Displaying publications 81 - 100 of 105 in total

Abstract:
Sort:
  1. Vijayanand M, Ramakrishnan A, Subramanian R, Issac PK, Nasr M, Khoo KS, et al.
    Environ Res, 2023 Mar 20;227:115716.
    PMID: 36940816 DOI: 10.1016/j.envres.2023.115716
    Polycyclic aromatic hydrocarbons (PAHs) are considered a major class of organic contaminants or pollutants, which are poisonous, mutagenic, genotoxic, and/or carcinogenic. Due to their ubiquitous occurrence and recalcitrance, PAHs-related pollution possesses significant public health and environmental concerns. Increasing the understanding of PAHs' negative impacts on ecosystems and human health has encouraged more researchers to focus on eliminating these pollutants from the environment. Nutrients available in the aqueous phase, the amount and type of microbes in the culture, and the PAHs' nature and molecular characteristics are the common factors influencing the microbial breakdown of PAHs. In recent decades, microbial community analyses, biochemical pathways, enzyme systems, gene organization, and genetic regulation related to PAH degradation have been intensively researched. Although xenobiotic-degrading microbes have a lot of potential for restoring the damaged ecosystems in a cost-effective and efficient manner, their role and strength to eliminate the refractory PAH compounds using innovative technologies are still to be explored. Recent analytical biochemistry and genetically engineered technologies have aided in improving the effectiveness of PAHs' breakdown by microorganisms, creating and developing advanced bioremediation techniques. Optimizing the key characteristics like the adsorption, bioavailability, and mass transfer of PAH boosts the microorganisms' bioremediation performance, especially in the natural aquatic water bodies. This review's primary goal is to provide an understanding of recent information about how PAHs are degraded and/or transformed in the aquatic environment by halophilic archaea, bacteria, algae, and fungi. Furthermore, the removal mechanisms of PAH in the marine/aquatic environment are discussed in terms of the recent systemic advancements in microbial degradation methodologies. The review outputs would assist in facilitating the development of new insights into PAH bioremediation.
  2. Zango ZU, Khoo KS, Garba A, Lawal MA, Abidin AZ, Wadi IA, et al.
    Environ Geochem Health, 2024 Apr 03;46(4):145.
    PMID: 38568460 DOI: 10.1007/s10653-024-01936-1
    Frequent detection of sulfonamides (SAs) pharmaceuticals in wastewater has necessitated the discovery of suitable technology for their sustainable remediation. Adsorption has been widely investigated due to its effectiveness, simplicity, and availability of various adsorbent materials from natural and artificial sources. This review highlighted the potentials of carbon-based adsorbents derived from agricultural wastes such as lignocellulose, biochar, activated carbon, carbon nanotubes graphene materials as well as organic polymers such as chitosan, molecularly imprinted polymers, metal, and covalent frameworks for SAs removal from wastewater. The promising features of these materials including higher porosity, rich carbon-content, robustness, good stability as well as ease of modification have been emphasized. Thus, the materials have demonstrated excellent performance towards the SAs removal, attributed to their porous nature that provided sufficient active sites for the adsorption of SAs molecules. The modification of physico-chemical features of the materials have been discussed as efficient means for enhancing their adsorption and reusable performance. The article also proposed various interactive mechanisms for the SAs adsorption. Lastly, the prospects and challenges have been highlighted to expand the knowledge gap on the application of the materials for the sustainable removal of the SAs.
  3. Zango ZU, Khoo KS, Garba A, Garba ZN, Danmallam UN, Aldaghri O, et al.
    Environ Res, 2024 Apr 30;252(Pt 3):119024.
    PMID: 38692419 DOI: 10.1016/j.envres.2024.119024
    Environmental pollution has been increasing since last decade due to increasing industrialisation and urbanisation. Various kinds ofenvironmental pollutants including carbon dioxide (CO2), dyes, pharmaceuticals, phenols, heavy metals along with many organic and inorganic species have been discovered in the various environmental compartments which possess harmful impacts tox human health, wildlife, and ecosystems. Thus, various efforts have been made through regulations, technological advancements, and public awareness campaigns to reduce the impact of the pollution. However, finding suitable alternatives to mitigate their impacts remained a challenge. Metal-organic frameworks (MOFs) are one of the advanced materials with unique features such as high porosity and stability which exhibit versatile applications in environmental remediation. Their composites with titanium oxide nanoparticles (TiO2) have been discovered to offer potential feature such as light harvesting capacity and catalytic activity. The composite integration and properties have been confirmed through characterization using surface area analysis, scanning electron/transmission electron microscopy, atomic force microscopy, fourier transformed infrared spectroscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, and others. Thus, this work rigorously discussed potential applications of the MOF@TiO2 nanomaterials for the CO2 capture and effective utilization in methanol, ethanol, acetone, acetaldehyde, and other useful products that served as fuel to various industrial processes. Additionally, the work highlights the effective performance of the materials towards photocatalytic degradation of both organic and inorganic pollutants with indepth mechanistic insights. The article will offer significant contribution for the development of sustainable and efficient technologies for the environmental monitoring and pollution mitigation.
  4. Ahmad Sobri MZ, Khoo KS, Liew CS, Lim JW, Tong WY, Zhou Y, et al.
    J Environ Manage, 2024 Jun;360:121138.
    PMID: 38749131 DOI: 10.1016/j.jenvman.2024.121138
    In the pursuit of alternatives for conventional diesel, sourced from non-renewable fossil fuel, biodiesel has gained attentions for its intrinsic benefits. However, the commercial production process for biodiesel is still not sufficiently competitive. This review analyses microalgal lipid, one of the important sources of biodiesel, and its cultivation techniques with recent developments in the technical aspects. In fact, the microalgal lipids are the third generation feedstock, used for biodiesel production after its benefits outweigh that of edible vegetable oils (first generation) and non-edible oils (second generation). The critical factors influencing microalgal growth and its lipid production and accumulation are also discussed. Following that is the internal enhancement for cellular lipid production through genetic engineering. Moreover, the microalgae cultivation data modelling was also rationalized, with a specific focus on growth kinetic models that allow for the prediction and optimization of lipid production. Finally, the machine learning and environmental impact analysis are as well presented as important aspects to consider in fulfilling the prime objective of commercial sustainability to produce microalgal biodiesel.
  5. Jenila JS, Issac PK, Lam SS, Oviya JC, Jones S, Munusamy-Ramanujam G, et al.
    Environ Res, 2023 Nov 01;236(Pt 2):116810.
    PMID: 37532209 DOI: 10.1016/j.envres.2023.116810
    Gestagens are common pollutants accumulated in the aquatic ecosystem. Gestagens are comprised of natural gestagens (i.e. progesterone) and synthetic gestagens (i.e. progestins). The major contributors of gestagens in the environment are paper plant mill effluent, wastewater treatment plants, discharge from pharmaceutical manufacturing, and livestock farming. Gestagens present in the aquatic environment interact with progesterone receptors and other steroid hormone receptors, negatively influencing fish reproduction, development, and behavior. In fish, the gonadotropin induces 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) production, an important steroid hormone involved in gametogenesis. DHP interacts with the membrane progestin receptor (mPR), which regulates sperm motility and oocyte maturation. Gestagens also interfere with the hypothalamic-pituitary-gonadal (HPG) axis, which results in altered hormone levels in fish. Moreover, recent studies showed that even at low concentrations exposure to gestagens can have detrimental effects on fish reproduction, including reduced egg production, masculinization, feminization in males, and altered sex ratio, raising concerns about their impact on the fish population. This review highlights the hormonal regulation of sperm motility, oocyte maturation, the concentration of environmental gestagens in the aquatic environment, and their detrimental effects on fish reproduction. However, the long-term and combined impacts of multiple gestagens, including their interactions with other pollutants on fish populations and ecosystems are not well understood. The lack of standardized regulations and monitoring protocols for gestagens pollution in wastewater effluent hampers effective control and management. Nonetheless, advancements in analytical techniques and biomonitoring methods provide potential solutions by enabling better detection and quantification of gestagens in aquatic ecosystems.
  6. Zango ZU, Binzowaimil AM, Aldaghri OA, Eisa MH, Garba A, Ahmed NM, et al.
    Chemosphere, 2023 Dec;343:140223.
    PMID: 37734509 DOI: 10.1016/j.chemosphere.2023.140223
    Covalent organic frameworks (COFs) are class of porous coordination polymers made up of organic building blocks joined together by covalent bonding through thermodynamic and controlled reversible polymerization reactions. This review discussed versatile applications of COFs for remediation of wastewater containing dyes, emphasizing the advantages of both pristine and modified materials in adsorption, membrane separation, and advanced oxidations processes. The excellent performance of COFs towards adsorption and membrane filtration has been centered to their higher crystallinity and porosity, exhibiting exceptionally high surface area, pore size and pore volumes. Thus, they provide more active sites for trapping the dye molecules. On one hand, the photocatalytic performance of the COFs was attributed to their semiconducting properties, and when coupled with other functional semiconducting materials, they achieve good mechanical and thermal stabilities, positive light response, and narrow band gap, a typical characteristic of excellent photocatalysts. As such, COFs and their composites have demonstrated excellent potentialities for the elimination of the dyes.
  7. Zango ZU, Ethiraj B, Al-Mubaddel FS, Alam MM, Lawal MA, Kadir HA, et al.
    Environ Res, 2023 Aug 15;231(Pt 2):116102.
    PMID: 37196688 DOI: 10.1016/j.envres.2023.116102
    Perfluoroalkyl carboxylic acids (PFCAs) are sub-class of perfluoroalkyl substances commonly detected in water matrices. They are persistent in the environment, hence highly toxic to living organisms. Their occurrence at trace amount, complex nature and prone to matrix interference make their extraction and detection a challenge. This study consolidates current advancements in solid-phase extraction (SPE) techniques for the trace-level analysis of PFCAs from water matrices. The advantages of the methods in terms of ease of applications, low-cost, robustness, low solvents consumption, high pre-concentration factors, better extraction efficiency, good selectivity and recovery of the analytes have been emphasized. The article also demonstrated effectiveness of some porous materials for the adsorptive removal of the PFCAs from the water matrices. Mechanisms of the SPE/adsorption techniques have been discussed. The success and limitations of the processes have been elucidated.
  8. Tran TNT, Truong TMH, Nguyen TDP, Bui VX, Thao DT, Luan TV, et al.
    J Food Sci Technol, 2023 Mar;60(3):1097-1106.
    PMID: 36908365 DOI: 10.1007/s13197-022-05491-4
    Soy isoflavone extracts are widely researched for their distinctive potential in contributing to various functional foods. The research work focuses on testing the toxicity of purified soy isoflavone extracts in mice models. With an agreement of the animal ethics, acute toxicity is firstly used to screen the effects of test compounds in mice for therapeutic purposes. Moreover, tests were conducted on BALB/c for estrogen in vivo and MCF7 for in vitro, screening active protection of liver cells, lipid peroxidation and scavenging free radicals 2,2-diphenyl-1-picrylhydrazyl (DPPH). Genistin and daidzin were found to be the two major compounds accounting for 47% and 35% of total purified soy isoflavones. The acute toxicity test results exhibited no effect against physiological accretion of BALB/c after 7-day administration with the given dose of 10 g/kgBW. Moreover, modified E-screen assay on MCF7 cells proved that the estrogen of isoflavone extracts induces cell proliferation by 15% compared with other non-steroid culture techniques. Therefore, this research contributes to helping researchers apply soy isoflavones in functional food, to alleviate the difficulties in menopausal symptoms for women in the future.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13197-022-05491-4.

  9. Zango ZU, Lawal MA, Usman F, Sulieman A, Akhdar H, Eisa MH, et al.
    Chemosphere, 2024 Mar;351:141218.
    PMID: 38266876 DOI: 10.1016/j.chemosphere.2024.141218
    The widespread consumption of pharmaceutical drugs and their incomplete breakdown in organisms has led to their extensive presence in aquatic environments. The indiscriminate use of antibiotics, such as sulfonamides, has contributed to the development of drug-resistant bacteria and the persistent pollution of water bodies, posing a threat to human health and the safety of the environment. Thus, it is paramount to explore remediation technologies aimed at decomposing and complete elimination of the toxic contaminants from pharmaceutical wastewater. The review aims to explore the utilization of metal-oxide nanoparticles (MONPs) and graphitic carbon nitrides (g-C3N4) in photocatalytic degradation of sulfonamides from wastewater. Recent advances in oxidation techniques such as photocatalytic degradation are being exploited in the elimination of the sulfonamides from wastewater. MONP and g-C3N4 are commonly evolved nano substances with intrinsic properties. They possessed nano-scale structure, considerable porosity semi-conducting properties, responsible for decomposing wide range of water pollutants. They are widely applied for photocatalytic degradation of organic and inorganic substances which continue to evolve due to the low-cost, efficiency, less toxicity, and more environmentally friendliness of the materials. The review focuses on the current advances in the application of these materials, their efficiencies, degradation mechanisms, and recyclability in the context of sulfonamides photocatalytic degradation.
  10. Rozaini MNH, Khoo KS, Abdah MAAM, Ethiraj B, Alam MM, Anwar AF, et al.
    Environ Geochem Health, 2024 Mar 11;46(3):111.
    PMID: 38466501 DOI: 10.1007/s10653-024-01917-4
    With the advancement of technologies and growth of the economy, it is inevitable that more complex processes are deployed, producing more heterogeneous wastewater that comes from biomedical, biochemical and various biotechnological industries. While the conventional way of wastewater treatment could effectively reduce the chemical oxygen demand, pH and turbidity of wastewater, trace pollutants, specifically the endocrine disruptor compounds (EDCs) that exist in µg L-1 or ng L-1 have further hardened the detection and removal of these biochemical pollutants. Even in small amounts, EDC could interfere human's hormone, causing severe implications on human body. Hence, this review elucidates the recent insights regarding the effectiveness of an advanced 2D material based on titanium carbide (Ti3C2Tx), also known as MXene, in detecting and removing EDCs. MXene's highly tunable feature also allows its surface chemistry to be adjusted by adding chemicals with different functional groups to adsorb different kinds of EDCs for biochemical pollution mitigation. At the same time, the incorporation of MXene into sample matrices also further eases the analysis of trace pollutants down to ng L-1 levels, thereby making way for a more cleaner and comprehensive wastewater treatment. In that sense, this review also highlights the progress in synthesizing MXene from the conventional method to the more modern approaches, together with their respective key parameters. To further understand and attest to the efficacy of MXene, the limitations and current gaps of this potential agent are also accentuated, targeting to seek resolutions for a more sustainable application.
  11. Ardo FM, Khoo KS, Ahmad Sobri MZ, Suparmaniam U, Ethiraj B, Anwar AF, et al.
    Environ Pollut, 2024 Apr 01;346:123648.
    PMID: 38408504 DOI: 10.1016/j.envpol.2024.123648
    Municipal wastewater is ubiquitously laden with myriad pollutants discharged primarily from a combination of domestic and industrial activities. These heterogeneous pollutants are threating the natural environments when the traditional activated sludge system fails sporadically to reduce the pollutants' toxicities. Besides, the activated sludge system is very energy intensive, bringing conundrums for decarbonization. This research endeavoured to employ Chlorella vulgaris sp. In converting pollutants from municipal wastewater into hydrogen via alternate light and dark fermentative process. The microalgae in attached form onto 1 cm3 of polyurethane foam cubes were adopted in optimizing light intensity and photoperiod during the light exposure duration. The highest hydrogen production was recorded at 52 mL amidst the synergistic light intensity and photoperiod of 200 μmolm-2s-1 and 12:12 h (light:dark h), respectively. At this lighting condition, the removals of chemical oxygen demand (COD) and ammoniacal nitrogen were both achieved at about 80%. The sustainability of microalgal fermentative performances was verified in recyclability study using similar immobilization support material. There were negligible diminishments of hydrogen production as well as both COD and ammoniacal nitrogen removals after five cycles, heralding inconsequential microalgal cells' washout from the polyurethane support when replacing the municipal wastewater medium at each cycle. The collected dataset was finally modelled into enhanced Monod equation aided by Python software tool of machine learning. The derived model was capable to predict the performances of microalgae to execute the fermentative process in producing hydrogen while subsisting municipal wastewater at arbitrary photoperiod. The enhanced model had a best fitting of R2 of 0.9857 as validated using an independent dataset. Concisely, the outcomes had contributed towards the advancement of municipal wastewater treatment via microalgal fermentative process in producing green hydrogen as a clean energy source to decarbonize the wastewater treatment facilities.
  12. Rawindran H, Khoo KS, Ethiraj B, Lim JW, Liew CS, Goh PS, et al.
    Environ Res, 2024 Mar 16;251(Pt 2):118687.
    PMID: 38493853 DOI: 10.1016/j.envres.2024.118687
    The current study had conducted the life cycle analysis (LCA) to assess the environmental impact of microalgal wastewater treatment via an integrated membrane bioreactor. The functional unit selected for this analysis was 1 kg of treated microalgal wastewater with contaminants eliminated by ultrafiltration membrane fabricated from recycled polyethylene terephthalate waste. Meanwhile, the applied system boundary in this study was distinguished based on two scenarios, namely, cradle-to-gate encompassed wastewater treatment only and cradle-to-cradle which included the reutilization of treated wastewater to cultivate microalgae again. The environmental impacts and hotspots associated with the different stages of the wastewater treatment process had clearly elucidated that membrane treatment had ensued the highest impact, followed by microalgal harvesting, and finally cultivation. Among the environmental impact categories, water-related impact was found to be prominent in the following series: freshwater ecotoxicity, freshwater eutrophication and marine ecotoxicity. Notably, the key performance indicator of all environmental impact, i.e., the global warming potential was found to be very much lower at 2.94 × 10-4 kg CO2 eq as opposed to other literatures reported on the LCA of wastewater treatments using membranes. Overall, this study had proffered insights into the environmental impact of microalgal wastewater treatment and its stimulus for sustainable wastewater management. The findings of this study can be instrumental in making informed decision for optimizing microalgal wastewater treatment and reutilization assisted by membrane technology with an ultimate goal of enhancing sustainability.
  13. Le Han H, Pham PTV, Kim SG, Chan SS, Khoo KS, Chew KW, et al.
    Mol Biotechnol, 2024 Dec;66(12):3618-3627.
    PMID: 38042757 DOI: 10.1007/s12033-023-00963-0
    Multidrug resistance to pathogens has posed a severe threat to public health. The threat could be addressed by antimicrobial peptides (AMPs) with broad-spectrum suppression. In this study, Brevibacillus halotolerans 7WMA2, isolated from marine sediment, produced AMPs against Gram-positive and Gram-negative bacteria. The AMPs were precipitated by ammonium sulfate 30% (w/v) from culture broth and dialyzed by a 1 kDa membrane. Tryptone Soy Agar (TSA) was used for the cultivation and resulted in the largest bacteria-inhibiting zones under aerobic conditions at 25 °C, 48 h. An SDS-PAGE gel overlay test revealed that strain 7WMA2 could produce AMPs of 5-10 kDa and showed no degradation when held at 121 °C for 30 min at a wide pH 2-12 range. The AMPs did not cause toxicity to HeLa cells with concentrations up to 500 µg/mL while increasing the arbitrary unit up to eight times. The study showed that the AMPs produced were unique, with broad-spectrum antimicrobial ability.
  14. Ahmad Sobri MZ, Khoo KS, Sahrin NT, Ardo FM, Ansar S, Hossain MS, et al.
    Chemosphere, 2023 Oct;338:139526.
    PMID: 37459926 DOI: 10.1016/j.chemosphere.2023.139526
    The depletion of fossil fuel sources and increase in energy demands have increased the need for a sustainable alternative energy source. The ability to produce hydrogen from microalgae is generating a lot of attention in both academia and industry. Due to complex production procedures, the commercial production of microalgal biohydrogen is not yet practical. Developing the most optimum microalgal hydrogen production process is also very laborious and expensive as proven from the experimental measurement. Therefore, this research project intended to analyse the random time series dataset collected during microalgal hydrogen productions while using various low thermally pre-treated palm kernel expeller (PKE) waste via machine learning (ML) approach. The analysis of collected dataset allowed the derivation of an enhanced kinetic model based on the Gompertz model amidst the dark fermentative hydrogen production that integrated thermal pre-treatment duration as a function within the model. The optimum microalgal hydrogen production attained with the enhanced kinetic model was 387.1 mL/g microalgae after 6 days with 1 h thermally pre-treated PKE waste at 90 °C. The enhanced model also had better accuracy (R2 = 0.9556) and net energy ratio (NER) value (0.71) than previous studies. Finally, the NER could be further improved to 0.91 when the microalgal culture was reused, heralding the potential application of ML in optimizing the microalgal hydrogen production process.
  15. Leong WH, Lim JW, Rawindran H, Liew CS, Lam MK, Ho YC, et al.
    Chemosphere, 2023 Nov;341:139953.
    PMID: 37634592 DOI: 10.1016/j.chemosphere.2023.139953
    Life cycle assessments of microalgal cultivation systems are often conducted to evaluate the sustainability and feasibility factors of the entire production chain. Unlike widely reported conventional microalgal cultivation systems, the present work adopted a microalgal-bacterial cultivation approach which was upscaled into a pilot-scale continuous photobioreactor for microalgal biomass production into biodiesel from wastewater resources. A multiple cradle-to-cradle system ranging from microalgal biomass-to-lipid-to-biodiesel was evaluated to provide insights into the energy demand of each processes making up the microalgae-to-biodiesel value chain system. Energy feasibility studies revealed positive NER values (4.95-8.38) for producing microalgal biomass but deficit values for microalgal-to-biodiesel (0.14-0.23), stemming from the high energy input requirements in the downstream processes for converting biomass into lipid and biodiesel accounting to 88-90% of the cumulative energy demand. Although the energy balance for microalgae-to-biodiesel is in the deficits, it is comparable with other reported biodiesel production case studies (0.12-0.40). Nevertheless, the approach to using microalgal-bacterial cultivation system has improved the overall energy efficiency especially in the upstream processes compared to conventional microalgal cultivation systems. Energy life cycle assessments with other microalgal based biofuel systems also proposed effective measures in increasing the energy feasibility either by utilizing the residual biomass and less energy demanding downstream extraction processes from microalgal biomass. The microalgal-bacterial cultivation system is anticipated to offer both environmental and economic prospects for upscaling by effectively exploiting the low-cost nutrients from wastewaters via bioconversion into valuable microalgal biomass and biodiesel.
  16. Ng YJ, Chan SS, Khoo KS, Munawaroh HSH, Lim HR, Chew KW, et al.
    Biotechnol Adv, 2023 Nov;68:108198.
    PMID: 37330152 DOI: 10.1016/j.biotechadv.2023.108198
    Surfactants have always been a prominent chemical that is useful in various sectors (e.g., cleaning agent production industry, textile industry and painting industry). This is due to the special ability of surfactants to reduce surface tension between two fluid surfaces (e.g., water and oil). However, the current society has long omitted the harmful effects of petroleum-based surfactants (e.g., health issues towards humans and reducing cleaning ability of water bodies) due to their usefulness in reducing surface tension. These harmful effects will significantly damage the environment and negatively affect human health. As such, there is an urgency to secure environmentally friendly alternatives such as glycolipids to reduce the effects of these synthetic surfactants. Glycolipids is a biomolecule that shares similar properties with surfactants that are naturally synthesized in the cell of living organisms, glycolipids are amphiphilic in nature and can form micelles when glycolipid molecules clump together, reducing surface tension between two surfaces as how a surfactant molecule is able to achieve. This review paper aims to provide a comprehensive study on the recent advances in bacteria cultivation for glycolipids production and current lab scale applications of glycolipids (e.g., medical and waste bioremediation). Studies have proven that glycolipids are effective anti-microbial agents, subsequently leading to an excellent anti-biofilm forming agent. Heavy metal and hydrocarbon contaminated soil can also be bioremediated via the use of glycolipids. The major hurdle in the commercialization of glycolipid production is that the cultivation stage and downstream extraction stage of the glycolipid production process induces a very high operating cost. This review provides several solutions to overcome this issue for glycolipid production for the commercialization of glycolipids (e.g., developing new cultivating and extraction techniques, using waste as cultivation medium for microbes and identifying new strains for glycolipid production). The contribution of this review aims to serve as a future guideline for researchers that are dealing with glycolipid biosurfactants by providing an in-depth review on the recent advances of glycolipid biosurfactants. By summarizing the points discussed as above, it is recommended that glycolipids can substitute synthetic surfactants as an environmentally friendly alternative.
  17. Rawindran H, Arif Bin Hut N, Vrasna DK, Goh PS, Lim JW, Liew CS, et al.
    Chemosphere, 2024 Jan;346:140591.
    PMID: 37918531 DOI: 10.1016/j.chemosphere.2023.140591
    Current study had made a significant progress in microalgal wastewater treatment through the implementation of an economically viable polyethylene terephthalate (PET) membrane derived from plastic bottle waste. The membrane exhibited an exceptional pure water flux of 156.5 ± 0.25 L/m2h and a wastewater flux of 15.37 ± 0.02 L/m2h. Moreover, the membrane demonstrated remarkable efficiency in selectively removing a wide range of residual parameters, achieving rejection rates up to 99%. The reutilization of treated wastewater to grow microalgae had resulted in a marginal decrease in microalgal density, from 10.01 ± 0.48 to 9.26 ± 0.66 g/g. However, this decline was overshadowed by a notable enhancement in lipid production with level rising from 181.35 ± 0.42 to 225.01 ± 0.11 mg/g. These findings signified the membrane's capacity to preserve nutrients availability within the wastewater; thus, positively influencing the lipid synthesis and accumulation within microalgal cells. Moreover, the membrane's comprehensive analysis of cross-sectional and surface topographies revealed the presence of macropores with a highly interconnected framework, significantly amplifying the available surface area for fluid flow. This exceptional structural attribute had substantially contributed to the membrane's efficacy by facilitating superior filtration and separation process. Additionally, the identified functional groups within the membrane aligned consistently with those commonly found in PET polymer, confirming the membrane's compatibility and efficacy in microalgal wastewater treatment.
  18. Le Ho H, Tran-Van L, Quyen PTQ, Kim SG, Jiang LM, Chew KW, et al.
    Mol Biotechnol, 2024 Jan 17.
    PMID: 38231315 DOI: 10.1007/s12033-023-00984-9
    The insect larvae Protaetia brevitarsis seulensis have recently been researched as a nutritious food source and concentrated on their environmental impacts. Therefore, their gut microbiota has been studied to elucidate their effects and roles on the environment. Of the abundance of bacterial genus identified based on the 16S rRNA genes from isolates of the gut of insect larva Protaetia brevitarsis seulensis, six of the prominent genus were identified as Bacillus (40.2%), Cellulosimicrobium (33.5%), Microbacterium (2.8%), Streptomyces (3%), Krasilnikoviella (17.5%), and Isoptericola (3%) and their similarity of 16S rRNA blast changed from 99 to 100%. Cellulosimicrobium protaetiae BI34T showed strong denitrification and cellulose degradation activity. The newly complete genome sequence of BI34T and the genomes of five species was published in the genus Cellulosimicrobium with emphasis on the denitrification and secondary metabolite genes. In order to elucidate the relationship between the strain BI34T and the host insect larva, the whole-genome sequence was analyzed and compared with the genomes of five strains in the same genus, Cellulosimicrobium, loaded from GenBank. Our results revealed the composition of the gut microbiota of the insect larvae and analyzed the genomic data for the new strain to predict its characteristics and to understand the nitrogen metabolism pathway.
  19. Toan NS, Hanh DH, Dong Phuong NT, Thuy PT, Dong PD, Gia NT, et al.
    Chemosphere, 2022 May;294:133596.
    PMID: 35031251 DOI: 10.1016/j.chemosphere.2022.133596
    Rice straw residue management is still facing many problems worldwide. This study used two environmentally friendly methods to investigate the effects of rice straw burning activity on water-extracted carbohydrate content in long-term paddy soil. Soil samples were collected at a depth within 0-15 cm at the paddy field before and after burning rice straw (pre-burning and post-burning), then extracted by distilled water at the ratio of 1:10 (soil: water) for measuring hot water (at 80 °C) and water extracted carbohydrate (at 25 °C) (HECH and WECH). The results showed that burning rice straw did not alter soil organic carbon (SOC); however, soil pH increased approximately 8.3%. Meanwhile, WECH and HECH ranged from 233 to 630 mg kg-1, with the highest HECH in Pre-burning treatment, while the lowest amount addressed WECH of Post-burning treatment. Extracted carbohydrate decreased after burning rice straw compared to Pre-burning soil. On the other hand, hot water increased 39-58% of carbohydrates compared to water extraction. We conclude that burning rice straw did not affect SOC but tends to reduce their labile carbon pools, and the heating process likely degrade part of SOC when extracted at high temperatures.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links