Displaying publications 941 - 960 of 1534 in total

Abstract:
Sort:
  1. Gao C, Sun X, Wu Z, Yuan H, Han H, Huang H, et al.
    Front Pharmacol, 2020;11:391.
    PMID: 32477104 DOI: 10.3389/fphar.2020.00391
    Introduction: The leaves of Morus alba L is a traditional Chinese medicine widely applied in lung diseases. Moracin N (MAN), a secondary metabolite extracted form the leaves of Morus alba L, is a potent anticancer agent. But its molecular mechanism remains unveiled.

    Objective: In this study, we aimed to examine the effect of MAN on human lung cancer and reveal the underlying molecular mechanism.

    Methods: MTT assay was conducted to measure cell viability. Annexin V-FITC/PI staining was used to detect cell apoptosis. Confocal microscope was performed to determine the formation of autophagosomes and autolysosomes. Flow cytometry was performed to quantify cell death. Western blotting was used to determine the related-signaling pathway.

    Results: In the present study, we demonstrated for the first time that MAN inhibitd cell proliferation and induced cell apoptosis in human non-small-cell lung carcinoma (NSCLC) cells. We found that MAN treatment dysregulated mitochondrial function and led to mitochondrial apoptosis in A549 and PC9 cells. Meanwhile, MAN enhanced autophagy flux by the increase of autophagosome formation, the fusion of autophagsomes and lysosomes and lysosomal function. Moreover, mTOR signaling pathway, a classical pathway regualting autophagy, was inhibited by MAN in a time- and dose-dependent mannner, resulting in autophagy induction. Interestingly, autophagy inhibition by CQ or Atg5 knockdown attenuated cell apoptosis by MAN, indicating that autophagy serves as cell death. Furthermore, autophagy-mediated cell death by MAN can be blocked by reactive oxygen species (ROS) scavenger NAC, indicating that ROS accumulation is the inducing factor of apoptosis and autophagy. In summary, we revealed the molecular mechanism of MAN against lung cancer through apoptosis and autophagy, suggesting that MAN might be a novel therapeutic agent for NSCLC treatment.

    Matched MeSH terms: Cell Survival
  2. Subermaniam K, Yow YY, Lim SH, Koh OH, Wong KH
    Saudi J Biol Sci, 2020 Jun;27(6):1435-1445.
    PMID: 32489279 DOI: 10.1016/j.sjbs.2020.04.042
    Oxidative damage has been associated with the pathophysiology of depression. Macroalgae are equipped with antioxidant defense system to counteract the effects of free radicals. We explored the use of Malaysian Padina australis to attenuate high dose corticosterone-mediated oxidative damage in a cellular model mimicking depression. Fresh specimen of P. australis was freeze-dried and extracted sequentially with hexanes, ethyl acetate and ethanol. The extracts were screened for their phytochemical contents and antioxidant activities. Ethanol extract demonstrated the most potent antioxidant capacity and was selected for subsequent assays against high dose corticosterone of 600 µM-mediated oxidative damage in the rat pheochromocytoma (PC12) cells. The corticosterone reduced the cell viability, glutathione (GSH) level, aconitase activity, and mitochondrial membrane potential (MMP); and increased the lactate dehydrogenase (LDH) release, intracellular reactive oxygen species (ROS) level and apoptosis. However, the extent of oxidative damage was reversed by 0.25-0.5 mg/mL ethanol extract suggesting a possible role of P. australis-based antioxidants in the mitochondrial defense against constant ROS generation and regulation of antioxidant pathway. The effects were similar to that of desipramine, a tricyclic antidepressant. Our findings indicate that P. australis can be developed as a mitochondria-targeted antioxidant to mitigate antidepressant-like effects.
    Matched MeSH terms: Cell Survival
  3. Islam MR, Chowdhury MR, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M
    Pharmaceutics, 2020 Apr 24;12(4).
    PMID: 32344768 DOI: 10.3390/pharmaceutics12040392
    The transdermal delivery of sparingly soluble drugs is challenging due to of the need for a drug carrier. In the past few decades, ionic liquid (IL)-in-oil microemulsions (IL/O MEs) have been developed as potential carriers. By focusing on biocompatibility, we report on an IL/O ME that is designed to enhance the solubility and transdermal delivery of the sparingly soluble drug, acyclovir. The prepared MEs were composed of a hydrophilic IL (choline formate, choline lactate, or choline propionate) as the non-aqueous polar phase and a surface-active IL (choline oleate) as the surfactant in combination with sorbitan laurate in a continuous oil phase. The selected ILs were all biologically active ions. Optimized pseudo ternary phase diagrams indicated the MEs formed thermodynamically stable, spherically shaped, and nano-sized (<100 nm) droplets. An in vitro drug permeation study, using pig skin, showed the significantly enhanced permeation of acyclovir using the ME. A Fourier transform infrared spectroscopy study showed a reduction of the skin barrier function with the ME. Finally, a skin irritation study showed a high cell survival rate (>90%) with the ME compared with Dulbecco's phosphate-buffered saline, indicates the biocompatibility of the ME. Therefore, we conclude that IL/O ME may be a promising nano-carrier for the transdermal delivery of sparingly soluble drugs.
    Matched MeSH terms: Survival Rate
  4. Jayaraj R, Raymond G, Krishnan S, Tzou KS, Baxi S, Ram MR, et al.
    Cancers (Basel), 2020 May 09;12(5).
    PMID: 32397507 DOI: 10.3390/cancers12051199
    Background: Prostate cancer (PrC) is the second-most frequent cancer in men, its incidence is emerging globally and is the fifth leading cause of death worldwide. While diagnosis and prognosis of PrC have been studied well, the associated therapeutic biomarkers have not yet been investigated comprehensively. This systematic review and meta-analysis aim to evaluate the theragnostic effects of microRNA expressions on chemoresistance in prostate cancer and to analyse the utility of miRNAs as clinical theragnostic biomarkers. Methods: A systematic literature search for studies reporting miRNA expressions and their role in chemoresistance in PrC published until 2018 was collected from bibliographic databases. The evaluation of data was performed as per PRISMA guidelines for systematic review and meta-analysis. Meta-analysis was performed using a random-effects model using Comprehensive Meta-Analysis (CMA) software. Heterogeneity between studies was analysed using Cochran's Q test, I2 and the Tau statistic. Quality assessment of the studies was performed using the Newcastle-Ottawa Scale (NOS) for the methodological assessment of cohort studies. Publication bias was assessed using Egger's bias indicator test, Orwin and classic fail-safe N test, Begg and Mazumdar rank collection test, and Duval and Tweedie's trim and fill methods. Findings: Out of 2909 studies retrieved, 79 studies were shortlisted and reviewed. A total of 17 studies met our eligibility criteria, from which 779 PrC patients and 17 chemotherapy drugs were examined, including docetaxel and paclitaxel. The majority of the drug regulatory genes reported were involved in cell survival, angiogenesis and cell proliferation pathways. We studied 42 miRNAs across all studies, out of which two miRNAs were found to be influencing chemosensitivity, while 21 were involved in chemoresistance. However, the remaining 19 miRNAs did not appear to have any theragnostic effects. Besides, the prognostic impact of the miRNAs was evaluated and had a pooled HR value of 1.960 with 95% CI (1.377-2.791). Interpretation: The observation of the current study depicts the significance of miRNA expression as a theragnostic biomarker in medical oncology. This review suggests the involvement of specific miRNAs as predictors of chemoresistance and sensitivity in PrC. Hence, the current systematic review and meta-analysis provide insight on the use of miRNA as PrC biomarkers, which can be harnessed as molecular candidates for therapeutic targeting.
    Matched MeSH terms: Cell Survival
  5. Al-Amin M, Eltayeb NM, Khairuddean M, Salhimi SM
    Nat Prod Res, 2021 Sep;35(18):3166-3170.
    PMID: 31726856 DOI: 10.1080/14786419.2019.1690489
    Rhizomes of Curcuma caesia are traditionally used to treat cancer in India. The aim is to isolate chemical constituents from C. caesia rhizomes through bioassay-guided fractionation. The extract, hexanes and chloroform fractions showed effect on MCF-7 and MDA-MB-231cells in cell viability assay. The chromatographic separation afforded germacrone (1), zerumbone (2), furanodienone (3), curzerenone (4), curcumenol (5), zederone (6), curcumenone (7), dehydrocurdione (8) from hexanes fraction and curcuminol G (9), curcuzederone (10), (1S, 10S), (4S,5S)-germacrone-1 (10), 4-diepoxide (11), wenyujinin B (12), alismoxide (13), aerugidiol (14), zedoarolide B (15), zedoalactone B (16), zedoarondiol (17), isozedoarondiol (18) from chloroform fraction. This is first report of compounds 2, 9-13, 15-18 from C. caesia. The study demonstrated compounds 1-4 and 10 are the bioactive compounds. The effect of curcuzederone (10) on MDA-MB-231 cell migration showed significant inhibition in scratch and Transwell migration assays. The results revealed that curcuzederone could be a promising drug to treat cancer.
    Matched MeSH terms: Cell Survival
  6. Daud SM, Yaacob NS, Fauzi AN
    Asian Pac J Cancer Prev, 2021 Feb 01;22(S1):59-65.
    PMID: 33576213 DOI: 10.31557/APJCP.2021.22.S1.59
    OBJECTIVE: The persistent activation of aerobic glycolysis in cancer cells results in accumulation of lactate and other metabolic intermediates that contribute to tumorigenesis. Increased glycolysis is frequently dysregulated in triple-negative breast cancer (TNBC), which promotes tumor growth and immune escape. This study was conducted to investigate the effect of 2-methoxy-1, 4-naphthoquinone (MNQ), compound extracted from Impatiens balsamina on glycolytic activities in human breast adenocarcinoma, MDA-MB-231 cells.

    METHODS: Initially, MTT proliferation assay was used to test the cell viability with various doses of MNQ (5-100 µM). As the half maximal inhibitory concentration (IC50) was obtained, glucose uptake and lactate assays of the cells were tested with IC50 dose of MNQ. The treated cells were also subjected to gene and protein analysis of glycolysis-related molecules (GLUT1 and Akt).

    RESULTS: The results showed that MNQ decreased the percentage of MDA-MB-231 cell viability in a dose-dependent manner with the IC50 value of 29 µM. The percentage of glucose uptake into the cells and lactate production decreased significantly after treatment with MNQ as compared to untreated cells. Remarkably, the expressions of GLUT1 and Akt molecules decreased in MNQ-treated cells, suggesting that the inhibition of glycolysis by MNQ is GLUT1-dependent and possibly mediated by the Akt signaling pathway.

    CONCLUSION: Our findings indicate the ability of MNQ to inhibit the glycolytic activities as well as glycolysis-related molecules in MDA-MB-231 cells, suggesting the potential of MNQ to be further developed as an effective anticancer agent against TNBC cells.

    Matched MeSH terms: Cell Survival
  7. Mansor NI, Ntimi CM, Abdul-Aziz NM, Ling KH, Adam A, Rosli R, et al.
    Bosn J Basic Med Sci, 2021 Feb 01;21(1):98-110.
    PMID: 32156249 DOI: 10.17305/bjbms.2020.4639
    One of the strategies in the establishment of in vitro oxidative stress models for neurodegenerative diseases, such as Alzheimer's disease (AD), is to induce neurotoxicity by amyloid beta (Aβ) peptides in suitable neural cells. Presently, data on the neurotoxicity of Aβ in neural cells differentiated from stem cells are limited. In this study, we attempted to induce oxidative stress in transgenic 46C mouse embryonic stem cell-derived neurons via treatment with Aβ peptides (Aβ1-42 and Aβ25-35). 46C neural cells were generated by promoting the formation of multicellular aggregates, embryoid bodies in the absence of leukemia inhibitory factor, followed by the addition of all-trans retinoic acid as the neural inducer. Mature neuronal cells were exposed to different concentrations of Aβ1-42 and Aβ25-35 for 24 h. Morphological changes, cell viability, and intracellular reactive oxygen species (ROS) production were assessed. We found that 100 µM Aβ1-42 and 50 µM Aβ25-35 only promoted 40% and 10%, respectively, of cell injury and death in the 46C-derived neuronal cells. Interestingly, treatment with each of the Aβ peptides resulted in a significant increase of intracellular ROS activity, as compared to untreated neurons. These findings indicate the potential of using neurons derived from stem cells and Aβ peptides in generating oxidative stress for the establishment of an in vitro AD model that could be useful for drug screening and natural product studies.
    Matched MeSH terms: Cell Survival
  8. Hamidon BB, Raymond AA
    J Postgrad Med, 2003 Oct-Dec;49(4):307-9; discussion 309-10.
    PMID: 14699227
    Background and purpose: Diabetes mellitus is a strong risk factor for stroke. However, the prognosis in terms of mortality after a stroke is still unclear, especially in diabetic patients. The main purpose of this study was to compare and evaluate the features of stroke in patients having diabetes mellitus with those without diabetes mellitus and to identify factors that influence survival following a stroke.

    Subjects and methods: In a prospective hospital-based study consecutive patients with acute ischaemic stroke were enrolled. A single observer, using predefined diagnostic criteria recorded the demographics, risk factors and the type of stroke and deaths that occurred during the in-patient period.

    Results: One hundred and sixty-three patients with acute ischaemic stroke were enrolled in the study. Type 2 diabetes mellitus was present in 90 (55.2%) patients. Diabetes was a significant independent predictor of mortality (OR 4.88; 95%CI 1.25-19.1). Among the diabetic patients middle cerebral artery (MCA) territory infarct (OR 34.8, 95%CI 4.5-269.4) and Glasgow coma score (GCS) less than 9 (OR 12.3, 95%CI 3.7-198.1) were independent predictors of mortality.

    Conclusions: MCA infarcts and poor conscious level increase the mortality in diabetic patients with stroke. Mortality is also significantly related to a high level of blood glucose at admission.
    Matched MeSH terms: Survival Analysis
  9. Katas H, Abdul Ghafoor Raja M, Ee LC
    Drug Dev Ind Pharm, 2014 Nov;40(11):1443-50.
    PMID: 23962166 DOI: 10.3109/03639045.2013.828222
    Recently, a newly discovered Dicer-substrate siRNA (DsiRNA) demonstrates higher potency in gene silencing than siRNA but both suffer from rapid degradation, poor cellular uptake and chemical instability. Therefore, Tat-peptide was exploited to protect and facilitate their delivery into cells. In this study, Tat-peptide was complexed with siRNA or DsiRNA through simple complexation. The physicochemical properties (particle size, surface charge and morphology) of the complexes formed were then characterized. The ability of Tat-peptide to carry and protect siRNA or DsiRNA was determined by UV-Vis spectrophotometry and serum protection assay, respectively. Cytotoxicity effect of these complexes was assessed in V79 cell line. siRNA-Tat complexes had particle size ranged from 186 ± 17.8 to 375 ± 8.3 nm with surface charge ranged from -9.3 ± 1.0 to +13.5 ± 1.0 mV, depending on the Tat-to-siRNA concentration ratio. As for DsiRNA-Tat complexes, the particle size was smaller than the ones complexed with siRNA, ranging from 176 ± 8.6 to 458 ± 14.7 nm. Their surface charge was in the range of +27.1 ± 3.6 to +38.1 ± 0.9 mV. Both oligonucleotide (ON) species bound strongly to Tat-peptide, forming stable complexes with loading efficiency of more than 86%. These complexes were relatively non cytotoxic as the cell viability of ∼90% was achieved. In conclusion, Tat-peptide has a great potential as siRNA and DsiRNA vector due to the formation of stable complexes with desirable physical characteristics, low toxicity and able to carry high amount of siRNA or DsiRNA.
    Matched MeSH terms: Cell Survival
  10. Abd-Elhay FA, Elhusseiny KM, Kamel MG, Low SK, Sang TK, Mehyar GM, et al.
    Clin Breast Cancer, 2018 12;18(6):e1293-e1310.
    PMID: 30093263 DOI: 10.1016/j.clbc.2018.07.003
    BACKGROUND: Male breast cancer (MBC) is usually diagnosed at late stages and therefore has a worse prognosis than female breast cancer (FBC). MBC is also more likely to have lymph node (LN) involvement than FBC.

    MATERIALS AND METHODS: We sought to determine the prognostic role of the examined lymph node (LN), negative LN (NLN), and positive LN counts and the LN ratio (LNR), defined as (positive LNs/ENLs), on the survival rate among MBC patients. We performed a large population-based study using the data from the Surveillance, Epidemiology, and End Results program.

    RESULTS: Older age, black race, stage IV disease, ≤ 1 NLN, and a > 31.3% LNR were significantly associated with worse survival across all prediction models. Moreover, we demonstrated a decreased risk of mortality in MBC patients across the MBC-specific survival model (hazard ratio, 0.98; 95% confidence interval, 0.96-0.998; P = .03) and 10-year MBC-specific survival model (hazard ratio, 0.98; 95% confidence interval, 0.96-0.999; P = .04).

    CONCLUSION: MBC has had an augmented incidence over the years. We found several independent predictors of MBC survival, including age, race, stage, NLNs, and the LNR. We strongly suggest adding the NLN count and/or LNR into the current staging system. Further studies are needed to provide information on the mechanisms underlying the association between the NLN count and MBC survival and the LNR and MBC survival.

    Matched MeSH terms: Survival Rate
  11. Primus PS, Ismail MH, Adnan NE, Wu CH, Kao CL, Choo YM
    J Asian Nat Prod Res, 2022 Feb;24(2):146-152.
    PMID: 33565351 DOI: 10.1080/10286020.2021.1883590
    Three new compounds, i.e. stenophyllols A-C (1-3), were isolated from the rhizome of Boesenbergia stenophylla. The structures were determined by spectroscopic analysis (UV, IR, NMR and HRESIMS). In-vitro neuroblastoma cell viability assay showed stenophyllol A (1) was able to reduce the N2A cell viability to 20% within 24 h.
    Matched MeSH terms: Cell Survival
  12. Watarai Y, Danguilan R, Casasola C, Chang SS, Ruangkanchanasetr P, Kee T, et al.
    Clin Transplant, 2021 10;35(10):e14415.
    PMID: 34216395 DOI: 10.1111/ctr.14415
    OBJECTIVE: We analyzed the efficacy and safety of an everolimus with reduced-exposure calcineurin inhibitor (EVR+rCNI) versus mycophenolic acid with standard-exposure CNI (MPA+sCNI) regimen in Asian patients from the TRANSFORM study.

    METHODS: In this 24-month, open-label study, de novo kidney transplant recipients (KTxRs) were randomized (1:1) to receive EVR+rCNI or MPA+sCNI, along with induction therapy and corticosteroids.

    RESULTS: Of the 2037 patients randomized in the TRANSFORM study, 293 were Asian (EVR+rCNI, N = 136; MPA+sCNI, N = 157). At month 24, EVR+rCNI was noninferior to MPA+sCNI for the binary endpoint of estimated glomerular filtration rate (eGFR) 

    Matched MeSH terms: Graft Survival
  13. Lai C, Yee SY, Ying T, Chadban S
    Transpl Int, 2021 12;34(12):2431-2441.
    PMID: 34626503 DOI: 10.1111/tri.14132
    Delayed graft function (DGF) after kidney transplantation is associated with inferior outcomes and higher healthcare costs. DGF is currently defined as the requirement for dialysis within seven days post-transplant; however, this definition is subjective and nonspecific. Novel biomarkers have potential to improve objectivity and enable earlier diagnosis of DGF. We reviewed the literature to describe the range of novel biomarkers previously studied to predict DGF. We identified marked heterogeneity and low reporting quality of published studies. Among the novel biomarkers, serum NGAL had the greatest potential as a biomarker to predict DGF, but requires further assessment and validation through larger scale studies of diagnostic test performance. Given inadequacies in the dialysis-based definition, coupled with the high incidence and impact of DGF, such studies should be pursued.
    Matched MeSH terms: Graft Survival
  14. Chan VW, Tan WS, Leow JJ, Tan WP, Ong WLK, Chiu PK, et al.
    World J Urol, 2021 Dec;39(12):4295-4303.
    PMID: 34031748 DOI: 10.1007/s00345-021-03734-1
    PURPOSE: The COVID-19 pandemic has led to the cancellation or deferment of many elective cancer surgeries. We performed a systematic review on the oncological effects of delayed surgery for patients with localised or metastatic renal cell carcinoma (RCC) in the targeted therapy (TT) era.

    METHOD: The protocol of this review is registered on PROSPERO(CRD42020190882). A comprehensive literature search was performed on Medline, Embase and Cochrane CENTRAL using MeSH terms and keywords for randomised controlled trials and observational studies on the topic. Risks of biases were assessed using the Cochrane RoB tool and the Newcastle-Ottawa Scale. For localised RCC, immediate surgery [including partial nephrectomy (PN) and radical nephrectomy (RN)] and delayed surgery [including active surveillance (AS) and delayed intervention (DI)] were compared. For metastatic RCC, upfront versus deferred cytoreductive nephrectomy (CN) were compared.

    RESULTS: Eleven studies were included for quantitative analysis. Delayed surgery was significantly associated with worse cancer-specific survival (HR 1.67, 95% CI 1.23-2.27, p 

    Matched MeSH terms: Survival Rate
  15. Shamsudin R, Abdul Azam F', Abdul Hamid MA, Ismail H
    Materials (Basel), 2017 Oct 17;10(10).
    PMID: 29039743 DOI: 10.3390/ma10101188
    The aim of this study was to prepare β-wollastonite using a green synthesis method (autoclaving technique) without organic solvents and to study its bioactivity. To prepare β-wollastonite, the precursor ratio of CaO:SiO₂ was set at 55:45. This mixture was autoclaved for 8 h and later sintered at 950 °C for 2 h. The chemical composition of the precursors was studied using X-ray fluorescence (XRF), in which rice husk ash consists of 89.5 wt % of SiO₂ in a cristobalite phase and calcined limestone contains 97.2 wt % of CaO. The X-ray diffraction (XRD) patterns after sintering showed that only β-wollastonite was detected as the single phase. To study its bioactivity and degradation properties, β-wollastonite samples were immersed in simulated body fluid (SBF) for various periods of time. Throughout the soaking period, the molar ratio of Ca/P obtained was in the range of 1.19 to 2.24, and the phase detected was amorphous calcium phosphate, which was confirmed by scanning electron microscope with energy dispersive X-ray analysis (SEM/EDX) and XRD. Fourier-transform infrared spectroscopy (FTIR) analysis indicated that the peaks of the calcium and phosphate ions increased when an amorphous calcium phosphate layer was formed on the surface of the β-wollastonite sample. A cell viability and proliferation assay test was performed on the rice husk ash, calcined limestone, and β-wollastonite samples by scanning electron microscope. For heavy metal element evaluation, a metal panel that included As, Cd, Pb, and Hg was selected, and both precursor and β-wollastonite fulfilled the requirement of an American Society for Testing and Materials (ASTM F1538-03) standard specification. Apart from that, a degradation test showed that the loss of mass increased incrementally as a function of soaking period. These results showed that the β-wollastonite materials produced from rice husk ash and limestone possessed good bioactivity, offering potential for biomedical applications.
    Matched MeSH terms: Cell Survival
  16. Jindal HM, Zandi K, Ong KC, Velayuthan RD, Rasid SM, Samudi Raju C, et al.
    PeerJ, 2017;5:e3887.
    PMID: 29018620 DOI: 10.7717/peerj.3887
    BACKGROUND: Antimicrobial peptides (AMPs) are of great potential as novel antibiotics for the treatment of broad spectrum of pathogenic microorganisms including resistant bacteria. In this study, the mechanisms of action and the therapeutic efficacy of the hybrid peptides were examined.

    METHODS: TEM, SEM and ATP efflux assay were used to evaluate the effect of hybrid peptides on the integrity of the pneumococcal cell wall/membrane. DNA retardation assay was assessed to measure the impact of hybrid peptides on the migration of genomic DNA through the agarose gel. In vitro synergistic effect was checked using the chequerboard assay. ICR male mice were used to evaluate the in vivo toxicity and antibacterial activity of the hybrid peptides in a standalone form and in combination with ceftriaxone.

    RESULTS: The results obtained from TEM and SEM indicated that the hybrid peptides caused significant morphological alterations in Streptococcus pneumoniae and disrupting the integrity of the cell wall/membrane. The rapid release of ATP from pneumococcal cells after one hour of incubation proposing that the antibacterial action for the hybrid peptides is based on membrane permeabilization and damage. The DNA retardation assay revealed that at 62.5 µg/ml all the hybrid peptides were capable of binding and preventing the pneumococcal genomic DNA from migrating through the agarose gel. In vitro synergy was observed when pneumococcal cells treated with combinations of hybrid peptides with each other and with conventional drugs erythromycin and ceftriaxone. The in vivo therapeutic efficacy results revealed that the hybrid peptide RN7-IN8 at 20 mg/kg could improve the survival rate of pneumococcal bacteremia infected mice, as 50% of the infected mice survived up to seven days post-infection. In vivo antibacterial efficacy of the hybrid peptide RN7-IN8 was signficantly improved when combined with the standard antibiotic ceftriaxone at (20 mg/kg + 20 mg/kg) as 100% of the infected mice survived up to seven days post-infection.

    DISCUSSION: Our results suggest that attacking and breaching the cell wall/membrane is most probably the principal mechanism for the hybrid peptides. In addition, the hybrid peptides could possess another mechanism of action by inhibiting intracellular functions such as DNA synthesis. AMPs could play a great role in combating antibiotic resistance as they can reduce the therapeutic concentrations of standard drugs.

    Matched MeSH terms: Survival Rate
  17. Wood D, Asma S, Bettcher D, Wei Chieh JT, Greenland R, Italianer F, et al.
    Glob Heart, 2018 Mar;13(1):37-44.
    PMID: 29248363 DOI: 10.1016/j.gheart.2017.10.002
    Matched MeSH terms: Survival Rate
  18. Liew KY, Zulkiflee AB
    Braz J Otorhinolaryngol, 2017 10 19;84(6):764-771.
    PMID: 29128472 DOI: 10.1016/j.bjorl.2017.09.004
    INTRODUCTION: Nasopharyngeal carcinoma is a geographically and racially variable disease which has a high incidence in Malaysia. Based on current concepts in tumour related inflammation the inflammatory marker, neutrophil-lymphocyte ratio was tested to find its relationship with prognosis in nasopharyngeal carcinoma.

    OBJECTIVE: To investigate the effect of the neutrophil-lymphocyte ratio on prognosis in non-metastatic primary nasopharyngeal carcinoma patients and to further refine the cut off between high and low neutrophil-lymphocyte ratio values.

    METHODS: The medical charts of patients with histologically confirmed nasopharyngeal carcinoma from 1st January 2005 until 31st December 2009 were reviewed retrospectively and theneutrophil-lymphocyte ratio was calculated to see if there was any association between their higher values with higher failure rates.

    RESULTS: Records of 98 patients (n=98) were retrieved and reviewed. Only neutrophil-lymphocyte ratio (p=0.004) and tumor node metastasis staging (p=0.002) were significantly different between recurrent and non-recurrent groups, with the neutrophil-lymphocyte ratio being independent of tumor node metastasis staging (p=0.007). Treatment failure was significantly higher in the high neutrophil-lymphocyte ratio group (p=0.001). Disease free survival was also significantly higher in this group (p=0.000077).

    CONCLUSION: High neutrophil-lymphocyte ratio values are associated with higher rates of recurrence and worse disease free survival in non-metastatic nasopharyngeal carcinoma patients undergoing primary curative treatment.

    Matched MeSH terms: Survival Analysis
  19. Siti-Azrin AH, Norsa'adah B, Naing NN
    BMC Res Notes, 2017 Dec 06;10(1):705.
    PMID: 29212521 DOI: 10.1186/s13104-017-2990-1
    BACKGROUND: Nasopharyngeal carcinoma (NPC) exhibits a distinctive racial and geographic distribution. Many studies have reported varied significant prognostic factors affect the survival of NPC patients. Hence, this current study aimed to identify the prognostic factors of NPC patients registered in a tertiary referral hospital.

    METHODS: The records of one hundred and thirty-four NPC cases confirmed by histopathology in Hospital Universiti Sains Malaysia (USM) between 1st January 1998 and 31st December 2007 that fulfilled the inclusion and exclusion criteria were retrospectively reviewed. Simple and multiple Cox proportional hazard regression analyses were performed to determine the significant prognostic factors affect the survival of NPC patients.

    RESULTS: The mean (SD) age of patients diagnosed with NPC was 48.12 (15.88) years with Malay was the largest ethnic group compared to other ethnicities. Most of patients had locally advanced stage IV (40.6%) and stage III (39.1%) of NPC. The overall median survival time of NPC patients was 31.30 months (95% CI 23.76, 38.84). The significant prognostic factors that influenced the survival of NPC patients were older age (HR 1.03, 95% CI 1.01, 1.04), metastases (HR 2.52, 95% CI 1.01, 6.28) and stage IV disease (HR 4.50, 95% CI 1.66, 9.88).

    CONCLUSION: Older age, the presence of metastases and late stage are significant prognostic factors that influence the survival of NPC. Therefore, it is important to provide education to public and to raise awareness to diagnose NPC at an earlier stage and before the presence of metastases.

    Matched MeSH terms: Survival Rate
  20. Loh EYX, Mohamad N, Fauzi MB, Ng MH, Ng SF, Mohd Amin MCI
    Sci Rep, 2018 02 13;8(1):2875.
    PMID: 29440678 DOI: 10.1038/s41598-018-21174-7
    Bacterial cellulose (BC)/acrylic acid (AA) hydrogel has successfully been investigated as a wound dressing for partial-thickness burn wound. It is also a promising biomaterial cell carrier because it bears some resemblance to the natural soft tissue. This study assessed its ability to deliver human epidermal keratinocytes (EK) and dermal fibroblasts (DF) for the treatment of full-thickness skin lesions. In vitro studies demonstrated that BC/AA hydrogel had excellent cell attachment, maintained cell viability with limited migration, and allowed cell transfer. In vivo wound closure, histological, immunohistochemistry, and transmission electron microscopy evaluation revealed that hydrogel alone (HA) and hydrogel with cells (HC) accelerated wound healing compared to the untreated controls. Gross appearance and Masson's trichrome staining indicated that HC was better than HA. This study suggests the potential application of BC/AA hydrogel with dual functions, as a cell carrier and wound dressing, to promote full-thickness wound healing.
    Matched MeSH terms: Cell Survival
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links