Displaying publications 821 - 840 of 3987 in total

Abstract:
Sort:
  1. Khairul Hasni NA, Anual ZF, Rashid SA, Syed Abu Thahir S, Veloo Y, Fang KS, et al.
    Environ Pollut, 2023 May 01;324:121095.
    PMID: 36682614 DOI: 10.1016/j.envpol.2023.121095
    Contamination of water systems with endocrine disrupting chemicals (EDCs) is becoming a major public health concern due to their toxicity and ubiquity. The intrusion of EDCs into water sources and drinking water has been associated with various adverse health effects on humans. However, there is no comprehensive overview of the occurrence of EDCs in Malaysia's water systems. This report aims to describe the occurrence of EDCs and their locations. Literature search was conducted electronically in two databases (PubMed and Scopus). A total of 41 peer-reviewed articles published between January 2000 and May 2021 were selected. Most of the articles dealt with pharmaceuticals (16), followed by pesticides (7), hormones (7), mixed compounds (7), and plasticisers (4). Most studies (40/41) were conducted in Peninsular Malaysia, with 60.9% in the central region and almost half (48.8%) in the Selangor State. Only one study was conducted in the northern region and East Malaysia. The Langat River, the Klang River, and the Selangor River were among the most frequently studied EDC-contaminated surface waters, while the Pahang River and the Skudai River had the highest concentrations of some of the listed compounds. Most of the risk assessments resulted in a hazard quotient (HQ) and a risk quotient (RQ)  1 in the Selangor River. An RQ > 1 for combined pharmaceuticals was found in Putrajaya tap water. Overall, this work provides a comprehensive overview of the occurrence of EDCs in Malaysia's water systems. The findings from this review can be used to mitigate risks and strengthen legislation and policies for safer drinking water.
    Matched MeSH terms: Drinking Water*
  2. Chen HL, Selvam SB, Ting KN, Gibbins CN
    Environ Monit Assess, 2023 Jan 18;195(2):307.
    PMID: 36652034 DOI: 10.1007/s10661-022-10856-5
    Recent increase in awareness of the extent of microplastic contamination in marine and freshwater systems has heightened concerns over the ecological and human health risks of this ubiquitous material. Assessing risks posed by microplastic in freshwater systems requires sampling to establish contamination levels, but standard sampling protocols have yet to be established. An important question is whether sampling and assessment should focus on microplastic concentrations in the water or the amount deposited on the bed. On three dates, five replicated water and bed sediment samples were collected from each of the eight sites along the upper reach of the Semenyih River, Malaysia. Microplastics were found in all 160 samples, with mean concentrations of 3.12 ± 2.49 particles/L in river water and 6027.39 ± 16,585.87 particles/m2 deposited on the surface of riverbed sediments. Fibres were the dominant type of microplastic in all samples, but fragments made up a greater proportion of the material on the bed than in the water. Within-site variability in microplastic abundance was high for both water and bed sediments, and very often greater than between-site variability. Patterns suggest that microplastic accumulation on the bed is spatially variable, and single samples are therefore inadequate for assessing bed contamination levels at a site. Sites with the highest mean concentrations in samples of water were not those with the highest concentrations on the bed, indicating that monitoring based only on water samples may not provide a good picture of either relative or absolute bed contamination levels, nor the risks posed to benthic organisms.
    Matched MeSH terms: Fresh Water; Water Quality
  3. Moideen SNF, Krishnan S, Li YY, Hassim MH, Kamyab H, Nasrullah M, et al.
    Chemosphere, 2023 Mar;317:137923.
    PMID: 36682635 DOI: 10.1016/j.chemosphere.2023.137923
    An anaerobic membrane bioreactor (AnMBR) was employed as primary treatment unit for anaerobic treatment of simulated wastewater to produce high effluent quality. A lab scale hollow fiber membrane was used to scrutinize the performance of AnMBR as a potential treatment system for simulated milk wastewater and analyze its energy recovery potential. The 15 L bioreactor was operated continuously at mesophilic conditions (35 °C) with a pH constant of 7.0. The membrane flux was in the range of 9.6-12.6 L/m2. h. The different organic loading rates (OLRs) of 1.61, 3.28, 5.01, and 8.38 g-COD/L/d, of simulated milk wastewater, were fed to the reactor and the biogas production rate was analyzed, respectively. The results revealed that the COD removal efficiencies of 99.54 ± 0.001% were achieved at the OLR of 5.01 gCOD/L/d. The highest methane yield was found to be at OLR of 1.61 gCOD/L/d at HRT of 30 d with the value of 0.33 ± 0.01 L-CH4/gCOD. Moreover, based on the analysis of energy balance in the AnMBR system, it was found that energy is positive at all the given HRTs. The net energy production (NEP) ranged from 2.594 to 3.268 kJ/gCOD, with a maximum NEP value of 3.268 kJ/gCOD at HRT 10 d HRT. Bioenergy recovery with the maximum energy ratio, of 4.237, was achieved with an HRT of 5 d. The study suggests a sizable energy saving with the anaerobic membrane process.
    Matched MeSH terms: Waste Water*
  4. Heshammuddin NA, Al-Gheethi A, Saphira Radin Mohamed RM, Bin Khamidun MH
    Environ Res, 2023 Apr 01;222:115316.
    PMID: 36669587 DOI: 10.1016/j.envres.2023.115316
    Xenobiotic Organic Compounds (XOCs) have been widely considered to be pollutant compounds due to their harmful impacts on aquatic life. However, there have been few rigorous studies of cutting-edge technology used to eradicate XOCs and their presence in bathroom greywater. The present review provides a comprehensive examination of current methodologies used for removing XOCs by photocatalysis of green nanoparticles. It was appeared that zinc oxide nanoparticles (ZnO NPs) have high efficiency (99%) in photocatalysis process. Green synthesis provides proven processes that do not require dangerous chemicals or expensive equipment, making photocatalysis a potential solution for the status quo. XOCs residue was decomposed, and pollutants were eliminated with varied degrees of efficiency using green synthesis ZnO nanoparticles. It is hypothesized that the utilization of photocatalysis can create a greywater treatment system capable of degrading the toxic XOCs in greywater while increasing the pace of production. Hence, this review will be beneficial in improving greywater quality and photocatalysis using green nanoparticles can be an immediate platform in solving the issue regarding the existence of XOCs in greywater in Malaysia. Researchers in the future may benefit from focusing on optimizing photocatalytic degradation using green-synthesis ZnO. It might also help with the creativity and productivity of the next generation of authoritative concerns, notably water conservation.
    Matched MeSH terms: Water Pollutants, Chemical*
  5. Teow YH, Nordin NI, Mohammad AW
    Environ Sci Pollut Res Int, 2019 Nov;26(33):33747-33757.
    PMID: 29754300 DOI: 10.1007/s11356-018-2189-6
    Textile wastewater contains methylene blue (MB), a major coloring agent in textile industry. Activated carbon (AC) is the most widely used adsorbent in removing dyes from industrial wastewater. However, high production cost of AC is the major obstacle for its wide application in dye wastewater treatment. In this study, a sustainable approach in synthesizing graphenic adsorbent from palm oil mill effluent (POME), a potential carbonaceous source, has been explored. This new development in adsorption technique is considered as green synthesis as it does not require any binder during the synthesis process, and at the same time, it helps to solve the bottleneck of palm oil industry as POME is the main cause contributed to Malaysia's water pollution problem. The synthesized GSC was characterized through XRD, FESEM, and EDX. The adsorption performance of the synthesized GSC was evaluated by adsorption of MB. The effect of initial concentration of synthetic MB solution (1-20 mg/L) and weight of GSC (5-20 g) were investigated. A remarkable change in color of synthetic MB solution from blue to crystal clear was observed at the end of adsorption study. High efficiency of the synthesized GSC for dye-contaminated wastewater treatment is concluded.
    Matched MeSH terms: Water Pollution; Waste Water
  6. Malik A, Tikhamarine Y, Sammen SS, Abba SI, Shahid S
    PMID: 33751346 DOI: 10.1007/s11356-021-13445-0
    Drought is considered one of the costliest natural disasters that result in water scarcity and crop damage almost every year. Drought monitoring and forecasting are essential for the efficient management of water resources and sustainability in agriculture. However, the design of a consistent drought prediction model based on the dynamic relationship of the drought index with its antecedent values remains a challenging task. In the present research, the SVR (support vector regression) model was hybridized with two different optimization algorithms namely; Particle Swarm Optimization (PSO) and Harris Hawks Optimization (HHO) for reliable prediction of effective drought index (EDI) 1 month ahead, at different locations of Uttarakhand State of India. The inputs of the models were selected through partial autocorrelation function (PACF) analysis. The output produced by the SVR-HHO and SVR-PSO models was compared with the EDI estimated from observed data using five statistical indicators, i.e., RMSE (Root Mean Square Error), MAE (Mean Absolute Error), COC (Coefficient of Correlation), NSE (Nash-Sutcliffe Efficiency), WI (Willmott Index), and graphical inspection of radar-chart, time-variation plot, box-whisker plot, and Taylor diagram. Appraisal of results indicates that the SVR-HHO model (RMSE = 0.535-0.965, MAE = 0.363-0.622, NSE = 0.558-0.860, COC = 0.760-0.930, and WI = 0.862-0.959) outperformed the SVR-PSO model (RMSE = 0.546-0.967, MAE = 0.372-0.625, NSE = 0.556-0.855, COC = 0.758-0.929, and WI = 0.861-0.956) in predicting EDI. Visual inspection of model performances also showed a better performance of SVR-HHO compared to SVR-PSO in replicating the median, inter-quartile range, spread, and pattern of the EDI estimated from observed rainfall. The results indicate that the hybrid SVR-HHO approach can be utilized for reliable EDI predictions in the study area.
    Matched MeSH terms: Water; Water Resources
  7. Atiku H, Mohamed RMSR, Al-Gheethi AA, Wurochekke AA, Kassim AHM
    Environ Sci Pollut Res Int, 2016 12;23(24):24624-24641.
    PMID: 27544526 DOI: 10.1007/s11356-016-7456-9
    The wide application of microalgae in the field of wastewater treatment and bioenergy source has improved research studies in the past years. Microalgae represent a good source of biomass and bio-products which are used in different medical and industrial activities, among them the production of high-valued products and biofuels. The present review focused on greywater treatment through the application of phycoremediation technique with microalgae and presented recent advances in technologies used for harvesting the microalgae biomass. The advantages and disadvantages of each method are discussed. The microbiological aspects of production, harvesting and utilization of microalgae biomass are viewed.
    Matched MeSH terms: Waste Water/chemistry*
  8. Abdullah SNF, Ismail A, Juahir H, Lananan F, Hashim NM, Ariffin N, et al.
    Environ Sci Pollut Res Int, 2021 Jul;28(27):35613-35627.
    PMID: 33666850 DOI: 10.1007/s11356-021-12772-6
    Rainwater harvesting is an effective alternative practice, particularly within urban regions, during periods of water scarcity and dry weather. The collected water is mostly utilized for non-potable household purposes and irrigation. However, due to the increase in atmospheric pollutants, the quality of rainwater has gradually decreased. This atmospheric pollution can damage the climate, natural resources, biodiversity, and human health. In this study, the characteristics and physicochemical properties of rainfall were assessed using a qualitative approach. The three-year (2017-2019) data on rainfall in Peninsular Malaysia were analysed via multivariate techniques. The physicochemical properties of the rainfall yielded six significant factors, which encompassed 61.39% of the total variance as a result of industrialization, agriculture, transportation, and marine factors. The purity of rainfall index (PRI) was developed based on subjective factor scores of the six factors within three categories: good, moderate, and bad. Of the 23 variables measured, 17 were found to be the most significant, based on the classification matrix of 98.04%. Overall, three different groups of similarities that reflected the physicochemical characteristics were discovered among the rain gauge stations: cluster 1 (good PRI), cluster 2 (moderate PRI), and cluster 3 (bad PRI). These findings indicate that rainwater in Peninsular Malaysia was suitable for non-potable purposes.
    Matched MeSH terms: Water Supply*
  9. Hena S, Rozi R, Tabassum S, Huda A
    Environ Sci Pollut Res Int, 2016 Aug;23(15):14868-80.
    PMID: 27072032 DOI: 10.1007/s11356-016-6540-5
    Cyanotoxins, microcystins and cylindrospermopsin, are potent toxins produced by cyanobacteria in potable water supplies. This study investigated the removal of cyanotoxins from aqueous media by magnetophoretic nanoparticle of polypyrrole adsorbent. The adsorption process was pH dependent with maximum adsorption occurring at pH 7 for microcystin-LA, LR, and YR and at pH 9 for microcystin-RR and cylindrospermopsin (CYN). Kinetic studies and adsorption isotherms reflected better fit for pseudo-second-order rate and Langmuir isotherm model, respectively. Thermodynamic calculations showed that the cyanotoxin adsorption process is endothermic and spontaneous in nature. The regenerated adsorbent can be successfully reused without appreciable loss of its original capacity.
    Matched MeSH terms: Water Purification/methods*
  10. Ahmad SZN, Al-Gheethi A, Hamdan R, Othman N
    Environ Sci Pollut Res Int, 2020 Oct;27(28):35184-35194.
    PMID: 32583114 DOI: 10.1007/s11356-020-09582-7
    The current study aimed to investigate the efficiencies and mechanisms of slag filter media for removing phosphorus from synthetic wastewater. The steel slag with high ferric oxides (Fe2O3) was subjected for the electric arc furnace (EAF) and selected as the filter media (HFe). The chemical characteristics of HFe were determined using pH, point of zero charge (PZC) and XRF. The phosphorus removal efficiency was studied in a designed vertical steel slag column rock filters in unaerated HFe (UEF) and aerated HFe (AEF) system. The microstructure of HFe was analyzed by FTIR, XRD and SEM-EDX analysis. The results of XRF revealed that ferric oxide (Fe2O3) ranged from 26.1 to 38.2%. PZC for Filter HFe was recorded at pH 10.55 ± 0.27. The highest efficiencies were recorded by UEF and AEF systems at pH 3 and pH 5 (89.97 ± 4.02% and 79.95 ± 6.25% at pH 3 and 72.97 ± 8.38% and 66.00 ± 12.85% at pH 5 for UEF and AEF, respectively). These findings indicated that AEF exhibiting higher removal than UEF systems might be due to presence high Fe concentration in AEF which play important role in the phosphorus removal. The main elements available on the surface of HFe included carbon, oxygen, iron, calcium, magnesium, silicon, platinum, sulphur, manganese, titanium and aluminium. The XRD analysis indicated that the precipitation of orthophosphate as calcium and iron-phosphates was the removal mechanism as confirmed using FT-IR analysis. These findings demonstrated the efficiency of HFe in removing of phosphorus from wastewater.
    Matched MeSH terms: Waste Water*
  11. Rafindadi AA, Yusof Z, Zaman K, Kyophilavong P, Akhmat G
    Environ Sci Pollut Res Int, 2014 Oct;21(19):11395-400.
    PMID: 24898296 DOI: 10.1007/s11356-014-3095-1
    The objective of the study is to examine the relationship between air pollution, fossil fuel energy consumption, water resources, and natural resource rents in the panel of selected Asia-Pacific countries, over a period of 1975-2012. The study includes number of variables in the model for robust analysis. The results of cross-sectional analysis show that there is a significant relationship between air pollution, energy consumption, and water productivity in the individual countries of Asia-Pacific. However, the results of each country vary according to the time invariant shocks. For this purpose, the study employed the panel least square technique which includes the panel least square regression, panel fixed effect regression, and panel two-stage least square regression. In general, all the panel tests indicate that there is a significant and positive relationship between air pollution, energy consumption, and water resources in the region. The fossil fuel energy consumption has a major dominating impact on the changes in the air pollution in the region.
    Matched MeSH terms: Water Resources*
  12. Chiam SL, Pung SY, Yeoh FY
    Environ Sci Pollut Res Int, 2020 Feb;27(6):5759-5778.
    PMID: 31933078 DOI: 10.1007/s11356-019-07568-8
    The textile industry consumes a large volume of organic dyes and water. These organic dyes, which remained in the effluents, are usually persistent and difficult to degrade by conventional wastewater treatment techniques. If the wastewater is not treated properly and is discharged into water system, it will cause environmental pollution and risk to living organisms. To mitigate these impacts, the photo-driven catalysis process using semiconductor materials emerges as a promising approach. The semiconductor photocatalysts are able to remove the organic effluent through their mineralization and decolorization abilities. Besides the commonly used titanium dioxide (TiO2), manganese dioxide (MnO2) is a potential photocatalyst for wastewater treatment. MnO2 has a narrow bandgap energy of 1~2 eV. Thus, it possesses high possibility to be driven by visible light and infrared light for dye degradation. This paper reviews the MnO2-based photocatalysts in various aspects, including its fundamental and photocatalytic mechanisms, recent progress in the synthesis of MnO2 nanostructures in particle forms and on supporting systems, and regeneration of photocatalysts for repeated use. In addition, the effect of various factors that could affect the photocatalytic performance of MnO2 nanostructures are discussed, followed by the future prospects of the development of this semiconductor photocatalysts towards commercialization.
    Matched MeSH terms: Water Purification*
  13. Ubah PC, Dashti AF, Saaid M, Imam SS, Adnan R
    Environ Sci Pollut Res Int, 2023 Jan;30(2):4462-4484.
    PMID: 35969341 DOI: 10.1007/s11356-022-22245-z
    The purpose of this research is to synthesize environmentally friendly nanosorbents for the novel adsorption of diesel range organics (DRO) from contaminated water. Central composite design (CCD) analysis of response surface methodology (RSM) was employed in a model fitting of the variables predicting the adsorption efficiency of Moringa oleifera-functionalized zerovalent iron particles (ZINPs) for the removal of DRO. The effects of the reaction parameters on the response were screened using 24 factorial designs to determine the statistically significant independent variables. A quadratic model predicting the DRO adsorption efficiency of ZINPs with an F value of 276.84 (p value 
    Matched MeSH terms: Water/chemistry
  14. Ramly N, Ahmad Mahir HM, Wan Azmi WNF, Hashim Z, Hashim JH, Shaharudin R
    Front Public Health, 2023;11:998511.
    PMID: 36875418 DOI: 10.3389/fpubh.2023.998511
    Arsenic is a carcinogen element that occurs naturally in our environment. Humans can be exposed to arsenic through ingestion, inhalation, and dermal absorption. However, the most significant exposure pathway is via oral ingestion. Therefore, a comparative cross-sectional study was conducted to determine the local arsenic concentration in drinking water and hair. Then, the prevalence of arsenicosis was evaluated to assess the presence of the disease in the community. The study was conducted in two villages, namely Village AG and Village P, in Perak, Malaysia. Socio-demographic data, water consumption patterns, medical history, and signs and symptoms of arsenic poisoning were obtained using questionnaires. In addition, physical examinations by medical doctors were performed to confirm the signs reported by the respondents. A total of 395 drinking water samples and 639 hair samples were collected from both villages. The samples were analyzed using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) to determine arsenic concentration. The results showed that 41% of water samples from Village AG contained arsenic concentrations of more than 0.01 mg/L. In contrast, none of the water samples from Village P exceeded this level. Whilst, for hair samples, 85 (13.5%) of total respondents had arsenic levels above 1 μg/g. A total of 18 respondents in Village AG had at least one sign of arsenicosis and hair arsenic levels of more than 1 μg/g. Factors significantly associated with increased arsenic levels in hair were female, increasing age, living in Village AG and smoking. The prevalence of arsenicosis in the exposed village indicates chronic arsenic exposure, and immediate mitigation action needs to be taken to ensure the wellbeing of the residents in the exposed village.
    Matched MeSH terms: Drinking Water*
  15. Ahmad I, Abdullah N, Koji I, Yuzir A, Ahmad MD, Rachmadona N, et al.
    Chemosphere, 2023 Jun;325:138236.
    PMID: 36868419 DOI: 10.1016/j.chemosphere.2023.138236
    The number of restaurants is increasing day by day in almost all the developing countries, causing the increase in the generation of restaurant wastewater. Various activities (i.e., cleaning, washing, and cooking) going on in the restaurant kitchen lead to restaurant wastewater (RWW). RWW has high concentrations of chemical oxygen demand (COD), biochemical oxygen demand (BOD), nutrients such as potassium, phosphorus, and nitrogen, and solids. RWW also contains fats, oil, and grease (FOG) in alarmingly high concentration, which after congealing can constrict the sewer lines, leading to blockages, backups, and sanitatry sewer overflows (SSOs). The paper provides an insight to the details of RWW containing FOG collected from a gravity grease interceptor at a specific site in Malaysia, and its expected consequences and the sustainable management plan as prevention, control, and mitigation (PCM) approach. The results showed that the concentrations of pollutants are very high as compared to the discharge standards given by Department of Environment, Malaysia. Maximum values for COD, BOD and FOG in the restaurant wastewater samples were found to be 9948, 3170, and 1640 mg/l, respectively. FAME and FESEM analysis are done on the RWW containing FOG. In the FOG, palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1n9c), linoleic acid (C18:2n6c) are the dominant lipid acids with a maximum of 41, 8.4, 43.2, and 11.5%, respectively. FESEM analysis showed formation of whitish layers fprmed due to the deposition of calcium salts. Furthermore, a novel design of indoor hydromechanical grease interceptor (HGI) was proposed in the study based on the Malaysian conditions of restaurant. The HGI was designed for a maximum flow rate of 132 L per minute and a maximum FOG capacity of 60 kg.
    Matched MeSH terms: Waste Water*
  16. Sharuddin SS, Ramli N, Yusoff MZM, Muhammad NAN, Ho LS, Maeda T
    J Appl Microbiol, 2023 Oct 04;134(10).
    PMID: 37757470 DOI: 10.1093/jambio/lxad219
    AIMS: This study aimed to investigate the effect of palm oil mill effluent (POME) final discharge on the active bacterial composition, gene expression, and metabolite profiles in the receiving rivers to establish a foundation for identifying potential biomarkers for monitoring POME pollution in rivers.

    METHODS AND RESULTS: The POME final discharge, upstream (unpolluted by POME), and downstream (effluent receiving point) parts of the rivers from two sites were physicochemically characterized. The taxonomic and gene profiles were then evaluated using de novo metatranscriptomics, while the metabolites were detected using qualitative metabolomics. A similar bacterial community structure in the POME final discharge samples from both sites was recorded, but their composition varied. Redundancy analysis showed that several families, particularly Comamonadaceae and Burkholderiaceae [Pr(>F) = 0.028], were positively correlated with biochemical oxygen demand (BOD5) and chemical oxygen demand (COD). The results also showed significant enrichment of genes regulating various metabolisms in the POME-receiving rivers, with methane, carbon fixation pathway, and amino acids among the predominant metabolisms identified (FDR  4, and PPDE > 0.95). This was further validated through qualitative metabolomics, whereby amino acids were detected as the predominant metabolites.

    CONCLUSIONS: The results suggest that genes regulating amino acid metabolism have significant potential for developing effective biomonitoring and bioremediation strategies in river water influenced by POME final discharge, fostering a sustainable palm oil industry.

    Matched MeSH terms: Water/analysis
  17. Raketh M, Kana R, Kongjan P, Faua'ad Syed Muhammad SA, O-Thong S, Mamimin C, et al.
    J Environ Manage, 2023 Nov 15;346:119031.
    PMID: 37741194 DOI: 10.1016/j.jenvman.2023.119031
    This study aimed at investigating the biohydrogen and biomethane potential of co-digestion from palm oil mill effluent (POME) and concentrated latex wastewater (CLW) in a two-stage anaerobic digestion (AD) process under thermophilic (55 ± 3 °C) and at an ambient temperature (30 ± 3 °C) conditions, respectively. The batch experiments of POME:CLW mixing ratios of 100:0, 70:30, 50:50, 30:70, and 0:100 was investigated with the initial loadings at 10 g-VS/L. The highest hydrogen yield of 115.57 mLH2/g-VS was obtained from the POME: CLW mixing ratio of 100:0 with 29.0 of C/N ratio. While, the highest subsequent methane production yield of 558.01 mLCH4/g-VS was achieved from hydrogen effluent from POME:CLW mixing ratio of 70:30 0 with 21.8 of C/N ratio. This mixing ratio revealed the highest synergisms of about 9.21% and received maximum total energy of 19.70 kJ/g-VS. Additionally, continuous hydrogen and methane production were subsequently performed in a series of continuous stirred tank reactor (CSTR) and up-flow anaerobic sludge blanket reactor (UASB) to treat the co-substate. The results indicated that the highest hydrogen yield of POME:CLW mixing ratio at 70:30 of 95.45 mL-H2/g-VS was generated at 7-day HRT, while methane production was obtained from HRT 15 days with a yield of 204.52 mL-CH4/g-VS. Thus, the study indicated that biogas production yield of CLW could be enhanced by co-digesting with POME. In addition, the two-stage AD model under anaerobic digestion model no. 1 (ADM-1) framework was established, 9.10% and 2.43% of error fitting of hydrogen and methane gas between model simulation data and experimental data were found. Hence, this research work presents a novel approach for optimization and feasibility for co-digestion of POME with CLW to generate mixed gaseous biofuel potentially.
    Matched MeSH terms: Waste Water*
  18. Wu R, Abdulhameed AS, Jawad AH, Yong SK, Li H, ALOthman ZA, et al.
    Int J Biol Macromol, 2023 Dec 01;252:126342.
    PMID: 37591432 DOI: 10.1016/j.ijbiomac.2023.126342
    Herein, the polymer nanomatrix of chitosan/SiO2 (CHI/n-SiO2) was enriched with a π-π electron donor-acceptor system using diaromatic rings of benzil (BEZ) assisted via a hydrothermal process to obtain an effective adsorbent of chitosan-benzil/SiO2 (CHI-BEZ/n-SiO2). The polymer nanomatrix (CHI/n-SiO2) and the resulting adsorbent (CHI-BEZ/n-SiO2) were applied to remove the anionic acid red 88 (AR88) dye from aqueous media in a comparative mode. Box-Behnken design (BBD) was adopted to optimize AR88 adsorption onto CHI/n-SiO2 and CHI-BEZ/n-SiO2 with respect to variables that influence AR88 adsorption (adsorbent dose: 0.02-0.1 g/100 mL; pH: 4-10; and time: 10-90). The adsorption studies at equilibrium were conducted with a variety of initial AR88 dye concentrations (20-200 mg/L). The adsorption isotherm results reveal that the AR88 adsorption by CHI/n-SiO2 and CHI-BEZ/n-SiO2 are described by the Langmuir model. The kinetic adsorption profiles of AR88 with CHI/n-SiO2 and CHI-BEZ/n-SiO2 reveal that the pseudo-first-order model provides the best fit results. Interestingly, CHI-BEZ/n-SiO2 has a high adsorption capacity (261.2 mg/g), which exceeds the adsorption capacity of CHI/n-SiO2 (215.1 mg/g) that relates to the surface effects of SiO2 and the functionalization of chitosan with BEZ. These findings show that CHI-BEZ/n-SiO2 represents a highly efficient adsorbent for the removal of harmful pollutants from water, which outperforming the CHI/n-SiO2 system.
    Matched MeSH terms: Water Pollutants, Chemical*
  19. Haron DEM, Yoneda M, Hod R, Ramli MR, Aziz MY
    Environ Sci Pollut Res Int, 2023 Nov;30(51):111062-111075.
    PMID: 37801249 DOI: 10.1007/s11356-023-30022-9
    Multiclass of endocrine disrupting chemicals (EDCs) such as nine perfluoroalkyl and polyfluoroalkyl substances (PFAS), five bisphenols, and four parabens were analysed in tap water samples from Malaysia's Klang Valley region. All samples were analysed using liquid chromatography mass tandem spectrometry (LC-MS/MS) with limit of quantitation (LOQ) ranged between 0.015 and 5 ng/mL. Fifteen of the 18 EDCs were tested positive in tap water samples, with total EDC concentrations ranging from 0.28 to 5516 ng/L for all 61 sampling point locations. In a specific area of the Klang Valley, the total concentration of EDCs was found to be highest in Hulu Langat, followed by Sepang, Putrajaya, Petaling, Kuala Lumpur, Seremban, and Gombak/Klang. PFAS and paraben were the most found EDCs in all tap water samples. Meanwhile, ethyl paraben (EtP) exhibited the highest detection rate, with 90.2% of all locations showing its presence. Over 60% of the regions showed the presence of perfluoro-n-butanoic acid (PFBA), perfluoro-n-hexanoic acid (PFHXA), perfluoro-n-octanoic acid (PFOA), perfluoro-n-nonanoic acid (PFNA), and perfluoro-1-octanesulfonate (PFOS), whereas the frequency of detection for other compounds was less than 40%. The spatial distribution and mean concentrations of EDCs in the Klang Valley regions revealed that Hulu Langat, Petaling Jaya, and Putrajaya exhibited higher levels of bisphenol A (BPA). On the other hand, Kuala Lumpur and Sepang displayed the highest mean concentrations of PFBA. In the worst scenario, the estimated daily intake (EDI) and risk quotient of some EDCs in this study exceeded the acceptable daily limits recommended by international standards, particularly for BPA, PFOA, PFOS, and PFNA, where the risk quotient (RQ) was found to be greater than 1, indicating a high risk to human health. The increasing presence of EDCs in tap water is undoubtedly a cause for concern as these substances can have adverse health consequences. This highlights the necessity for a standardised approach to evaluating EDC exposure and its direct impact on human populations' health.
    Matched MeSH terms: Water/analysis
  20. Niknejad N, Nazari B, Foroutani S, Hussin ARBC
    Environ Sci Pollut Res Int, 2023 Jun;30(28):71849-71863.
    PMID: 35091956 DOI: 10.1007/s11356-022-18705-1
    Freshwater scarcity, a problem that has arisen particularly as a result of the progressive environmental damage caused by human consumption patterns, is strongly associated with a loss of living quality and a drop in global socioeconomic development. Wastewater treatment is one of the measures being taken to mitigate the current situation. However, the majority of existing treatments employ chemicals that have harmful environmental consequences and low effectiveness and are prohibitively expensive in most countries. Therefore, to increase water supplies, more advanced and cost-effective water treatment technologies are required to be developed for desalination and water reuse purposes. Green technologies have been highlighted as a long-term strategy for conserving natural resources, reducing negative environmental repercussions, and boosting social and economic growth. Thus, a bibliometric technique was applied in this study to identifying prominent green technologies utilised in water and wastewater treatment by analysing scientific publications considering authors, keywords, and countries. To do this, the VOSviewer software and Bibliometrix R Package software were employed. The results of this study revealed that constructed wetlands and photocatalysis are two technologies that have been considered as green technologies applicable to the improvement of water and wastewater treatment processes in most scientific articles.
    Matched MeSH terms: Fresh Water; Water Supply
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links