Displaying publications 81 - 100 of 1079 in total

Abstract:
Sort:
  1. Al-Sanea MM, Ali Khan MS, Abdelazem AZ, Lee SH, Mok PL, Gamal M, et al.
    Molecules, 2018 Jan 31;23(2).
    PMID: 29385071 DOI: 10.3390/molecules23020297
    A new series of 1-phenyl-3-(4-(pyridin-3-yl)phenyl)urea derivatives were synthesized and subjected to in vitro antiproliferative screening against National Cancer Institute (NCI)-60 human cancer cell lines of nine different cancer types. Fourteen compounds 5a-n were synthesized with three different solvent exposure moieties (4-hydroxylmethylpiperidinyl and trimethoxyphenyloxy and 4-hydroxyethylpiperazine) attached to the core structure. Substituents with different π and σ values were added on the terminal phenyl group. Compounds 5a-e with a 4-hydroxymethylpiperidine moiety showed broad-spectrum antiproliferative activity with higher mean percentage inhibition values over the 60-cell line panel at 10 µM concentration. Compound 5a elicited lethal rather than inhibition effects on SK-MEL-5 melanoma cell line, 786-0, A498, RXF 393 renal cancer cell lines, and MDA-MB-468 breast cancer cell line. Two compounds, 5a and 5d showed promising mean growth inhibitions and thus were further tested at five-dose mode to determine median inhibitory concentration (IC50) values. The data revealed that urea compounds 5a and 5d are the most active derivatives, with significant efficacies and superior potencies than paclitaxel in 21 different cancer cell lines belonging particularly to renal cancer and melanoma cell lines. Moreover, 5a and 5d had superior potencies than gefitinib in 38 and 34 cancer cell lines, respectively, particularly colon cancer, breast cancer and melanoma cell lines.
    Matched MeSH terms: Cell Proliferation/drug effects*
  2. Al-Shami SA, Al-Kaabi MM, Mahdi AK, Al-Attar Z
    Malays J Pathol, 2023 Aug;45(2):229-236.
    PMID: 37658532
    INTRODUCTION: Ovarian cancer is one of leading causes of cancer related death in gynecology. CD117 is a tyrosine kinase receptor that plays an important role in regulation of apoptosis, cell proliferation and adhesion by binding to its ligand-stem cell factor. Recent studies demonstrated its aberrant overexpression in various malignancies and concluded that it may play a pivotal role in carcinogenesis.

    AIM: To evaluate CD117 expression in ovarian surface epithelial tumours.

    MATERIALS AND METHODS: This retrospective study included 30 ovarian epithelial borderline, low and highly malignant tumours' formalin-fixed paraffin-blocks (FFPE) tissue blocks. Tissue sections were subjected to the routine haematoxylin-eosin stain and with the anti-CD117 immunohistochemically.

    RESULTS: There is a high significant difference in CD117 expression between borderline and malignant groups (P = 0.001). Additionally, there was significant difference in expression in relation to histopathological type (serous versus non-serous) in low-grade and the high-grade ovarian surface epithelial tumours (p=0.04, p=0.035 respectively). Tumour grade and stage strongly correlates with CD117 expression (p=0.014, p=0.019 respectively).

    CONCLUSION: We concluded that CD117 expression was significantly correlated with higher ovarian tumour grade and stage.

    Matched MeSH terms: Cell Proliferation
  3. Al-Zubairi AS, Abdul AB, Syam MM
    Toxicol In Vitro, 2010 Apr;24(3):707-12.
    PMID: 20123012 DOI: 10.1016/j.tiv.2010.01.011
    The chromosomal aberrations (CA) assay and micronucleus (MN) test were employed to investigate the effect in vitro of zerumbone (ZER) on human chromosomes. ZER is a sesquiterpene compound isolated from the rhizomes of wild ginger, Zingiber zerumbet Smith. The rhizomes of the plant are employed as a traditional medicine for some ailments and as condiments. ZER has been shown to have anti-cancer and apoptosis-inducing properties against various human tumour cells. It has also been shown to be active in vivo against a number of induced malignancies. Studies on ZER genotoxicity in cultured human peripheral blood lymphocytes (PBL) have not been reported so far. Therefore, the present study was undertaken to investigate the ability of ZER to induce chromosomal aberrations and micronuclei formation in human lymphocytes in vitro. Human blood samples were obtained from four healthy, non-smoking males aged 25-35years. Cultures were exposed to the drug for 48h at four final concentrations: 10, 20, 40 and 80 microM. Mitomycin C (MMC) was used as a positive control. The results of chromosomal aberrations assay showed that ZER was not clastogenic, when compared to untreated control, meanwhile MN test results showed a dose-dependent increase in MN formation. The overall clastogenic effect of ZER on human PBL was statistically not significant. In conclusion, ZER is a cytotoxic but not a clastogenic substance in human PBL.
    Matched MeSH terms: Cell Proliferation/drug effects
  4. Alabsi AM, Bakar SA, Ali R, Omar AR, Bejo MH, Ideris A, et al.
    Int J Mol Sci, 2011;12(12):8645-60.
    PMID: 22272097 DOI: 10.3390/ijms12128645
    Newcastle disease virus (NDV) is used as an antineoplastic agent in clinical tumor therapy. It has prompted much interest as an anticancer agent because it can replicate up to 10,000 times better in human cancer cells than in most normal cells. This study was carried out to determine the oncolytic potential of NDV strain AF2240 and V4-UPM on WEHI-3B leukemia cell line. Results from MTT cytotoxicity assay showed that the CD(50) values for both strains were 2 and 8 HAU for AF2240 and V4-UPM, respectively. In addition, bromodeoxyuridine (BrdU) and trypan blue dye exclusion assays showed inhibition in cell proliferation after different periods. Increase in the cellular level of caspase-3 and detection of DNA laddering using agarose gel electrophoresis on treated cells with NDV confirmed that the mode of cell death was apoptosis. In addition, flow-cytometry analysis of cellular DNA content showed that the virus caused an increase in the sub-G1 region (apoptosis peaks). In conclusion, NDV strains AF2240 and V4-UPM caused cytolytic effects against WEHI-3B leukemic cell line.
    Matched MeSH terms: Cell Proliferation
  5. Alabsi AM, Ali R, Ali AM, Al-Dubai SA, Harun H, Abu Kasim NH, et al.
    Asian Pac J Cancer Prev, 2012;13(10):5131-6.
    PMID: 23244123
    Cancer is one of the major health problems worldwide and its current treatments have a number of undesired adverse side effects. Natural compounds may reduce these. Currently, a few plant products are being used to treat cancer. In this study, goniothalamin, a natural occurring styryl-lactone extracted from Goniothalamus macrophyllus, was investigated for cytotoxic properties against cervical cancer (HeLa), breast carcinoma (MCF-7) and colon cancer (HT29) cells as well as normal mouse fibroblast (3T3) using MTT assay. Fluorescence microscopy showed that GTN is able to induce apoptosis in HeLa cells in a time dependent manner. Flow cytometry further revealed HeLa cells treated with GTN to be arrested in the S phase. Phosphatidyl serine properties present during apoptosis enable early detection of the apoptosis in the cells. Using annexin V/PI double staining it could be shown that GTN induces early apoptosis on HeLa cells after 24, 48 and 72 h. It could be concluded that goniothalamin showing a promising cytotoxicity effect against several cancer cell lines including cervical cancer cells (HeLa) with apoptosis as the mode of cell death induced on HeLa cells by Goniothalamin was.
    Matched MeSH terms: Cell Proliferation/drug effects*
  6. Alabsi AM, Lim KL, Paterson IC, Ali-Saeed R, Muharram BA
    Biomed Res Int, 2016;2016:4904016.
    PMID: 27123447 DOI: 10.1155/2016/4904016
    Dracaena cinnabari Balf.f. is a red resin endemic to Socotra Island, Yemen. Although there have been several reports on its therapeutic properties, information on its cytotoxicity and anticancer effects is very limited. This study utilized a bioassay-guided fractionation approach to determine the cytotoxic and apoptosis-inducing effects of D. cinnabari on human oral squamous cell carcinoma (OSCC). The cytotoxic effects of D. cinnabari crude extract were observed in a panel of OSCC cell lines and were most pronounced in H400. Only fractions DCc and DCd were active on H400 cells; subfractions DCc15 and DCd16 exhibited the greatest cytotoxicity against H400 cells and D. cinnabari inhibited cells proliferation in a time-dependent manner. This was achieved primarily via apoptosis where externalization of phospholipid phosphatidylserine was observed using DAPI/Annexin V fluorescence double staining mechanism studied through mitochondrial membrane potential assay cytochrome c enzyme-linked immunosorbent and caspases activities revealed depolarization of mitochondrial membrane potential (MMP) and significant activation of caspases 9 and 3/7, concomitant with S phase arrest. Apoptotic proteins array suggested that MMP was regulated by Bcl-2 proteins family as results demonstrated an upregulation of Bax, Bad, and Bid as well as downregulation of Bcl-2. Hence, D. cinnabari has the potential to be developed as an anticancer agent.
    Matched MeSH terms: Cell Proliferation/drug effects
  7. Albishtue AA, Yimer N, Zakaria MZA, Haron AW, Babji AS, Abubakar AA, et al.
    Vet World, 2019 Jul;12(7):1013-1021.
    PMID: 31528026 DOI: 10.14202/vetworld.2019.1013-1021
    Aim: This study aimed to evaluate the protective effect of edible bird's nest (EBN) supplement on the uteri of rats exposed to lead acetate (LA) toxicity.

    Materials and Methods: Five treatment groups were established as follows: Group 1 (C), which was given distilled water; Group 2 (T0), which was administered with LA (10 mg/kg body weight [BW]); and Groups 3 (T1), 4 (T2), and 5 (T3), which were given LA (10 mg/kg BW) plus graded concentrations of 30, 60, and 120 mg/kg BW of EBN, respectively. Rats were euthanized at week 5 to collect blood for superoxide dismutase (SOD) assay, and uterus for histomorphological study and expression analyses of epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and proliferating cell nuclear antigen (PCNA).

    Results: Results revealed that LA causes destruction of uterine lining cells and necrosis of uterine glands of exposed rats without EBN supplement while the degree of damage decreased among EBN treated groups; T3 showed the highest ameliorating effect against LA toxicity, as well as an increased number of uterine glands. Increased levels of SOD were also achieved in EBN supplemented groups than the controls. Results of immunohistochemistry showed significantly higher expressions of EGF, VEGF, and PCNA levels (p<0.05) in T3 compared to other treatments. EBN maintained upregulation of antioxidant - reactive oxygen species balance.

    Conclusion: The findings showed that EBN could ameliorate the detrimental effects of LA toxicity on the uterus possibly by enhancing enzymatic antioxidant (SOD) activity as well as expressions of EGF, VEGF, and PCNA with cell proliferation roles.

    Matched MeSH terms: Cell Proliferation
  8. Albishtue AA, Yimer N, Zakaria MZA, Haron AW, Yusoff R, Assi MA, et al.
    Vet World, 2018 Jan;11(1):71-79.
    PMID: 29479160 DOI: 10.14202/vetworld.2018.71-79
    Aim: This study aimed to evaluate the effect of edible bird's nest (EBN) supplementation on the uteri of rats based on analyses of the morphological and histomorphometric changes, and expressions of epidermal growth factor (EGF) and its receptor (REGF) genes, vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), and steroid receptors.

    Materials and Methods: Twenty-four: Sprague Dawley rats were equally distributed into the following four groups: G1 (control), G2, G3, and G4 represented the groups treated with EBN at graded concentrations of 0, 30, 60, and 120 mg/kg body weight (BW) per day for 8 weeks, respectively. During the experimental period, the BW of each rat was recorded weekly. At the proestrus stage of estrous cycle, blood samples were collected from the hearts of anesthetized rats that were later sacrificed. The uteri were removed for histological and immunohistochemical analyses.

    Results: The EBN-treated groups showed an increase in the weights and lengths of uteri as compared to the control. Results showed that relative to G1 and G2, G3 and G4 exhibited proliferation in their uterine luminal and glandular epithelia and uterine glands, and up-regulated expressions of EGF, REGF, VEGF, PCNA, and progesterone receptor, and estrogen receptor in their uteri. The EBN increased the antioxidant (AO) and total AO capacities and reduced the oxidative stress (OS) levels in non-pregnant rats.

    Conclusion: Findings of this study revealed that EBN promotes proliferation of the uterine structures as evidenced by the upregulation of the expressions of steroid receptors, EGF, REGF, VEGF, and PCNA in the uterus and increased in the plasma concentrations of AO and reduced levels of OS.

    Matched MeSH terms: Cell Proliferation
  9. Algariri ES, Mydin RBSMN, Moses EJ, Okekpa SI, Rahim NAA, Yusoff NM
    Turk J Haematol, 2023 Feb 28;40(1):11-17.
    PMID: 36404683 DOI: 10.4274/tjh.galenos.2022.2022.0246
    OBJECTIVE: This study aimed to investigate the role of the stromal interaction molecule 1 (STIM1) gene in the survival of the acute myeloblastic leukemia (AML)-M5 cell line (THP-1).

    MATERIALS AND METHODS: The STIM1 effect was assessed via dicersubstrate siRNA-mediated STIM1 knockdown. The effect of STIM1 knockdown on the expression of AKT and MAPK pathway-related genes and reactive oxygen species (ROS) generation-related genes was tested using real-time polymerase chain reaction. Cellular functions, including ROS generation, cell proliferation, and colony formation, were also evaluated following STIM1 knockdown.

    RESULTS: The findings revealed that STIM1 knockdown reduced intracellular ROS levels via downregulation of NOX2 and PKC. These findings were associated with the downregulation of AKT, KRAS, MAPK, and CMYC. BCL2 was also downregulated, while BAX was upregulated following STIM1 knockdown. Furthermore, STIM1 knockdown reduced THP-1 cell proliferation and colony formation.

    CONCLUSION: This study has demonstrated the role of STIM1 in promoting AML cell proliferation and survival through enhanced ROS generation and regulation of AKT/MAPK-related pathways. These findings may help establish STIM1 as a potential therapeutic target for AML treatment.

    Matched MeSH terms: Cell Proliferation
  10. Alhuthali HM, Bradshaw TD, Lim KH, Kam TS, Seedhouse CH
    BMC Cancer, 2020 Jul 07;20(1):629.
    PMID: 32635894 DOI: 10.1186/s12885-020-07119-2
    BACKGROUND: Acute myeloid leukemia (AML) is a heterogenous hematological malignancy with poor long-term survival. New drugs which improve the outcome of AML patients are urgently required. In this work, the activity and mechanism of action of the cytotoxic indole alkaloid Jerantinine B (JB), was examined in AML cells.

    METHODS: We used a combination of proliferation and apoptosis assays to assess the effect of JB on AML cell lines and patient samples, with BH3 profiling being performed to identify early effects of the drug (4 h). Phosphokinase arrays were adopted to identify potential driver proteins in the cellular response to JB, the results of which were confirmed and extended using western blotting and inhibitor assays and measuring levels of reactive oxygen species.

    RESULTS: AML cell growth was significantly impaired following JB exposure in a dose-dependent manner; potent colony inhibition of primary patient cells was also observed. An apoptotic mode of death was demonstrated using Annexin V and upregulation of apoptotic biomarkers (active caspase 3 and cleaved PARP). Using BH3 profiling, JB was shown to prime cells to apoptosis at an early time point (4 h) and phospho-kinase arrays demonstrated this to be associated with a strong upregulation and activation of both total and phosphorylated c-Jun (S63). The mechanism of c-Jun activation was probed and significant induction of reactive oxygen species (ROS) was demonstrated which resulted in an increase in the DNA damage response marker γH2AX. This was further verified by the loss of JB-induced C-Jun activation and maintenance of cell viability when using the ROS scavenger N-acetyl-L-cysteine (NAC).

    CONCLUSIONS: This work provides the first evidence of cytotoxicity of JB against AML cells and identifies ROS-induced c-Jun activation as the major mechanism of action.

    Matched MeSH terms: Cell Proliferation/drug effects
  11. Ali AQ, Teoh SG, Salhin A, Eltayeb NE, Khadeer Ahamed MB, Abdul Majid AM
    PMID: 24607427 DOI: 10.1016/j.saa.2014.01.086
    New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (k(b)=5.03-33.00×10(5) M(-1)) for L1-L3 and L5 and (6.14-9.47×10(4) M(-1)) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency.
    Matched MeSH terms: Cell Proliferation/drug effects
  12. Ali H, Musharraf SG, Iqbal N, Adhikari A, Abdalla OM, Ahmed Mesaik M, et al.
    Int Immunopharmacol, 2015 Sep;28(1):235-43.
    PMID: 26093268 DOI: 10.1016/j.intimp.2015.06.009
    Sarcococca saligna methanolic extract, fractions and isolated pure compounds saracocine (1), saracodine (2), pachyximine-A (3) and terminaline (4) were found to possess potent immunosuppressive activities. The fractions and compounds were tested in-vitro for their effects on human T-cell proliferation, and cytokine (IL-2) production. All the fractions, sub-fractions and purified compounds showed significant suppressive effect on IL-2 production in a dose-dependent manner. They also exhibited a suppressive effect on the phytohemagglutinin-stimulated T-cell proliferation. None of the extracts and purified compounds showed any cytotoxicity effects on the 3T3 mice fibroblast cell line. The crude extract, DCM fraction (pH9), DCM fractions (pH7) and one of the steroidal alkaloids (terminaline) were checked in-vivo for their hepato-protective potential against CCl4-induced liver injury. In in-vivo experiments, the basic and neutral DCM fractions and terminaline (4) significantly reduced inflammation in the liver. DCM fraction (pH9), DCM fractions (pH7) and compound 4 reduced the serum enzyme levels (ALT, AST, and ALP) down to control levels despite CCl4 treatment. They also reduced the CCl4-induced damaged area to almost zero as assessed by histopathology. The pale necrotic areas and mixed inflammatory infiltrate which are seen after CCl4 treatment were absent in the cases of basic, neutral fractions and terminaline treatment. These hepato-protective effects were better than the positive control silymarin. Our results suggest the therapeutic effect of S. saligna extract, fractions and bioactive steroidal alkaloids against CCl4-induced liver injury in vivo and their immunosuppressive function in vitro.
    Matched MeSH terms: Cell Proliferation
  13. Ali Y, Abd Hamid S
    Tumour Biol., 2016 Jan;37(1):47-55.
    PMID: 26482620 DOI: 10.1007/s13277-015-4270-9
    Topoisomerases are nuclear enzymes that regulate topology of DNA by facilitating the temporary cleavage and ligation cycle of DNA. Among all forms of topoisomerases, TOP-IIA is extensively associated with cell proliferation and therefore is an important therapeutic target in diseases that involved cellular proliferation such as cancers. Nearly half of present-day antitumor regimens contain at least one prescription that act as a topoisomerase inhibitor. Generally, tumor cells show divergent expression of TOP-IIA compared to normal cells. The remarkable expression of TOP-IIA in various carcinomas provides a significant biomarker toward understanding the nature of malignancy. TOP-IIA expression and amplification studies help in diagnosing cancer and to observe the disease progression, overall survival (OS) of patients, and response to therapy. This review highlights the research output and analysis in exploring the standing of TOP-IIA in various carcinomas. As some reports show contradiction within the same field of interest, the outline of that may help to induce researchers for further investigation and clarification. To the best of our knowledge, this is the first overview briefly summarizing the prognostic feature of TOP-IIA in various types of cancer.
    Matched MeSH terms: Cell Proliferation
  14. Ali- Saeed R, Alabsi AM, Ideris A, Omar AR, Yusoff K, Ali AM
    Asian Pac J Cancer Prev, 2019 Mar 26;20(3):757-765.
    PMID: 30909682
    Aim: Newcastle disease virus (NDV) is a member of genus Avulavirus within the family Paramyxoviridae. Interest
    of using NDV as an anticancer agent has arisen from its ability to kill tumor cells with limited toxicity to normal cells.
    Methods: In this investigation, the proliferation of brain tumor cell line, glioblastoma multiform (DBTRG.05MG)
    induced by NDV strain AF2240 was evaluated in-vitro, by using MTT proliferation assay. Furthermore, Cytological
    observations were studied using fluorescence microscopy and transmission electron microscopy, DNA laddering in
    agarose gel electrophoresis assay used to detect the mode of cell death and analysis of the cellular DNA content by
    flowcytometery. Results: MTT proliferation assay, Cytological observations using fluorescence microscopy and
    transmission electron microscopy show the anti-proliferation effect and apoptogenic features of NDV on DBTRG.05MG.
    Furthermore, analysis of the cellular DNA content showed that there was a loss of treated cells in all cell cycle phases
    (G1, S and G2/M) accompanied with increasing in sub-G1 region (apoptosis peak). Conclusion: It could be concluded
    that NDV strain AF2240 is a potent antitumor agent that induce apoptosis and its cytotoxicity increasing while increasing
    of time and virus titer.
    Matched MeSH terms: Cell Proliferation*
  15. Alias MA, Buenzli PR
    Biophys J, 2017 Jan 10;112(1):193-204.
    PMID: 28076811 DOI: 10.1016/j.bpj.2016.11.3203
    The growth of several biological tissues is known to be controlled in part by local geometrical features, such as the curvature of the tissue interface. This control leads to changes in tissue shape that in turn can affect the tissue's evolution. Understanding the cellular basis of this control is highly significant for bioscaffold tissue engineering, the evolution of bone microarchitecture, wound healing, and tumor growth. Although previous models have proposed geometrical relationships between tissue growth and curvature, the role of cell density and cell vigor remains poorly understood. We propose a cell-based mathematical model of tissue growth to investigate the systematic influence of curvature on the collective crowding or spreading of tissue-synthesizing cells induced by changes in local tissue surface area during the motion of the interface. Depending on the strength of diffusive damping, the model exhibits complex growth patterns such as undulating motion, efficient smoothing of irregularities, and the generation of cusps. We compare this model with in vitro experiments of tissue deposition in bioscaffolds of different geometries. By including the depletion of active cells, the model is able to capture both smoothing of initial substrate geometry and tissue deposition slowdown as observed experimentally.
    Matched MeSH terms: Cell Proliferation
  16. Alitheen NB, Manaf AA, Yeap SK, Shuhaimi M, Nordin L, Mashitoh AR
    Pharm Biol, 2010 Apr;48(4):446-52.
    PMID: 20645725 DOI: 10.3109/13880200903168031
    Morinda elliptica Ridley (Rubiaceae) has been used traditionally as a medicine to treat various diseases in Malaysia and southeast Asia. In the present study we investigated the immunomodulatory effects of damnacanthal isolated from the roots of Morinda elliptica. The immunomodulatory effect of this compound was evaluated by using the lymphocyte proliferation assay with mouse thymocytes and human peripheral blood mononuclear cells (PBMC). In addition, the effect of the compound on PBMC cell cycle progression was studied by using flow cytometry. The production of human interleukin-2 and human inteleukin-12 cytokines was also assessed using the enzyme linked immunosorbent assay (ELISA) technique. The lymphocyte proliferation assay showed that damnacanthal was able to activate mouse thymocytes and PBMC at a low concentration (0.468 microg/mL). Moreover, the production of human interleukin-2 and human interleukin-12 cytokines in the culture supernatant from damnacanthal activated lymphocytes was markedly up-regulated at 24 h and sustained until 72 h with a slight decrease with time. A positive correlation was found between the level of these two cytokines and the MTT-based proliferation assay. Based on the above results, damnacanthal can act as an immunomodulatory agent which may be very useful for maintaining a healthy immune system.
    Matched MeSH terms: Cell Proliferation/drug effects
  17. Alitheen NB, McClure SJ, Yeap SK, Kristeen-Teo YW, Tan SW, McCullagh P
    PLoS One, 2012;7(11):e49188.
    PMID: 23185307 DOI: 10.1371/journal.pone.0049188
    The bursa of Fabricius is critical for B cell development and differentiation in chick embryos. This study describes the production in vitro, from dissociated cell suspensions, of cellular agglomerates with functional similarities to the chicken bursa. Co-cultivation of epithelial and lymphoid cells obtained from embryos at the appropriate developmental stage regularly led to agglomerate formation within 48 hours. These agglomerates resembled bursal tissue in having lymphoid clusters overlaid by well organized epithelium. Whereas lymphocytes within agglomerates were predominantly Bu-1a(+), a majority of those emigrating onto the supporting membrane were Bu-1a(-) and IgM(+). Both agglomerates and emigrant cells expressed activation-induced deaminase with levels increasing after 24 hours. Emigrating cells were actively proliferating at a rate in excess of both the starting cell population and the population of cells remaining in agglomerates. The potential usefulness of this system for investigating the response of bursal tissue to avian Newcastle disease virus (strain AF2240) was examined.
    Matched MeSH terms: Cell Proliferation
  18. Almajali B, Al-Jamal HAN, Taib WRW, Ismail I, Johan MF, Doolaanea AA, et al.
    Pharmaceuticals (Basel), 2021 Apr 16;14(4).
    PMID: 33923474 DOI: 10.3390/ph14040369
    To date, natural products are widely used as pharmaceutical agents for many human diseases and cancers. One of the most popular natural products that have been studied for anticancer properties is thymoquinone (TQ). As a bioactive compound of Nigella sativa, TQ has shown anticancer activities through the inhibition of cell proliferation, migration, and invasion. The anticancer efficacy of TQ is being investigated in several human cancers such as pancreatic cancer, breast cancer, colon cancer, hepatic cancer, cervical cancer, and leukemia. Even though TQ induces apoptosis by regulating the expression of pro- apoptotic and anti-apoptotic genes in many cancers, the TQ effect mechanism on such cancers is not yet fully understood. Therefore, the present review has highlighted the TQ effect mechanisms on several signaling pathways and expression of tumor suppressor genes (TSG). Data from relevant published experimental articles on TQ from 2015 to June 2020 were selected by using Google Scholar and PubMed search engines. The present study investigated the effectiveness of TQ alone or in combination with other anticancer therapeutic agents, such as tyrosine kinase inhibitors on cancers, as a future anticancer therapy nominee by using nanotechnology.
    Matched MeSH terms: Cell Proliferation
  19. Almajali B, Al-Jamal HAN, Wan Taib WR, Ismail I, Johan MF, Doolaanea AA, et al.
    Asian Pac J Cancer Prev, 2021 Mar 01;22(3):879-885.
    PMID: 33773553 DOI: 10.31557/APJCP.2021.22.3.879
    OBJECTIVE: The natural compound, thymoquinone (TQ) has demonstrated potential anticancer properties in inhibiting cell proliferation and promoting apoptosis in myeloid leukemia cells, breast cancer cells, and others. However, the effect mechanism of TQ on AML cells still not fully understood. In this study, the authors examined the effects of TQ on the expression of JAK/STAT-negative regulator genes SOCS-1, SOCS-3, and SHP-1, and their consequences on cell proliferation and apoptosis in HL60 leukemia cells.

    METHODS: MTT and trypan blue exclusion tests were conducted to determine the 50% inhibitory concentration (IC50) and cell proliferation. FITC Annexin and Guava® reagent were used to study the cell apoptosis and examine the cell cycle phases, respectively. The expression of JAK/STAT-negative regulator genes, SOCS-1, SOCS-3, and SHP-1, was investigated using reverse transcriptase- quantitative PCR (RT-qPCR).

    RESULTS: TQ demonstrated a potential inhibition of HL60 cell proliferation and a significant increase in apoptotic cells in dose and time-dependent manner. TQ significantly induced cycle arrest at G0-G1 phase (P < 0.001) and enhanced the re-expression of JAK/STAT-negative regulator genes.

    CONCLUSION: TQ potentially inhibited HL60 cell proliferation and significantly increased apoptosis with re-expression of JAK/STAT-negative regulator genes suggesting that TQ could be a new therapeutic candidate for leukemia therapy.
    .

    Matched MeSH terms: Cell Proliferation/drug effects*
  20. Almansour AI, Kumar RS, Beevi F, Shirazi AN, Osman H, Ismail R, et al.
    Molecules, 2014 Jul 10;19(7):10033-55.
    PMID: 25014532 DOI: 10.3390/molecules190710033
    A number of novel spiro-pyrrolidines/pyrrolizines derivatives were synthesized through [3+2]-cycloaddition of azomethine ylides with 3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones 2a-n. Azomethine ylides were generated in situ from the reaction of 1H-indole-2,3-dione (isatin, 3) with N-methylglycine (sarcosine), phenylglycine, or proline. All compounds (50 μM) were evaluated for their antiproliferative activity against human breast carcinoma (MDA-MB-231), leukemia lymphoblastic (CCRF-CEM), and ovarian carcinoma (SK-OV-3) cells. N-α-Phenyl substituted spiro-pyrrolidine derivatives (5a-n) showed higher antiproliferative activity in MDA-MB-231 than other cancer cell lines. Among spiro-pyrrolizines 6a-n, a number of derivatives including 6a-c and 6i-m showed a comparable activity with doxorubicin in all three cell lines. Among all compounds in three classes, 6a, 6b, and 6m, were found to be the most potent derivatives showing 64%, 87%, and 74% antiproliferative activity in MDA-MB-231, SK-OV-3, and CCRF-CEM cells, respectively. Compound 6b showed an IC50 value of 3.6 mM in CCRF-CEM cells. These data suggest the potential antiproliferative activity of spiro-pyrrolidines/pyrrolizines.
    Matched MeSH terms: Cell Proliferation/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links