Displaying publications 81 - 100 of 200 in total

Abstract:
Sort:
  1. Kamarudin NH, Jalil AA, Triwahyono S, Artika V, Salleh NF, Karim AH, et al.
    J Colloid Interface Sci, 2014 May 1;421:6-13.
    PMID: 24594025 DOI: 10.1016/j.jcis.2014.01.034
    Mesoporous silica nanoparticles (MSNs) were synthesized with variable microwave power in the range of 100-450 W, and the resulting enhancement of MSN crystal growth was evaluated for the adsorption and release of ibuprofen. X-ray diffraction (XRD) revealed that the MSN prepared under the highest microwave power (MSN450) produced the most crystallized and prominent mesoporous structure. Enhancement of the crystal growth improved the hexagonal order and range of silica, which led to greater surface area, pore width and pore volume. MSN450 exhibited higher ibuprofen adsorption (98.3 mg/g), followed by MSN300(81.3 mg/g) and MSN100(74.1 mg/g), confirming that more crystallized MSN demonstrated higher adsorptivity toward ibuprofen. Significantly, MSN450 also contained more hydroxyl groups that provided more adsorption sites. In addition, MSN450 exhibited comparable ibuprofen adsorption with conventionally synthesized MSN, indicating the potential of microwave treatment in the synthesis of related porous materials. In vitro drug release was also investigated with simulated biological fluids and the kinetics was studied under different pH conditions. MSN450 showed the slowest release rate of ibuprofen, followed by MSN300 and MSN100. This was due to the wide pore diameter and longer range of silica order of the MSN450. Ibuprofen release from MSN450 at pH 5 and 7 was found to obey a zero-order kinetic model, while release at pH 2 followed the Kosmeyer-Peppas model.
    Matched MeSH terms: Crystallography, X-Ray
  2. Karim AH, Jalil AA, Triwahyono S, Kamarudin NH, Ripin A
    J Colloid Interface Sci, 2014 May 1;421:93-102.
    PMID: 24594037 DOI: 10.1016/j.jcis.2014.01.039
    Carbon nanotubes-mesostructured silica nanoparticles (CNT-MSN) composites were prepared by a simple one step method with various loading of CNT. Their surface properties were characterized by XRD, N2 physisorption, TEM and FTIR, while the adsorption performance of the CNT-MSN composites were evaluated on the adsorption of methylene blue (MB) while varying the pH, adsorbent dosage, initial MB concentration, and temperature. The CNTs were found to improve the physicochemical properties of the MSN and led to an enhanced adsorptivity for MB. N2 physisorption measurements revealed the development of a bimodal pore structure that increased the pore size, pore volume and surface area. Accordingly, 0.05 g L(-1) CNT-MSN was able to adsorb 524 mg g(-1) (qm) of 60 mg L(-1) MB at pH 8 and 303 K. The equilibrium data were evaluated using the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models, with the Langmuir model affording the best fit to the adsorption data. The adsorption kinetics were best described by the pseudo-first order model. These results indicate the potential of CNT-MSN composites as effective new adsorbents for dye adsorption.
    Matched MeSH terms: Crystallography, X-Ray
  3. Loh ZH, Kwong HC, Lam KW, Teh SS, Ee GCL, Quah CK, et al.
    J Enzyme Inhib Med Chem, 2021 Dec;36(1):627-639.
    PMID: 33557647 DOI: 10.1080/14756366.2021.1882452
    A new series of 3-O-substituted xanthone derivatives were synthesised and evaluated for their anti-cholinergic activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The results indicated that the xanthone derivatives possessed good AChE inhibitory activity with eleven of them (5, 8, 11, 17, 19, 21-23, 26-28) exhibited significant effects with the IC50 values ranged 0.88 to 1.28 µM. The AChE enzyme kinetic study of 3-(4-phenylbutoxy)-9H-xanthen-9-one (23) and ethyl 2-((9-oxo-9H-xanthen-3-yl)oxy)acetate (28) showed a mixed inhibition mechanism. Molecular docking study showed that 23 binds to the active site of AChE and interacts via extensive π-π stacking with the indole and phenol side chains of Trp86 and Tyr337, besides the hydrogen bonding with the hydration site and π-π interaction with the phenol side chain of Y72. This study revealed that 3-O-alkoxyl substituted xanthone derivatives are potential lead structures, especially 23 and 28 which can be further developed into potent AChE inhibitors.
    Matched MeSH terms: Crystallography, X-Ray
  4. Eltayeb NE, Teoh SG, Adnan R, Teh JB, Fun HK
    J Fluoresc, 2011 Jul;21(4):1393-400.
    PMID: 21222144 DOI: 10.1007/s10895-010-0822-y
    A series of Zn(II)-Schiff bases I, II and III complexes were synthesized by reaction of o-phenylenediamine with 3-methylsalicylaldehyde, 4-methylsalicylaldehyde and 5-methylsalicylaldehyde. These complexes were characterized using FT-IR, UV-Vis, Diffuse reflectance UV-Vis, elemental analysis and conductivity. Complex III was characterized by XRD single crystal, which crystallizes in the triclinic system, space group P-1, with lattice parameters a=9.5444(2) Å, b=11.9407(2) Å, c=21.1732(3) Å, V=2390.24(7) Å(3), D ( c )=1.408 Mg m(-3), Z=4, F(000)=1050, GOF=0.981, R1=0.0502, wR2=0.1205. Luminescence property of these complexes was investigated in DMF solution and in the solid state. Computational study of the electronic properties of complex III showed good agreement with the experimental data.
    Matched MeSH terms: Crystallography, X-Ray
  5. Ibrahim MM, Al-Refai M, Al-Fawwaz A, Ali BF, Geyer A, Harms K, et al.
    J Fluoresc, 2018 Mar;28(2):655-662.
    PMID: 29680927 DOI: 10.1007/s10895-018-2227-2
    Furopyridine III, namely 1-(3-amino-4-(4-(tert-butyl)phenyl)-6-(p-tolyl)furo[2,3-b]pyridin-2-yl)ethan-1-one, synthesized from 4-(4-(tert-butyl)phenyl)-2-oxo-6-(p-tolyl)-1,2-dihydropyridine-3-carbonitrile I in two steps. The title compound is characterized by NMR, MS and its X-ray structure. The molecular structure consists of planar furopyridine ring with both phenyl rings being inclined from the furopyridine scaffold to a significant different extent. There are three intramolecular hydrogen bonds within the structure. The lattice is stabilized by N-H…O, H2C-H …π and π…π intermolecular interactions leading to three-dimensional network. Compound III exhibits fluorescent properties, which are investigated. Antimicrobial potential and antioxidant activity screening studies for the title compound III and the heterocyclic derivatives, I and II, show no activity towards neither bacterial nor fungal strains, while they exhibited weak to moderate antioxidant activity compared to reference.
    Matched MeSH terms: Crystallography, X-Ray
  6. Chan SL, Ong TC, Gao YF, Tiong YS, Wang de Y, Chew FT, et al.
    J Immunol, 2008 Aug 15;181(4):2586-96.
    PMID: 18684949
    A high incidence of sensitization to Blomia tropicalis, the predominant house dust mite species in tropical regions, is strongly associated with allergic diseases in Singapore, Malaysia, and Brazil. IgE binding to the group 5 allergen, Blo t 5, is found to be the most prevalent among all B. tropicalis allergens. The NMR structure of Blo t 5 determined represents a novel helical bundle structure consisting of three antiparallel alpha-helices. Based on the structure and sequence alignment with other known group 5 dust mite allergens, surface-exposed charged residues have been identified for site-directed mutagenesis and IgE binding assays. Four charged residues, Glu76, Asp81, Glu86, and Glu91 at around the turn region connecting helices alpha2 and alpha3 have been identified to be involved in the IgE binding. Using overlapping peptides, we have confirmed that these charged residues are located on a major putative linear IgE epitope of Blo t 5 from residues 76-91 comprising the sequence ELKRTDLNILERFNYE. Triple and quadruple mutants have been generated and found to exhibit significantly lower IgE binding and reduced responses in skin prick tests. The mutants induced similar PBMC proliferation as the wild-type protein but with reduced Th2:Th1 cytokines ratio. Mass screening on a quadruple mutant showed a 40% reduction in IgE binding in 35 of 42 sera of atopic individuals. Findings in this study further stressed the importance of surface-charged residues on IgE binding and have implications in the cross-reactivity and use of Blo t 5 mutants as a hypoallergen for immunotherapy.
    Matched MeSH terms: Crystallography, X-Ray
  7. Heng MP, Sim KS, Tan KW
    J Inorg Biochem, 2020 07;208:111097.
    PMID: 32438269 DOI: 10.1016/j.jinorgbio.2020.111097
    Two new Schiff base ligands (TE and TF) were prepared from conjugation of testosterone with 4-(4-ethylphenyl)-3-thiosemicarbazide and 4-(4-fluorophenyl)-3-thiosemicarbazide, respectively. Their nickel (NE and NF) and zinc (ZE and ZF) complexes were reported. X-ray crystallography revealed a distorted square planar geometry was adopted by NE. The compounds demonstrated excellent selectivity towards the colorectal carcinoma cell line HCT 116 despite their weak preferences towards the prostate cancer cell lines (PC-3 and LNCaP). Against HCT 116, all these compounds were able to arrest cell cycle at G0/G1 phase and induce apoptosis via mitochondria-dependent (TE, NE, and TF) and extrinsic apoptotic pathway (ZE, NF, and ZF). Moreover, only ZE was able to act as topoisomease I poison and halt its enzymatic reactions although all compounds presented excellent affinity towards DNA.
    Matched MeSH terms: Crystallography, X-Ray
  8. Chin LF, Kong SM, Seng HL, Khoo KS, Vikneswaran R, Teoh SG, et al.
    J Inorg Biochem, 2011 Mar;105(3):339-47.
    PMID: 21421121 DOI: 10.1016/j.jinorgbio.2010.11.018
    The synthesis and characterization of two cobalt(II) complexes, Co(phen)(ma)Cl 1 and Co(ma)(2)(phen) 2, (phen=1,10-phenanthroline, ma(-)=maltolate or 2-methyl-4-oxo-4H-pyran-3-olate) are reported herein. The complexes have been characterized by FTIR, CHN analysis, fluorescence spectroscopy, UV-visible spectroscopy, conductivity measurement and X-ray crystallography. The number of chelated maltolate ligands seems to influence their DNA recognition, topoisomerase I inhibition and antiproliferative properties.
    Matched MeSH terms: Crystallography, X-Ray
  9. Seng HL, Ong HK, Rahman RN, Yamin BM, Tiekink ER, Tan KW, et al.
    J Inorg Biochem, 2008 Nov;102(11):1997-2011.
    PMID: 18778856 DOI: 10.1016/j.jinorgbio.2008.07.015
    The binding selectivity of the M(phen)(edda) (M=Cu, Co, Ni, Zn; phen=1,10-phenanthroline, edda=ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(II) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N(4)O(2) octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling.
    Matched MeSH terms: Crystallography, X-Ray
  10. Basu Baul TS, Dutta D, Duthie A, Prasad R, Rana NK, Koch B, et al.
    J Inorg Biochem, 2017 08;173:79-92.
    PMID: 28505480 DOI: 10.1016/j.jinorgbio.2017.04.020
    The cytotoxic potency of a series of triphenyltin(IV) compounds of general composition [Ph3Sn(Ln)] (1-6) has been probed in vitro employing MDA-MB-231 (human breast cancer) and HeLa (human cervical cancer) cell lines, where Ln=L1-3; isomeric 2/3/4-{(E)-2-[4-(dimethylamino)phenyl]diazenyl}benzoates and L4-6are their corresponding isoelectronic imino analogues 2/3/4-[(E)-{[4-(dimethylamino)phenyl]methylidene}amino]benzoates. Compounds 1-6 have been characterized by elemental analysis and their spectroscopic properties were studied using IR and NMR (1H,13C,119Sn) techniques. The molecular structures of a pro-ligand 2-[(E)-{[4-(dimethylamino)phenyl]methylidene}amino]benzoic acid (HL4) and two representative molecules, Ph3Sn(L2) 2 and Ph3Sn(L5) 5, have been determined by X-ray crystallography. Structural analyses of 2 and 5 revealed distorted tetrahedral geometries within C3O donor sets owing to monodentate modes of coordination of the respective carboxylate ligands, close intramolecular Sn…O(carbonyl) interactions notwithstanding. Cytotoxic studies in vitro in MDA-MB-231 and HeLa cell lines revealed high activity, in sub-micromolar range, for all investigated compounds. Among these, 1 and 3 exhibited potent cytotoxicity most effectively towards MDA-MB-231 cells with a IC50value of 1.19 and 1.44μM, respectively, whereas 5 showed remarkable activity towards HeLa cells with a IC50value of 0.88μM, yet the series of compounds had minimal cytotoxic effect on normal HEK 293 (human embryonic kidney) cell line. The underlying investigation suggested that the compounds exert potent antitumor effect by elevating intracellular reactive oxygen species generation and cause delay in cell cycle by inhibiting cells at G2/M phase. The results presented herein suggest further development of this class of triphenyltin(IV) compounds-based drugs as potential anti-cancer therapies should be pursued.
    Matched MeSH terms: Crystallography, X-Ray
  11. Zafar MN, Butt AM, Chaudhry GE, Perveen F, Nazar MF, Masood S, et al.
    J Inorg Biochem, 2021 11;224:111590.
    PMID: 34507110 DOI: 10.1016/j.jinorgbio.2021.111590
    The bidentate N-(1-Alkylpyridin-4(1H)-ylidene)amide (PYA) pro-ligands [H2LBn][Cl]2 (2), and [H2LMe][TfO]2 (3) were prepared by simple alkylation reactions of the known compound, N,N-di(pyridin-4-yl)oxalamide (H2L, 1). The Pd(II) complexes, [Pd(LBn)2][Cl]2 (4), [Pd(LMe)2][Cl][TfO] (5), Pd(LBn)Cl2 (6) and Pd(LMe)Cl2 (7) were synthesized through reactions between these pro-ligands and suitable Pd(II) substrates in the presence of base. The molecular structures of 3 and 6 were obtained by single crystal X-ray structure determinations. Studies of the experimental and computational DNA binding interactions of the compounds 1-7 revealed that overall 4 and 6 have the largest values for the binding parameters Kb and ΔGbo. The results showed a good correlation with the steric and electronic parameters obtained by quantitative structure activity relationship (QSAR) studies. In-vitro cytotoxicity studies against four different cell lines showed that the human breast cancer cell lines MCF-7, T47D and cervical cancer cell line HeLa had either higher or similar sensitivities towards 4, 6 and 2, respectively, compared to cisplatin. In general, the cytotoxicity of the compounds, represented by IC50 values, decreased in the order 4 > 6 > 2 > 5 > 3 > 1 > 7 in cancer cell lines. Apoptosis contributed significantly to the cytotoxic effects of these anticancer agents as evaluated by apoptosis studies.
    Matched MeSH terms: Crystallography, X-Ray/methods
  12. Patil AD, Freyer AJ, Eggleston DS, Haltiwanger RC, Bean MF, Taylor PB, et al.
    J Med Chem, 1993 Dec 24;36(26):4131-8.
    PMID: 7506311
    As part of a search for novel inhibitors of HIV-1 reverse transcriptase, the acetone extract of the giant African snail, Achatina fulica, was shown to be active. Fractionation of the extract yielded inophyllums A, B, C, and E and calophyllolide (1a, 2a, 3a, 3b, and 6), previously isolated from Calophyllum inophyllum Linn., a known source of nutrition for A. fulica. From a methanol/methylene chloride extract of C. inophyllum, the same natural products in considerably greater yield were isolated in addition to a novel enantiomer of soulattrolide (4), inophyllum P (2b), and two other novel compounds, inophyllums G-1 (7) and G-2 (8). The absolute stereochemistry of inophyllum A (1a) was determined to be 10(R), 11(S), 12(S) from a single-crystal X-ray analysis of its 4-bromobenzoate derivative, and the relative stereochemistries of the other inophyllums isolated from C. inophyllum were established by a comparison of their 1H NMR NOE values and coupling constants to those of inophyllum A (1a). Inophyllums B and P (2a and 2b) inhibited HIV reverse transcriptase with IC50 values of 38 and 130 nM, respectively, and both were active against HIV-1 in cell culture (IC50 of 1.4 and 1.6 microM). Closely related inophyllums A, C, D, and E, including calophyllic acids, were significantly less active or totally inactive, indicating certain structural requirements in the chromanol ring. Altogether, 11 compounds of the inophyllum class were isolated from C. inophyllum and are described together with the SAR of these novel anti-HIV compounds.
    Matched MeSH terms: Crystallography, X-Ray
  13. Nyon MP, Rice DW, Berrisford JM, Hounslow AM, Moir AJ, Huang H, et al.
    J Mol Biol, 2009 Jan 9;385(1):226-35.
    PMID: 18983850 DOI: 10.1016/j.jmb.2008.10.050
    Cutinase belongs to a group of enzymes that catalyze the hydrolysis of esters and triglycerides. Structural studies on the enzyme from Fusarium solani have revealed the presence of a classic catalytic triad that has been implicated in the enzyme's mechanism. We have solved the crystal structure of Glomerella cingulata cutinase in the absence and in the presence of the inhibitors E600 (diethyl p-nitrophenyl phosphate) and PETFP (3-phenethylthio-1,1,1-trifluoropropan-2-one) to resolutions between 2.6 and 1.9 A. Analysis of these structures reveals that the catalytic triad (Ser136, Asp191, and His204) adopts an unusual configuration with the putative essential histidine His204 swung out of the active site into a position where it is unable to participate in catalysis, with the imidazole ring 11 A away from its expected position. Solution-state NMR experiments are consistent with the disrupted configuration of the triad observed crystallographically. H204N, a site-directed mutant, was shown to be catalytically inactive, confirming the importance of this residue in the enzyme mechanism. These findings suggest that, during its catalytic cycle, cutinase undergoes a significant conformational rearrangement converting the loop bearing the histidine from an inactive conformation, in which the histidine of the triad is solvent exposed, to an active conformation, in which the triad assumes a classic configuration.
    Matched MeSH terms: Crystallography, X-Ray
  14. Chaudhry AR, Irfan A, Muhammad S, Al-Sehemi AG, Ahmed R, Jingping Z
    J Mol Graph Model, 2017 08;75:355-364.
    PMID: 28651184 DOI: 10.1016/j.jmgm.2017.05.012
    In the present study, we use the state of art density functional theory (DFT) techniques to calculate the structural, optoelectronic and nonlinear optical (NLO) properties for two novel chalcone derivatives. The geometrical structures of chalcone derivatives compound 1 and 2 are optimized using periodic boundary conditions (PBC) in solid-state phase as well as isolated single molecular geometry in the gas phase. The reasonable agreement is found among experimental, solid-state and gas phase single molecular geometries, which provide us, further confidence to explore the potential of above-entitled derivatives as good functional materials for electro-optical applications. For instance, the frequency dependent real parts of dielectric functions are calculated for compound 1 and 2. The maximum value of real part of the dielectric function for compound 1 and 2 at 0eV are computed as 4.35 and 6.68 for the polarization vectors of (001) directions, respectively, which reveals the fact that the compound 1 and 2 might be good charge transport materials. The reflectivities of the compound 1 and 2 are 0.64 and 0.45 revealing that the compound 2 might be more efficient material for organic photovoltaic (OPV) applications. The results of the refractive index improved by doping the strong electron withdrawing groups (EWGs) shows that the compound 2 might be good refractor of the photon as compared to compound 1. The calculated values for static second-order polarizability are 3498 and 10464 a. u. and for frequency dependent second harmonic generations are 2557 and 6429 a. u. for compound 1 and 2, respectively, which indicates their significant potential for possible nonlinear optical applications.
    Matched MeSH terms: Crystallography, X-Ray
  15. Saharudin KA, Sreekantan S, Abd Aziz SN, Hazan R, Lai CW, Mydin RB, et al.
    J Nanosci Nanotechnol, 2013 Mar;13(3):1696-705.
    PMID: 23755576
    The present study deals with surface modification of Ti6Al4V alloy via anodization technique. The morphology, structure, adhesion and bioactivity of Ti6Al4V alloy after anodization process were investigated in detail. The influence of fluoride content and direct circuit (DC) applied voltage during anodization of Ti6Al4V alloy in a bath with electrolytes composed of ethylene glycol (EG) and ammonium fluoride (NH4F) were considered. It was found that the average pore sizes and length of nanoporous or nanotubes were increasing with the fluoride content and applied voltage. A minimum of 3 wt% of NH4F is required to grow a self-organized nanotube arrays. As the fluoride content was increased to 5 wt%, TiO2 nanotubes with average diameter of 110 nm and 3.4 microm lengths were successfully synthesized. It is noteworthy to point out that the rate of the nanotube formation was increasing up to 9 microm thick bioactive TiO2 nanotubes layer as anodization time was increased to 3 h. Based on the results obtained, the PA6 cells cultured on anodic Ti6Al4V alloy showed highest level of cell viability and greater cell adhesion compared to the flat Ti6Al4V foil substrate. In fact, highly ordered nanotubes structure on Ti6Al4V alloy can provide beneficial effects for PA6 cells in attachment and proliferation.
    Matched MeSH terms: Crystallography, X-Ray
  16. Yap WS, Gan CY, Sim KS, Lim SH, Low YY, Kam TS
    J Nat Prod, 2016 Jan 22;79(1):230-9.
    PMID: 26717050 DOI: 10.1021/acs.jnatprod.5b00992
    Eleven new indole alkaloids (1-11) comprising seven aspidofractinine and four eburnane alkaloids, were isolated from the stem-bark extract of Kopsia pauciflora occurring in Malaysian Borneo. The aspidofractinine alkaloids include a ring-contracted, an additional ring-fused, a paucidactine regioisomer, two paucidactine, and one kopsine alkaloid. The structures of several of these alkaloids were also confirmed by X-ray diffraction analyses. The bisindole alkaloids isolated, norpleiomutine and kopsoffinol, showed in vitro growth inhibitory activity against human PC-3, HCT-116, MCF-7, and A549 cells and moderate effects in reversing multidrug-resistance in vincristine-resistant human KB cells.
    Matched MeSH terms: Crystallography, X-Ray
  17. Sim DS, Chong KW, Nge CE, Low YY, Sim KS, Kam TS
    J Nat Prod, 2014 Nov 26;77(11):2504-12.
    PMID: 25333996 DOI: 10.1021/np500589u
    Seven new indole alkaloids (1-7) comprising four vobasine, two tacaman, and one corynanthe-tryptamine bisindole alkaloid were isolated from the stem-bark extract of a Malayan Tabernaemontana. Two of the new vobasine alkaloids (1, 3), as well as 16-epivobasine (15) and 16-epivobasenal (17), showed appreciable cytotoxicity toward KB cells (IC50 ca. 5 μg/mL). The structure of the known Tabernaemontana alkaloid tronoharine (8) was revised based on newly acquired NMR data, as well as X-ray diffraction analysis.
    Matched MeSH terms: Crystallography, X-Ray
  18. Tan SJ, Lim JL, Low YY, Sim KS, Lim SH, Kam TS
    J Nat Prod, 2014 Sep 26;77(9):2068-80.
    PMID: 25211145 DOI: 10.1021/np500439u
    A total of 20 new indole alkaloids comprising mainly oxidized derivatives of macroline- (including alstofonidine, a macroline indole incorporating a butyrolactone ring-F), pleiocarpamine-, and sarpagine-type alkaloids were isolated from the bark and leaf extracts of Alstonia angustifolia. The structures and relative configurations of these alkaloids were determined using NMR and MS analyses and in some instances confirmed by X-ray diffraction analyses. Alkaloids 3, 7, 35, and 41 showed moderate to weak activity, while 21 showed strong activity in reversing multidrug resistance in vincristine-resistant KB cells.
    Matched MeSH terms: Crystallography, X-Ray
  19. Low YY, Gan CY, Kam TS
    J Nat Prod, 2014 Jun 27;77(6):1532-5.
    PMID: 24832351 DOI: 10.1021/np500289t
    Racemic andransinine (1), an indole alkaloid derivative obtained during isolation of alkaloids from Alstonia angustiloba and Kopsia pauciflora, was found to undergo spontaneous resolution when crystallized in EtOAc, forming racemic conglomerates (an equimolar mechanical mixture of enantiomerically pure individual crystals). X-ray analyses of the enantiomers (obtained from crystals from EtOAc solution and from chiral-phase HPLC) provided the absolute configuration of each enantiomer as (15R,16S,21R)-(+)-andransinine (1a or I+) and (15S,16R,21S)-(-)-andransinine (1b or I-).
    Matched MeSH terms: Crystallography, X-Ray
  20. Low YY, Hong FJ, Lim KH, Thomas NF, Kam TS
    J Nat Prod, 2014 Feb 28;77(2):327-38.
    PMID: 24428198 DOI: 10.1021/np400922x
    Several transformations of the seco Aspidosperma alkaloid leuconolam were carried out. The based-induced reaction resulted in cyclization to yield two epimers, the major product corresponding to the optical antipode of a (+)-meloscine derivative. The structures and relative configuration of the products were confirmed by X-ray diffraction analysis. Reaction of leuconolam and epi-leuconolam with various acids, molecular bromine, and hydrogen gave results that indicated that the structure of the alkaloid, previously assigned as epi-leuconolam, was incorrect. This was confirmed by an X-ray diffraction analysis, which revealed that epi-leuconolam is in fact 6,7-dehydroleuconoxine. Short partial syntheses of the diazaspiro indole alkaloid leuconoxine and the new leuconoxine-type alkaloids leuconodines A and F were carried out.
    Matched MeSH terms: Crystallography, X-Ray
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links