Displaying publications 81 - 100 of 194 in total

Abstract:
Sort:
  1. Gan SH, Ismail R, Wan Adnan WA, Wan Z
    PMID: 12016023
    An HPLC system using a simple liquid-liquid extraction and HPLC with UV detection has been validated to determine tramadol concentration in human plasma. The method developed was selective and linear for concentrations ranging from 10 to 2000 ng/ml with average recovery of 98.63%. The limit of quantitation (LOQ) was 10 ng/ml and the percentage recovery of the internal standard phenacetin was 76.51%. The intra-day accuracy ranged from 87.55 to 105.99% and the inter-day accuracy, 93.44 to 98.43% for tramadol. Good precision (5.32 and 6.67% for intra- and inter-day, respectively) was obtained at LOQ. The method has been applied to determine tramadol concentrations in human plasma samples for a pharmacokinetic study.
  2. Tan KL, Ankathil R, Gan SH
    J Chromatogr B Analyt Technol Biomed Life Sci, 2011 Nov 15;879(30):3583-91.
    PMID: 22000961 DOI: 10.1016/j.jchromb.2011.09.048
    We developed a simple and sensitive method for the simultaneous detection of imatinib mesylate (IM) and its active metabolite, N-desmethyl imatinib (M1), in human serum samples. Separation was successfully achieved using an Agilent(®) ZORBAX Eclipse plus C(18) reversed phase column (50 mm × 2.1 mm, i.d.; 1.8 μm) under isocratic mobile phase conditions consisting of acetonitrile: 0.02 M potassium dihydrogen phosphate with 0.2% triethylamine at pH 3 (25:75, v/v) and ultra-violet detection was achieved at 235 nm. Extraction of the target compounds was completed using 100% cold acetonitrile. Good linearities (r(2)>0.99) for both IM and M1 were achieved for the concentration ranges of 50-1800 ng/mL and 50-360 ng/mL, respectively. The detection limits were 20 ng/mL and 10 ng/mL for M1 and IM, respectively. The intra- and inter-day precisions were less than 1% with percent recoveries of more than 90%. The method was successfully applied to calculate the pharmacokinetic parameters of chronic myeloid leukemia patients receiving imatinib. The method is suitable to be routinely applied for determination of IM and M1 in serum.
  3. Eteraf-Oskouei T, Allahyari S, Akbarzadeh-Atashkhosrow A, Delazar A, Pashaii M, Gan SH, et al.
    PMID: 25977699 DOI: 10.1155/2015/760405
    The antiangiogenesis effect of Ficus carica leaves extract in an air pouch model of inflammation was investigated in rat. Inflammation was induced by injection of carrageenan into pouches. After antioxidant capacity and total phenolic content (TPC) investigations, the extract was administered at 5, 25, and 50 mg/pouch, and then the volume of exudates, the cell number, TNFα, PGE2, and VEGF levels were measured. Angiogenesis of granulation tissues was determined by measuring hemoglobin content. Based on the DPPH assay, the extract had significant antioxidant activity with TPC of 11.70 mg GAE/100 g dry sample. In addition, leukocyte accumulation and volume of exudate were significantly inhibited by the extract. Moreover, it significantly decreased the production of TNFα, PGE2, and VEGF, while angiogenesis was significantly inhibited by all administered doses. Interestingly, attenuation of angiogenesis and inflammatory parameters (except leukocyte accumulation) by the extract was similar to that shown by diclofenac. The extract has anti-inflammatory effects and ameliorated cell influx and exudation to the site of the inflammatory response which may be related to the local inhibition of TNFα, PGE2, and VEGF levels as similarly shown by diclofenac. The antiangiogenesis and anti-VEGF effects of Ficus carica may be correlated with its significant antioxidant potentials.
  4. Alam F, Islam MA, Khalil MI, Gan SH
    Curr Pharm Des, 2016;22(20):3034-49.
    PMID: 26951104 DOI: 10.2174/1381612822666160307145801
    Type 2 diabetes mellitus (T2DM), the most common form of diabetes, is characterized by insulin resistance in the hepatic and peripheral tissues. Glucose transporter 4 (GLUT4) plays a major role in the pathophysiology of T2DM. Its defective expression or translocation to the peripheral cell plasma membrane in T2DM patients hinders the entrance of glucose into the cell for energy production. In addition to suitable drugs, an appropriate diet and/or exercise can be implemented to target the increase in GLUT4 expression, GLUT4 concentrations and GLUT4 translocation to the cell surface when managing the glucose metabolism of T2DM patients. In this review, we discussed successful intervention strategies that were individually administered or coupled with diet and/or exercise and affected the expression and translocation of GLUT4 in T2DM while reducing the excess glucose load from the blood. Additionally, some potentially good synthetic and natural compounds, which can activate the insulin-independent GLUT4 signaling pathways for the efficient management of T2DM, are highlighted as possible targets or emerging alternative sources for future anti-diabetic drug development.
  5. Usman A, Mustafa N, Iqbal SP, Hasan MZ, Shaikh MF, Dujaili JA, et al.
    Int J Clin Pract, 2021 Aug;75(8):e14315.
    PMID: 33934480 DOI: 10.1111/ijcp.14315
    BACKGROUND: Incidence of hypokalemia during the management of diabetic ketoacidosis (DKA) is high despite detailed potassium replacement guidelines in its treatment.

    AIM: We aimed to find the role of pH-adjusted potassium (pHK ) in the development of hypokalemia, and their mutual impact on patient outcomes during DKA management.

    METHODOLOGY: Adult DKA patient's admission data of preceding 3 years (2015-2017) were retrospectively clerked. Outcomes of interest were time to develop hypokalemia and to terminate emergency department (ED) care (hours), severity of hypokalemia and hospitalisation length (days). Linear regression was used to determine significant associations/predictors.

    RESULTS: The study was concluded on 85 patients. Hypokalemia was observed in nearly 3/4th of all admissions and occurred by the time of ED care termination. Each 1 mmol/L increase in pHK significantly (a) reduced the degree of hypokalemia by 0.07 mmol/L, (b) delayed time to develop hypokalemia by 4.58 hours, (c) and reduced the ED care time by 1.28 hours. Arterial pH was the other factor significantly delaying time to develop hypokalemia (36.25 hours) and facilitating early discharge from ED (13.86 hours). Moreover, each 1 mmol/L reduction in the degree of hypokalemia increased hospitalisation length by 1.86 days. Though significant, acute kidney injury negligibly increased hospitalisation length by 0.01 days.

    CONCLUSION: pH-adjusted potassium shall be used as a marker for hypokalemia and to initiate potassium replacement instead of measured serum potassium in DKA. Utilising pHK will help to avoid hypokalemia, reduce its severity and shorten ED care which will subsequently reduce hospitalisation length. We expect pHK to improve pharmacoeconomics in the future.

  6. Yap KM, Sekar M, Seow LJ, Gan SH, Bonam SR, Mat Rani NNI, et al.
    PMID: 34548817 DOI: 10.2147/BCTT.S316667
    Globally, breast cancer is the most common cancer type and is one of the most significant causes of deaths in women. To date, multiple clinical interventions have been applied, including surgical resection, radiotherapy, endocrine therapy, targeted therapy and chemotherapy. However, 1) the lack of therapeutic options for metastatic breast cancer, 2) resistance to drug therapy and 3) the lack of more selective therapy for triple-negative breast cancer are some of the major challenges in tackling breast cancer. Given the safe nature of natural products, numerous studies have focused on their anti-cancer potentials. Mangifera indica, commonly known as mango, represents one of the most extensively investigated natural sources. In this review, we provide a comprehensive overview of M. indica extracts (bark, kernel, leaves, peel and pulp) and phytochemicals (mangiferin, norathyriol, gallotannins, gallic acid, pyrogallol, methyl gallate and quercetin) reported for in vitro and in vivo anti-breast cancer activities and their underlying mechanisms based on relevant literature from several scientific databases, including PubMed, Scopus and Google Scholar till date. Overall, the in vitro findings suggest that M. indica extracts and/or phytochemicals inhibit breast cancer cell growth, proliferation, migration and invasion as well as trigger apoptosis and cell cycle arrest. In vivo results demonstrated that there was a reduction in breast tumor xenograft growth. Several potential mechanisms underlying the anti-breast cancer activities have been reported, which include modulation of oxidative status, receptors, signalling pathways, miRNA expression, enzymes and cell cycle regulators. To further explore this medicinal plant against breast cancer, future research directions are addressed. The outcomes of the review revealed that M. indica extracts and their phytochemicals may have potential benefits in the management of breast cancer in women. However, to validate its utility in the creation of innovative and potent therapeutic agents to treat breast cancer, more dedicated research, especially clinical studies are needed to explore the anti-breast cancer potentials of M. indica extracts and their phytochemicals.
  7. Khan A, Khan AH, Adnan AS, Syed Sulaiman SA, Gan SH, Khan I
    Biomed Res Int, 2016;2016:9710965.
    PMID: 27833921
    Background. Hemodialysis related hemodynamic instability is a major but an underestimated issue. Moreover, cardiovascular events are the leading cause of morbidity and mortality associated with blood pressure in hemodialysis patients. However, there have been many controversies regarding the role and management of hyper- and/or hypotension during hemodialysis that needs to be addressed. Objective. To critically review the available published data on the atypical role of hyper- and/or hypotension in cardiovascular associated morbidity and mortality in patients on hemodialysis and to understand the discrepancies in this context. Methods. A comprehensive search of literature employing electronic as well as manual sources and screening 2783 papers published between Jan 1980 and Oct 2015 was conducted to collect, identify, and analyze relevant information through peer-reviewed research articles, systematic reviews, and other published works. The cardiovascular events, including accelerated atherosclerotic cardiovascular disease (ASCVD), stroke, heart failure, myocardial infarction, myocardial ischemia, and stress induced myocardial dysfunction, leading to death were considered relevant. Results. A total of 23 published articles met the inclusion criteria and were included for in-depth review and analysis to finalize a comprehensive systematic review article. All the studies showed a significant association between the blood pressure and cardiovascular disease events in hemodialysis patients. Conclusions. Both intradialytic hypertension/hypotension episodes are major risk factors for cardiovascular mortality with a high percentage of probable causality; however, clinicians are faced with a dilemma on how to evaluate blood pressure and treat this condition.
  8. Johnathan M, Muhamad SA, Gan SH, Stanslas J, Mohd Fuad WE, Hussain FA, et al.
    PLoS One, 2021;16(3):e0249091.
    PMID: 33784348 DOI: 10.1371/journal.pone.0249091
    Lignosus rhinocerotis Cooke. (L. rhinocerotis) is a medicinal mushroom traditionally used in the treatment of asthma and several other diseases by the indigenous communities in Malaysia. In this study, the effects of L. rhinocerotis on allergic airway inflammation and hyperresponsiveness were investigated. L. rhinocerotis extract (LRE) was prepared by hot water extraction using soxhlet. Airway hyperresponsiveness (AHR) study was performed in house dust mite (HDM)-induced asthma in Balb/c mice while airway inflammation study was performed in ovalbumin (OVA)-induced asthma in Sprague-Dawley rats. Treatment with different doses of LRE (125, 250 and 500 mg/kg) significantly inhibited AHR in HDM-induced mice. Treatment with LRE also significantly decreased the elevated IgE in serum, Th2 cytokines in bronchoalveolar lavage fluid and ameliorated OVA-induced histological changes in rats by attenuating leukocyte infiltration, mucus hypersecretion and goblet cell hyperplasia in the lungs. LRE also significantly reduced the number of eosinophils and neutrophils in BALF. Interestingly, a significant reduction of the FOXP3+ regulatory T lymphocytes was observed following OVA induction, but the cells were significantly elevated with LRE treatment. Subsequent analyses on gene expression revealed regulation of several important genes i.e. IL17A, ADAM33, CCL5, IL4, CCR3, CCR8, PMCH, CCL22, IFNG, CCL17, CCR4, PRG2, FCER1A, CLCA1, CHIA and Cma1 which were up-regulated following OVA induction but down-regulated following treatment with LRE. In conclusion, LRE alleviates allergy airway inflammation and hyperresponsiveness, thus suggesting its therapeutic potential as a new armamentarium against allergic asthma.
  9. Rozak NI, Ahmad I, Gan SH, Abu Bakar R
    Sci Pharm, 2014 07 18;82(3):631-42.
    PMID: 25853073 DOI: 10.3797/scipharm.1406-01
    An insertion/deletion polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) and a polymorphism (rs6313) in the serotonin 2A receptor gene (5-HT2A) have previously been linked to smoking behavior. The objective of this study was to determine the possible association of the 5-HTTLPR and 5-HT2A gene polymorphisms with smoking behavior within a population of Malaysian male smokers (n=248) and non-smokers (n=248). The 5-HTTLPR genotypes were determined using the polymerase chain reaction (PCR) and were classified as short (S) alleles or long (L) alleles. The 5HT2A genotypes were determined using PCR-restriction fragment length polymorphisms (PCR-RFLP). No significant differences in the distribution frequencies of the alleles were found between the smokers and the non-smokers for the 5-HTTLPR polymorphism (x(2) = 0.72, P>0.05) or the 5HT2A polymorphism (x(2) = 0.73, P>0.05). This is the first study conducted on Malaysian Malay males regarding the association of 5-HTTLPR and 5HT2A polymorphisms and smoking behavior. However, the genes were not found to be associated with smoking behavior in our population.
  10. Malik A, Arooj M, Butt TT, Zahid S, Zahid F, Jafar TH, et al.
    Drug Des Devel Ther, 2018;12:1431-1443.
    PMID: 29872266 DOI: 10.2147/DDDT.S154169
    Background: The present study investigates the hepato- and DNA-protective effects of standardized extracts of Cleome brachycarpa (cabralealactone), Solanum incanum (solasodin), and Salvadora oleioides (salvadorin) in rats.

    Materials and methods: Hepatotoxicity was induced with intraperitoneal injection of carbon tetrachloride (CCl4) (1 mL/kg b.wt.) once a week for 12 weeks. The hepato- and DNA protective effects of the extracts in different combinations were compared with that of a standard drug Clavazin (200 mg/kg b.wt.). Tissue alanine aminotransferase, alpha-fetoprotein, tumor necrosis factor alpha (TNF-α), isoprostanes-2α, malondialdehyde, and 8-hydroxydeoxyguanosine, the significant hallmarks of oxidative stress, were studied.

    Results: Histopathological findings of the liver sections from the rat group which received CCl4+cabralealactone, solasodin, and salvadorin demonstrated improved centrilobular hepatocyte regeneration with moderate areas of congestion and infiltration comparable with Clavazin. For in silico study, the identified compounds were subjected to molecular docking with cyclooxygenase-2 and TNF-α followed by a molecular dynamics study, which indicated their potential as anti-inflammatory agents.

    Conclusion: Cabralealactone, solasodin, and salvadorin confer some hepatoprotective and DNA-damage protective effects against CCl4-induced toxicity. They successfully restored the normal architecture of hepatocytes and have the potential to be used as inhibitor to main culprits, that is, cyclooxygenase-2 and TNF-α. They can combat oxidative stress and liver injuries both as mono and combinational therapies. However, combination therapy has more ameliorating effects.

  11. Malik A, Jamil U, Butt TT, Waquar S, Gan SH, Shafique H, et al.
    Drug Des Devel Ther, 2019;13:1501-1513.
    PMID: 31123393 DOI: 10.2147/DDDT.S176698
    Background: In silico characterization can help to explain the interaction between molecules and predict three-dimensional structures. Various studies have confirmed the glucose-lowering effects of plant extracts, ie, lupeol and iso-orientin, which enable them to be used as antidiabetic agents. Purpose: Aims of the present study were to evaluate the hypoglycemic activities of lupeol and iso-orientin in a rat model. The study proposed the effects of alloxan on blood glucose level, body weight, and oxidative stress. Materials and Methods: Thirty (n=30) Wistar albino rats were divided into six groups and were subjected to different combinations of the compounds. Levels of different stress markers, ie, malondialdehyde, superoxide dismutase, catalase, nitric oxide, glutathione, glutathione peroxide, glutathione reductase, and blood glucose levels were estimated with their respective methods. Whereas, for their in silico analysis, identified target proteins, GPR40, glucose-6-phosphatase, UCP2, glycogen phosphorylase, aldose reductase, and glucose transporter-4 were docked with lupeol and iso-orientin. Three-dimensional structures were predicted by ERRAT, Rampage, Verify3D, threading and homology approaches. Results: Blood glucose levels were significantly increased in rats receiving intraperitoneal injection of alloxan (208±6.94 mg/dL) as compared to controls (90±7.38 mg/dL). Infected rats were administered plant extracts; combined treatment of both extracts (lupeol+iso-orientin) significantly reduced the levels of blood glucose (129.06±6.29 mg/dL) and improved the antioxidant status. Fifteen structures of each selected protein were evaluated using various techniques. Consequently, satisfactory quality factors [GPR40 (96.41%), glucose-6-phosphatase (96.56%), UCP2 (72.56%), glycogen phosphorylase (87.24%), aldose reductase (82.46%), and glucose transporter-4 (94.29%)] were selected. Molecular docking revealed interacting residues, effective drug properties and their binding affinities (ie, -8.9 to -12.6 Kcal/mol). Conclusion: Results of the study affirmed the antidiabetic activities of lupeol and iso-orientin. Administration of these extracts (either individually or in combination) significantly reduced blood glucose levels and oxidative stress. Hence, it may be considered beneficial in the treatment of diabetes.
  12. Solayman M, Saleh MA, Paul S, Khalil MI, Gan SH
    Comput Biol Chem, 2017 Jun;68:175-185.
    PMID: 28359874 DOI: 10.1016/j.compbiolchem.2017.03.005
    Polymorphisms of the ADIPOR2 gene are frequently linked to a higher risk of developing diseases including obesity, type 2 diabetes and cardiovascular diseases. Though mutations of the ADIPOR2 gene are detrimental, there is a lack of comprehensive in silico analyses of the functional and structural impacts at the protein level. Considering the involvement of ADIPOR2 in glucose uptake and fatty acid oxidation, an in silico functional analysis was conducted to explore the possible association between genetic mutations and phenotypic variations. A genomic analysis of 82 nonsynonymous SNPs in ADIPOR2 was initiated using SIFT followed by the SNAP2, nsSNPAnalyzer, PolyPhen-2, SNPs&GO, FATHMM and PROVEAN servers. A total of 10 mutations (R126W, L160Q, L195P, F201S, L235R, L235P, L256R, Y328H, E334K and Q349H) were predicted to have deleterious effects on the ADIPOR2 protein and were therefore selected for further analysis. Theoretical models of the variants were generated by comparative modeling via MODELLER 9.16. A protein structural analysis of these amino acid variants was performed using SNPeffect, I-Mutant, ConSurf, Swiss-PDB Viewer and NetSurfP to explore their solvent accessibility, molecular dynamics and energy minimization calculations. In addition, FTSite was used to predict the ligand binding sites, while NetGlycate, NetPhos2.0, UbPerd and SUMOplot were used to predict post-translational modification sites. All of the variants showed increased free energy, though F201S exhibited the highest energy increase. The root mean square deviation values of the modeled mutants strongly indicated likely pathogenicity. Remarkably, three binding sites were detected on ADIPOR2, and two mutations at positions 328 and 201 were found in the first and second binding pockets, respectively. Interestingly, no mutations were found at the post-translational modification sites. These genetic variants can provide a better understanding of the wide range of disease susceptibility associated with ADIPOR2 and aid the development of new molecular diagnostic markers for these diseases. The findings may also facilitate the development of novel therapeutic elements for associated diseases.
  13. Leong WY, Soon CF, Wong SC, Tee KS, Cheong SC, Gan SH, et al.
    Bioengineering (Basel), 2017 May 14;4(2).
    PMID: 28952522 DOI: 10.3390/bioengineering4020043
    Cells encapsulation is a micro-technology widely applied in cell and tissue research, tissue transplantation, and regenerative medicine. In this paper, we proposed a growth of microtissue model for the human keratinocytes (HaCaT) cell line and an oral squamous cell carcinoma (OSCC) cell line (ORL-48) based on a simple aerosol microencapsulation technique. At an extrusion rate of 20 μL/min and air flow rate of 0.3 L/min programmed in the aerosol system, HaCaT and ORL-48 cells in alginate microcapsules were encapsulated in microcapsules with a diameter ranging from 200 to 300 μm. Both cell lines were successfully grown into microtissues in the microcapsules of alginate within 16 days of culture. The microtissues were characterized by using a live/dead cell viability assay, field emission-scanning electron microscopy (FE-SEM), fluorescence staining, and cell re-plating experiments. The microtissues of both cell types were viable after being extracted from the alginate membrane using alginate lyase. However, the microtissues of HaCaT and ORL-48 demonstrated differences in both nucleus size and morphology. The microtissues with re-associated cells in spheroids are potentially useful as a cell model for pharmacological studies.
  14. Malik A, Ashraf MAB, Khan MW, Zahid A, Shafique H, Waquar S, et al.
    Arch Environ Contam Toxicol, 2020 Apr;78(3):329-336.
    PMID: 31620805 DOI: 10.1007/s00244-019-00673-2
    The use of leaded gasoline adversely affects cardiovascular, nervous, and immune systems. Study projects to rule out different variables of prognostic importance in lead-exposed subjects. A total of 317 traffic wardens with 5 years of outdoor experience and Hb levels
  15. Saleh MA, Solayman M, Paul S, Saha M, Khalil MI, Gan SH
    Biomed Res Int, 2016;2016:9142190.
    PMID: 27294143 DOI: 10.1155/2016/9142190
    Despite the reported association of adiponectin receptor 1 (ADIPOR1) gene mutations with vulnerability to several human metabolic diseases, there is lack of computational analysis on the functional and structural impacts of single nucleotide polymorphisms (SNPs) of the human ADIPOR1 at protein level. Therefore, sequence- and structure-based computational tools were employed in this study to functionally and structurally characterize the coding nsSNPs of ADIPOR1 gene listed in the dbSNP database. Our in silico analysis by SIFT, nsSNPAnalyzer, PolyPhen-2, Fathmm, I-Mutant 2.0, SNPs&GO, PhD-SNP, PANTHER, and SNPeffect tools identified the nsSNPs with distorting functional impacts, namely, rs765425383 (A348G), rs752071352 (H341Y), rs759555652 (R324L), rs200326086 (L224F), and rs766267373 (L143P) from 74 nsSNPs of ADIPOR1 gene. Finally the aforementioned five deleterious nsSNPs were introduced using Swiss-PDB Viewer package within the X-ray crystal structure of ADIPOR1 protein, and changes in free energy for these mutations were computed. Although increased free energy was observed for all the mutants, the nsSNP H341Y caused the highest energy increase amongst all. RMSD and TM scores predicted that mutants were structurally similar to wild type protein. Our analyses suggested that the aforementioned variants especially H341Y could directly or indirectly destabilize the amino acid interactions and hydrogen bonding networks of ADIPOR1.
  16. Shrestha S, Iqbal A, Teoh SL, Khanal S, Gan SH, Lee SWH, et al.
    Res Social Adm Pharm, 2024 Mar 13.
    PMID: 38514293 DOI: 10.1016/j.sapharm.2024.03.005
    INTRODUCTION: Pain is a significant healthcare challenge, impacting millions worldwide. Pharmacists have increasingly taken on expanded roles in managing pain, particularly in primary and ambulatory care contexts. This umbrella review aims to systematically evaluate evidence from published systematic reviews that explore the impact of pharmacist-delivered interventions on clinical, humanistic, and economic outcomes related to pain.

    METHODS: A systematic search was conducted across six electronic databases, including Ovid Embase, MEDLINE, CINAHL, Scopus, CENTRAL, APA PsycINFO, and DARE, from inception until June 2023. Prior to inclusion, two independent reviewers assessed study titles and abstracts. Following inclusion, an assessment of the methodological quality of the included studies was conducted. AMSTAR 2 was used to evaluate the methodological quality of the included SRs.

    RESULTS: From 2055 retrieved titles, 11 systematic reviews were included, with 5 out of 11 being meta-analyses. These SRs encompassed diverse pharmacist-led interventions such as education, medication reviews, and multi-component strategies targeting various facets of pain management. These findings showed favorable clinical outcomes, including reduced pain intensity, improved medication management, enhanced overall physical and mental well-being, and reduced hospitalization durations. Significant pain intensity reductions were found due to pharmacists' interventions, with standardized mean differences (SMDs) ranging from -0.76 to -0.22 across different studies and subgroups. Physical functioning improvements were observed, with SMDs ranging from -0.38 to 1.03. Positive humanistic outcomes were also reported, such as increased healthcare provider confidence, patient satisfaction, and quality of life (QoL). QoL improvements were reported, with SMDs ranging from 0.29 to 1.03. Three systematic reviews examined pharmacist interventions' impact on pain-related economic outcomes, highlighting varying cost implications and the need for robust research methodologies to capture costs and benefits.

    CONCLUSION: This umbrella review highlights the effectiveness of pharmacist-delivered interventions in improving clinical, humanistic, and economic outcomes related to pain management. Existing evidence emphasises on the need to integrate pharamacists into multi-disciplinary pain management teams. Further research is needed to investigate innovative care models, such as pharmacist-independent prescribing initiatives within collaborative pain management clinics.

  17. Ramatillah DL, Gan SH, Pratiwy I, Syed Sulaiman SA, Jaber AAS, Jusnita N, et al.
    PLoS One, 2022;17(1):e0262438.
    PMID: 35077495 DOI: 10.1371/journal.pone.0262438
    BACKGROUND AND AIM: Coronavirus Disease 2019 (COVID-19) has become a worldwide pandemic and is a threat to global health. Patients who experienced cytokine storms tend to have a high mortality rate. However, to date, no study has investigated the impact of cytokine storms.

    MATERIALS AND METHODS: This retrospective cohort study included only COVID-19 positive patients hospitalized in a Private Hospital in West Jakarta between March and September 2020. All patients were not vaccinated during this period and treatment was based on the guidelines by the Ministry of Health Indonesia. A convenience sampling method was used and all patients who met the inclusion criteria were enrolled.

    RESULTS: The clinical outcome of COVID-19 patients following medical therapy was either cured (85.7%) or died (14.3%), with 14.3% patients reported to have cytokine storm, from which 23.1% led to fatalities. A plasma immunoglobulin (Gammaraas®) and/or tocilizumab (interleukin-6 receptor antagonist; Actemra®) injection was utilised to treat the cytokine storm while remdesivir and oseltamivir were administered to ameliorate COVID-19. Most (61.5%) patients who experienced the cytokine storm were male; mean age 60 years. Interestingly, all patients who experienced the cytokine storm had hypertension or/ and diabetes complication (100%). Fever, cough and shortness of breath were also the common symptoms (100.0%). Almost all (92.3%) patients with cytokine storm had to be treated in the intensive care unit (ICU). Most (76.9%) patients who had cytokine storm received hydroxychloroquine and all had antibiotics [1) azithromycin + levofloxacin or 2) meropenam for critically ill patients] and vitamins such as vitamins C and B-complex as well as mineral. Unfortunately, from this group, 23.1% patients died while the remaining 70% of patients recovered. A significant (p<0.05) correlation was established between cytokine storms and age, the presence of comorbidity, diabetes, hypertension, fever, shortness of breath, having oxygen saturation (SPO2) less than 93%, cold, fatigue, ward of admission, the severity of COVID-19 disease, duration of treatment as well as the use of remdesivir, Actemra® and Gammaraas®. Most patients recovered after receiving a combination treatment (oseltamivir + remdesivir + Antibiotics + Vitamin/Mineral) for approximately 11 days with a 90% survival rate. On the contrary, patients who received oseltamivir + hydroxychloroquine + Gammaraas® + antibiotics +Vitamin/Mineral, had a 83% survival rate after being admitted to the hospital for about ten days.

    CONCLUSION: Factors influencing the development of a cytokine storm include age, duration of treatment, comorbidity, symptoms, type of admission ward and severity of infection. Most patients (76.92%) with cytokine storm who received Gammaraas®/Actemra®, survived although they were in the severe and critical levels (87.17%). Overall, based on the treatment duration and survival rate, the most effective therapy was a combination of oseltamivir + favipiravir + hydroxychloroquine + antibiotics + vitamins/minerals.

  18. Maddin N, Husin A, Gan SH, Aziz BA, Ankathil R
    Oncol Ther, 2016;4(2):303-314.
    PMID: 28261657 DOI: 10.1007/s40487-016-0035-x
    INTRODUCTION: Imatinib mesylate (IM), a selective inhibitor of the BCR-ABL tyrosine kinase, is a well-established first-line treatment for chronic myeloid leukemia (CML). IM is metabolized mainly by cytochrome P450 (CYP) in the liver, specifically the CYP3A4 and CYP3A5 enzymes. Polymorphisms in these genes can alter the enzyme activity of IM and may affect its response. In this study, the impact of two single-nucleotide polymorphisms (SNPs), CYP3A5*3 (6986A>G) and CYP3A4*18 (878T>C), on IM treatment response in CML patients (n = 270; 139 IM resistant and 131 IM good responders) was investigated.

    METHODS: Genotyping of CYP3A4*18 and CYP3A5*3 was performed using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) technique. The association between allelic variants and treatment response was assessed by means of odds ratio (OR) with 95% confidence intervals calculated by logistic regression.

    RESULTS: Our results indicated that CML patients carrying the heterozygous (AG) and homozygous variant (GG) genotype of CYP3A5*3 were associated with a significantly lower risk of acquiring resistance with OR 0.171; 95% CI: 0.090-0.324, p 

  19. Gan SH, Ismail R, Wan Adnan WA, Zulmi W
    Mol Diagn Ther, 2007;11(3):171-81.
    PMID: 17570739
    Tramadol is metabolized by the highly polymorphic enzyme cytochrome P450 (CYP)2D6. Patients with different CYP2D6 genotypes may respond differently to tramadol in terms of pain relief and adverse events. In this study, we compare the pharmacokinetics and effects of tramadol in Malaysian patients with different genotypes to establish the pharmacokinetic-pharmacodynamic relationship of tramadol.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links