METHODOLOGY: This randomised, blinded end-point, placebo-controlled clinical trial with a parallel design involved 36 healthy male subjects who took either an oral placebo or TRE at doses of 80, 160 or 320 mg daily for 2 mo. Baseline and end-of-treatment measurements of vitamin E concentration, arterial compliance [assessed by aortic femoral pulse wave velocity (PWV) and augmentation index (AI)], ASBP, plasma TAS, serum TC and LDL-C were taken.
RESULTS: Baseline tocotrienol isomer concentrations were low and not detectable in some subjects. Upon supplementation, all TRE-treated groups showed significant difference from placebo for their change in alpha, gamma and delta tocotrienol concentrations from baseline to end of treatment. There was a linear dose and blood level relationship for all the isomers. There was no significant difference between groups for their change in PWV, AI, plasma TAS, ASBP, TC or LDL-C from baseline to end of treatment. Groups 160 mg (p = 0.024) and 320 mg (p = 0.049) showed significant reductions in their ASBP. Group 320 mg showed a significant 9.2% improvement in TAS.
CONCLUSION: TRE at doses up to 320 mg daily were well tolerated. Treatment significantly increased alpha, delta, and gamma tocotrienol concentrations but did not significantly affect arterial compliance, plasma TAS, serum TC or LDL-C levels in normal subjects.
RESULTS: Xylanase was successfully expressed in Lactococcus lactis. Recombinant xylanase fused to either signal peptide Usp45 or Spk1 showed halo zone on Remazol Brilliant Blue-Xylan plates. This indicated that the xylanase was successfully secreted from the cell. The culture supernatants of strains secreting the xylanase with help of the Spk1 and Usp45 signal peptides contained 49.7 U/ml and 34.4 U/ml of xylanase activity, respectively.
CONCLUSION: Although Usp45 is the most commonly used signal peptide when secreting heterologous proteins in Lactococcus lactis, this study shows that Spk1 isolated from Pediococcus pentosaceus was superior to Usp45 in regard to xylanase protein secretion.