μg AAE/mg), total reducing power, (6.60 ± 1.17 μg AAE/mg), DPPH activity (IC50 = 59.5 ± 0.8 μg/mL), hydroxyl ion scavenging (IC50 = 122.5 ± 0.90 μg/mL), and iron-chelating power (IC50 = 154.8 ± 2 μg/mL). Moreover, transformed plant extracts produced significant analgesic, anti-inflammatory, anticoagulant, and antidepressant activities in BALB/c mice models. In conclusion, transgenic regenerants of A. bracteosa pose better antioxidant and pharmacological properties under the effect of rol genes as compared to wild-type plants.
  12. Soib HH, Ismail HF, Husin F, Abu Bakar MH, Yaakob H, Sarmidi MR
    Molecules, 2020 Jan 24;25(3).
    PMID: 31991676 DOI: 10.3390/molecules25030517
    Herbal plants are traditionally utilized to treat various illnesses. They contain phytochemicals that can be extracted using conventional methods such as maceration, soxhlet, and boiling, as well as non-conventional methods including ultrasonic, microwave, and others. Carica papaya leaves have been used for the treatment of dengue, fungal, and bacterial infections as well as an ingredient in anti-aging products. Phytochemicals analysis detected the presence of kaempferol, myricetin, carpaine, pseudocarpaine, dehydrocarpaine I and II, ferulic acid, caffeic acid, chlorogenic acid, β-carotene, lycopene, and anthraquinones glycoside. Conventional preparation by boiling and simple maceration is practical, simple, and safe; however, only polar phytochemicals are extracted. The present study aims to investigate the effects of three different non-conventional extraction techniques (ultrasonic-assisted extraction, reflux, and agitation) on C. papaya phytochemical constituents, the antioxidant capacity, and wound-healing activities. Among the three techniques, the reflux technique produced the highest extraction yield (17.86%) with the presence of saponins, flavonoids, coumarins, alkaloids, and phenolic metabolites. The reflux technique also produced the highest 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging with an IC50 value of 0.236 mg/mL followed by ultrasonic-assisted extraction (UAE) (IC50: 0.377 mg/mL) and agitation (IC50: 0.404 mg/mL). At tested concentrations (3.125 µg/mL to 500 µg/mL), all extracts do not exhibit a cytotoxicity effect on the human skin fibroblast, HSF1184. Interestingly, reflux and UAE were active fibroblast proliferators that support 85% (12.5 µg/mL) and 41% (6.25 µg/mL) better cell growth, respectively. Additionally, during the early 24 h of the scratch assay, the migration rate at 12.5 µg/mL was faster for all extracts with 51.8% (reflux), 49.3% (agitation), and 42.5% (UAE) as compared to control (21.87%). At 48 h, proliferated cells covered 78.7% of the scratch area for reflux extract, 63.1% for UAE, 61% for agitation, and 42.6% for control. Additionally, the collagen synthesis was enhanced for 31.6% and 65% after 24 and 48 h of treatment for reflux. An HPLC-MS/MS-QTOF (quadruple time-of-flight) analysis of reflux identified nine phytochemicals, including carpaine, kaempferol 3-(2G-glucosylrutinoside), kaempferol 3-(2″-rhamnosylgalactoside), 7-rhamnoside, kaempferol 3-rhamnosyl-(1->2)-galactoside-7-rhamnoside, luteolin 7-galactosyl-(1->6)-galactoside, orientin 7-O-rhamnoside, 11-hydroperoxy-12,13-epoxy-9-octadecenoic acid, palmitic amide, and 2-hexaprenyl-6-methoxyphenol. The results suggested that reflux was the best technique as compared to ultrasonic and agitation.
  13. Maluin FN, Hussein MZ
    Molecules, 2020 Apr 01;25(7).
    PMID: 32244664 DOI: 10.3390/molecules25071611
    The rise in the World's food demand in line with the increase of the global population has resulted in calls for more research on the production of sustainable food and sustainable agriculture. A natural biopolymer, chitosan, coupled with nanotechnology could offer a sustainable alternative to the use of conventional agrochemicals towards a safer agriculture industry. Here, we review the potential of chitosan-based agronanochemicals as a sustainable alternative in crop protection against pests, diseases as well as plant growth promoters. Such effort offers better alternatives: (1) the existing agricultural active ingredients can be encapsulated into chitosan nanocarriers for the formation of potent biocides against plant pathogens and pests; (2) the controlled release properties and high bioavailability of the nanoformulations help in minimizing the wastage and leaching of the agrochemicals' active ingredients; (3) the small size, in the nanometer regime, enhances the penetration on the plant cell wall and cuticle, which in turn increases the argochemical uptake; (4) the encapsulation of agrochemicals in chitosan nanocarriers shields the toxic effect of the free agrochemicals on the plant, cells and DNA, thus, minimizing the negative impacts of agrochemical active ingredients on human health and environmental wellness. In addition, this article also briefly reviews the mechanism of action of chitosan against pathogens and the elicitations of plant immunity and defense response activities of chitosan-treated plants.
  14. Lim YH, Foo HL, Loh TC, Mohamad R, Abdul Rahim R
    Molecules, 2020 Feb 11;25(4).
    PMID: 32054138 DOI: 10.3390/molecules25040779
    Tryptophan is one of the most extensively used amino acids in livestock industry owing to its effectiveness in enhancing the growth performance of animals. Conventionally, the production of tryptophan relies heavily on genetically modified Escherichia coli but its pathogenicity is a great concern. Our recent study demonstrated that a lactic acid bacterium (LAB), Pediococcus acidilactici TP-6 that isolated from Malaysian food was a promising tryptophan producer. However, the tryptophan production must enhance further for viable industrial application. Hence, the current study evaluated the effects of medium components and optimized the medium composition for tryptophan production by P. acidilactici TP-6 statistically using Plackett-Burman Design, and Central Composite Design. The optimized medium containing molasses (14.06 g/L), meat extract (23.68 g/L), urea (5.56 g/L) and FeSO4 (0.024 g/L) significantly enhanced the tryptophan production by 150% as compared to the control de Man, Rogosa and Sharpe medium. The findings obtained in this study revealed that rapid evaluation and effective optimization of medium composition governing tryptophan production by P. acidilactici TP-6 were feasible via statistical approaches. Additionally, the current findings reveal the potential of utilizing LAB as a safer alternative tryptophan producer and provides insight for future exploitation of various amino acid productions by LAB.
  15. Ibrahim S, Abdul Khalil K, Zahri KNM, Gomez-Fuentes C, Convey P, Zulkharnain A, et al.
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858796 DOI: 10.3390/molecules25173878
    With the progressive increase in human activities in the Antarctic region, the possibility of domestic oil spillage also increases. Developing means for the removal of oils, such as canola oil, from the environment and waste "grey" water using biological approaches is therefore desirable, since the thermal process of oil degradation is expensive and ineffective. Thus, in this study an indigenous cold-adapted Antarctic soil bacterium, Rhodococcus erythropolis strain AQ5-07, was screened for biosurfactant production ability using the multiple approaches of blood haemolysis, surface tension, emulsification index, oil spreading, drop collapse and "MATH" assay for cellular hydrophobicity. The growth kinetics of the bacterium containing different canola oil concentration was studied. The strain showed β-haemolysis on blood agar with a high emulsification index and low surface tension value of 91.5% and 25.14 mN/m, respectively. Of the models tested, the Haldane model provided the best description of the growth kinetics, although several models were similar in performance. Parameters obtained from the modelling were the maximum specific growth rate (qmax), concentration of substrate at the half maximum specific growth rate, Ks% (v/v) and the inhibition constant Ki% (v/v), with values of 0.142 h-1, 7.743% (v/v) and 0.399% (v/v), respectively. These biological coefficients are useful in predicting growth conditions for batch studies, and also relevant to "in field" bioremediation strategies where the concentration of oil might need to be diluted to non-toxic levels prior to remediation. Biosurfactants can also have application in enhanced oil recovery (EOR) under different environmental conditions.
  16. Mohammed NK, Tan CP, Manap YA, Muhialdin BJ, Hussin ASM
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858785 DOI: 10.3390/molecules25173873
    The application of the spray drying technique in the food industry for the production of a broad range of ingredients has become highly desirable compared to other drying techniques. Recently, the spray drying technique has been applied extensively for the production of functional foods, pharmaceuticals and nutraceuticals. Encapsulation using spray drying is highly preferred due to economic advantages compared to other encapsulation methods. Encapsulation of oils using the spray drying technique is carried out in order to enhance the handling properties of the products and to improve oxidation stability by protecting the bioactive compounds. Encapsulation of oils involves several parameters-including inlet and outlet temperatures, total solids, and the type of wall materials-that significantly affect the quality of final product. Therefore, this review highlights the application and optimization of the spray drying process for the encapsulation of oils used as food ingredients.
  17. Jamain Z, Omar NF, Khairuddean M
    Molecules, 2020 Aug 20;25(17).
    PMID: 32825211 DOI: 10.3390/molecules25173780
    A series of liquid crystal molecules with two Schiff base linking units and a cinnamaldehyde core with different terminal groups were synthesized and characterized. The intermediates of 4-heptyloxybenzaldehyde (1a) and 4-dodeyloxybenzaldehyde (1b) were synthesized through the alkylation of 4-hydroxybenzaldehyde with a series of bromoalkane. A condensation reaction of cinnamaldehyde, 1,4-phenylenediamine and a series of substituted benzaldehydes with different terminal groups such as bromo, chloro, hydroxy, cinnamaldehyde, hydrogen, methoxy, heptyloxy and dodecyloxy produced a series of new cinnamaldehyde-based compounds, 2-9, respectively. All these compounds were characterized using Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and CHN elemental analysis. The liquid crystal properties of these compounds were determined using polarized optical microscopy (POM), and their transitions were further confirmed using differential scanning calorimetry (DSC). Compounds with chloro, bromo, methoxy, heptyloxy, and dodecyloxy substituents are mesogenic compounds with nematic phase behavior. However, the other compounds were found to be non-mesogenic without any mesophase transitions. The structure-property relationship was investigated in order to study the effect of different terminal groups and Schiff base linking units on the liquid crystalline behavior of these compounds.
  18. Muchtaridi M, Fauzi M, Khairul Ikram NK, Mohd Gazzali A, Wahab HA
    Molecules, 2020 Sep 01;25(17).
    PMID: 32882868 DOI: 10.3390/molecules25173980
    Over the years, coronaviruses (CoV) have posed a severe public health threat, causing an increase in mortality and morbidity rates throughout the world. The recent outbreak of a novel coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the current Coronavirus Disease 2019 (COVID-19) pandemic that affected more than 215 countries with over 23 million cases and 800,000 deaths as of today. The situation is critical, especially with the absence of specific medicines or vaccines; hence, efforts toward the development of anti-COVID-19 medicines are being intensively undertaken. One of the potential therapeutic targets of anti-COVID-19 drugs is the angiotensin-converting enzyme 2 (ACE2). ACE2 was identified as a key functional receptor for CoV associated with COVID-19. ACE2, which is located on the surface of the host cells, binds effectively to the spike protein of CoV, thus enabling the virus to infect the epithelial cells of the host. Previous studies showed that certain flavonoids exhibit angiotensin-converting enzyme inhibition activity, which plays a crucial role in the regulation of arterial blood pressure. Thus, it is being postulated that these flavonoids might also interact with ACE2. This postulation might be of interest because these compounds also show antiviral activity in vitro. This article summarizes the natural flavonoids with potential efficacy against COVID-19 through ACE2 receptor inhibition.
  19. Adeyi AA, Jamil SNAM, Abdullah LC, Choong TSY, Lau KL, Alias NH
    Molecules, 2020 Jun 07;25(11).
    PMID: 32517324 DOI: 10.3390/molecules25112650
    Proper remediation of aquatic environments contaminated by toxic organic dyes has become a research focus globally for environmental and chemical engineers. This study evaluates the adsorption potential of a polymer-based adsorbent, thiourea-modified poly(acrylonitrile-co-acrylic acid) (T-PAA) adsorbent, for the simultaneous uptake of malachite green (MG) and methylene blue (MB) dye ions from binary system in a continuous flow adsorption column. The influence of inlet dye concentrations, pH, flow rate, and adsorbent bed depth on adsorption process were investigated, and the breakthrough curves obtained experimentally. Results revealed that the sorption capacity of the T-PAA for MG and MB increase at high pH, concentration and bed-depth. Thomas, Bohart-Adams, and Yoon-Nelson models constants were calculated to describe MG and MB adsorption. It was found that the three dynamic models perfectly simulate the adsorption rate and behavior of cationic dyes entrapment. Finally, T-PAA adsorbent demonstrated good cyclic stability. It can be regenerated seven times (or cycles) with no significant loss in adsorption potential. Overall, the excellent sorption capacity and multiple usage make T-PAA polymer an attractive adsorbent materials for treatment of multicomponent dye bearing effluent in a fixed-bed column system.
  20. Muhialdin BJ, Saari N, Meor Hussin AS
    Molecules, 2020 Jun 07;25(11).
    PMID: 32517380 DOI: 10.3390/molecules25112655
    The challenges to fulfill the demand for a safe food supply are dramatically increasing. Mycotoxins produced by certain fungi cause great economic loss and negative impact on the sustainability of food supplies. Moreover, the occurrence of mycotoxins at high levels in foods poses a high health threat for the consumers. Biological detoxification has exhibited a high potential to detoxify foodstuffs on a cost-effective and large scale. Lactic acid bacteria showed a good potential as an alternative strategy for the elimination of mycotoxins. The current review describes the health and economic impacts associated with mycotoxin contamination in foodstuffs. Moreover, this review highlights the biological detoxification of common food mycotoxins by lactic acid bacteria.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links