Displaying publications 81 - 100 of 135 in total

Abstract:
Sort:
  1. Mohd Khair SZN, Ismail AS, Embong Z, Mohamed Yusoff AA
    J Ophthalmic Vis Res, 2019 5 23;14(2):171-178.
    PMID: 31114654 DOI: 10.4103/jovr.jovr_210_17
    Purpose: To determine the mutational analyses of familial exudative vitreoretinopathy (FEVR)-causing genes in Malay patients with retinopathy of prematurity (ROP) to obtain preliminary data for gene alterations in the Malay community.

    Methods: A comparative cross-sectional study involving 86 Malay premature babies (ROP = 41 and non-ROP = 45) was performed from September 2012 to December 2014. Mutation analyses in (FEVR)-causing genes (NDP, FZD4, LRP5, and TSPAN12) were performed using DNA from premature babies using polymerase chain reaction (PCR) and direct sequencing. Sequencing results were confirmed with PCR-Restriction Fragment Length Polymorphism (RFLP).

    Results: We found variants of FZD4, LRP5, and TSPAN12 in this study. One patient from each group showed a non-synonymous alteration in FZD4, c.502C>T (p.P168S). A synonymous variant of LRP5 [c.3357G>A (p.V1119V)] was found in 30 ROP and 28 non-ROP patients. Two variants of TSPAN12, c.765G>T (p.P255P) and c.*39C>T (3'UTR), were also recorded (29 and 21 in ROP, 33 and 26 in non-ROP, respectively). Gestational age and birth weight were found to be significantly associated with ROP (P value < 0.001 and 0.001, respectively).

    Conclusion: Analysis of data obtained from the ROP Malay population will enhance our understanding of these FEVR-causing gene variants. The c.3357G>A (p.V1119V) variant of LRP5, and c.765G>T (p.P255P) and c.*39C>T variants of TSPAN12 could be common polymorphisms in the Malay ethnic group; however, this requires further elucidation. Future studies using larger groups and higher numbers of advanced cases are necessary to evaluate the relationship between FEVR-causing gene variants and the risk of ROP susceptibility in Malaysian infants.

    Matched MeSH terms: DNA Mutational Analysis
  2. Mohd Nor NS, Al-Khateeb AM, Chua YA, Mohd Kasim NA, Mohd Nawawi H
    BMC Pediatr, 2019 04 11;19(1):106.
    PMID: 30975109 DOI: 10.1186/s12887-019-1474-y
    BACKGROUND: Familial hypercholesterolaemia (FH) is the most common inherited metabolic disease with an autosomal dominant mode of inheritance. It is characterised by raised serum levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-c), leading to premature coronary artery disease. Children with FH are subjected to early and enhanced atherosclerosis, leading to greater risk of coronary events, including premature coronary artery disease. To the best of our knowledge, this is the first report of a pair of monochorionic diamniotic identical twins with a diagnosis of heterozygous FH, resulting from mutations in both LDLR and ABCG8 genes.

    CASE PRESENTATION: This is a rare case of a pair of 8-year-old monochorionic diamniotic identical twin, who on family cascade screening were diagnosed as definite FH, according to the Dutch Lipid Clinic Criteria (DLCC) with a score of 10. There were no lipid stigmata noted. Baseline lipid profiles revealed severe hypercholesterolaemia, (TC = 10.5 mmol/L, 10.6 mmol/L; LDL-c = 8.8 mmol/L, 8.6 mmol/L respectively). Their father is the index case who initially presented with premature CAD, and subsequently diagnosed as FH. Family cascade screening identified clinical FH in other family members including their paternal grandfather who also had premature CAD, and another elder brother, aged 10 years. Genetic analysis by targeted next-generation sequencing using MiSeq platform (Illumina) was performed to detect mutations in LDLR, APOB100, PCSK9, ABCG5, ABCG8, APOE and LDLRAP1 genes. Results revealed that the twin, their elder brother, father and grandfather are heterozygous for a missense mutation (c.530C > T) in LDLR that was previously reported as a pathogenic mutation. In addition, the twin has heterozygous ABCG8 gene mutation (c.55G > C). Their eldest brother aged 12 years and their mother both had normal lipid profiles with absence of LDLR gene mutation.

    CONCLUSION: A rare case of Asian monochorionic diamniotic identical twin, with clinically diagnosed and molecularly confirmed heterozygous FH, due to LDLR and ABCG8 gene mutations have been reported. Childhood FH may not present with the classical physical manifestations including the pathognomonic lipid stigmata as in adults. Therefore, childhood FH can be diagnosed early using a combination of clinical criteria and molecular analyses.

    Matched MeSH terms: DNA Mutational Analysis
  3. Yatabe Y, Kerr KM, Utomo A, Rajadurai P, Tran VK, Du X, et al.
    J Thorac Oncol, 2015 Mar;10(3):438-45.
    PMID: 25376513 DOI: 10.1097/JTO.0000000000000422
    The efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR mutation-positive non-small-cell lung cancer (NSCLC) patients necessitates accurate, timely testing. Although EGFR mutation testing has been adopted by many laboratories in Asia, data are lacking on the proportion of NSCLC patients tested in each country, and the most commonly used testing methods.
    Matched MeSH terms: DNA Mutational Analysis/methods*
  4. Gill HK, Kumar HC, Dhaliwal JS, Zabidi F, Sendut IH, Noah RM, et al.
    Asian Pac J Allergy Immunol, 2012 Dec;30(4):313-20.
    PMID: 23393912
    BACKGROUND: The most common autosomal form of Chronic Granulomatous Disease, p47-phox deficient CGD, generally features a GT (deltaGT) deletion in the GTGT sequence at the start of exon 2 on the NCF-1 gene. This consistency is due to the coexistence of and the recombination between 2 homologous pseudogenes (psi s) and NCF-1. The GTGT: deltaGT ratio mirrors the NCF-I: NCF-1 psi ratio and is 2:4 in normal individuals.
    OBJECTIVE: To determine the molecular basis of the Autosomal-CGD in a family with 2 children, a male and female, affected by the disease. The female patient suffered recurrent infection, retinitis pigmentosa and discoid lupus.
    METHODS: Chemiluminescence (CL) was used to study the respiratory burst, while genetic analysis was done by RT-PCR, PCR, deltaGT and the 20bp gene scans.
    RESULTS: The CL response of the patient was profoundly low. The patient's p47-phox band was absent in the RT-PCR for NADPH-oxidase component mRNAs. The deltaGT scan showed that the patient's GTGT: deltaGT ratio was 0:6, the parents' and the younger brother's was 1:5 and the younger sister's was 2:4. Examination of other NCF-1/ NCF-1 psi s differences showed that the father had a compound deltaGT allele ie. deltaGT-20bp, inherited by the patient, and that both parents had compound GTGT alleles with a single 30bp segment in intron 1.
    CONCLUSIONS: The patient was a classic, homozygous deltaGT p47-phox deficient CGD with one allele harbouring a compound deltaGT-20bp gene. The deltaGT and 20bp gene scans offer a relatively simple and efficient means of defining a p47-phox deficient CGD patient.
    Key words: Chronic Granulomatous Disease, Primary Immunodeficiency, NCF-1, p47-phox, NADPH-oxidas
    Matched MeSH terms: DNA Mutational Analysis
  5. Sutomo R, Talib NA, Yusoff NM, Van Rostenberghe H, Sadewa AH, Sunarti, et al.
    Pediatr Int, 2004 Oct;46(5):565-9.
    PMID: 15491385
    There are significant differences in the prevalence and severity of neonatal jaundice among various populations. Recently, it has been reported that a mutation of the UGT1A1 gene, glycine to arginine at codon 71 (G71R), is related to the development of neonatal jaundice in East Asian populations. However, whether the G71R mutation contributes to the high incidence of neonatal jaundice in different Asian populations remains unknown. The authors screened for this mutation in the Javanese-Indonesian and Malay-Malaysian populations.
    Matched MeSH terms: DNA Mutational Analysis
  6. Goh KJ, Wong KT, Nishino I, Minami N, Nonaka I
    Neuromuscul Disord, 2005 Mar;15(3):262-4.
    PMID: 15725589
    Oculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant disorder of middle age presenting as progressive dysphagia and eyelid ptosis, due to short expansions of the GCG trinucleotide repeat (from GCG6 to GCG8-13) in the polyadenylate binding-protein nuclear 1 (PABPN1) gene. OPMD is rarely seen in Asians and morphologically and/or genetically confirmed cases have been reported in Japanese kindreds only. We report a 64 year old Chinese-Malaysian woman who presented with progressive dysphagia and bilateral ptosis for about 6 years. Her mother and elder brother (both deceased) were believed to be affected. Muscle histopathology revealed angulated fibres with rimmed vacuoles. Genetic analysis showed repeat expansion in one allele to (GCG)9 while normal in the other (GCG)6. This is the first non-Japanese Asian family with genetically confirmed OPMD.
    Matched MeSH terms: DNA Mutational Analysis
  7. Tay CG, Ariffin H, Yap S, Rahmat K, Sthaneshwar P, Ong LC
    J Child Neurol, 2015 Jun;30(7):927-31.
    PMID: 25122112 DOI: 10.1177/0883073814540523
    Succinic semialdehyde dehydrogenase deficiency is a rare autosomal recessive disorder affecting catabolism of the neurotransmitter gamma-aminobutyric acid (GABA), with a wide range of clinical phenotype. We report a Malaysian Chinese boy with a severe early onset phenotype due to a previously unreported mutation. Urine organic acid chromatogram revealed elevated 4-hydroxybutyric acid. Magnetic resonance imaging (MRI) of the brain demonstrated cerebral atrophy with atypical putaminal involvement. Molecular genetic analysis showed a novel homozygous 3-bp deletion at the ALDH5A1 gene c.1501_1503del (p.Glu501del). Both parents were confirmed to be heterozygotes for the p.Glu501del mutation. The clinical course was complicated by the development of subdural hemorrhage probably as a result of rocking the child to sleep for erratic sleep-wake cycles. This case illustrates the need to recognize that trivial or unintentional shaking of such children, especially in the presence of cerebral atrophy, can lead to subdural hemorrhage.
    Matched MeSH terms: DNA Mutational Analysis
  8. Abdullah JM, Ahmad F, Ahmad KA, Ghazali MM, Jaafar H, Ideris A, et al.
    Neurol Res, 2007 Apr;29(3):239-42.
    PMID: 17509221
    Brain tumorigenesis is a complex process involving multiple genetic alterations. Cyclin D1 and BAX genes are two of the most important regulators in controlling the normal proliferation and apoptosis of cells, respectively. In this study, we analysed the possibilities of involvement of cyclin D1 and BAX genes in the gliomagenesis.
    Matched MeSH terms: DNA Mutational Analysis/methods
  9. Hoe SL, Lee ES, Khoo AS, Peh SC
    Malays J Pathol, 2009 Jun;31(1):53-6.
    PMID: 19694314 MyJurnal
    The retinoblastoma-related gene Rb2/p130 has been reported to be mutated in several malignancies such as lung cancer and Burkitt's lymphoma. Nasopharyngeal carcinoma (NPC) is a common cancer in Malaysia especially amongst the ethnic Chinese. We screened for Rb2/p130 gene (exons 19 to 21) mutations in 53 archival NPC samples via PCR-SSCP-direct sequencing approach. Only one sample had a base change which involved a serine to glycine substitution at codon 995 (S995G). We conclude that Rb2/p130 genetic alterations are infrequent in NPC and may not be essential for the pathogenesis of the disease.
    Matched MeSH terms: DNA Mutational Analysis
  10. Teong YT, Teo ST, Tan LP, Wu BQ, Peh SC
    Med J Malaysia, 2006 Dec;61(5):526-33.
    PMID: 17623951 MyJurnal
    Gastrointestinal stromal tumour (GIST) is a rare but most common mesenchymal tumour in the gastrointestinal tract. Although GIST research has been carried out extensively worldwide, it has yet to be studied in Malaysia. To establish the immunohistochemical expression pattern of CD117 (c-KIT), CD34, S-100 and Desmin, the incidence of c-KIT and PDGFRA genes mutation in GISTs, and correlate it with clinicopathological parameters. Eleven clinically diagnosed GISTs were stained for CD117, CD34, Desmin and S-100 protein by immunohistochemical technique, and c-KITand PDGFRA gene mutations were studied by PCR-CSGE-DNA sequencing method. All GISTs (7 cases) stain positive for CD117, and co-expressed CD34. None of these cases express Desmin, and only one expressed S-100 protein focally. Fifty-seven percent (4/7 cases) of GIST harboured mutations at exon 11 of c-KIT gene, and they were all high risk and malignant cases. No mutation was detected at exons 9, 13 and 17 of KIT gene, and exons 12 and 18 of PDGFRA gene. Immunohistochemistry using a panel of antibodies shows consistent pattern of CD117 and CD34 expression in GIST, and mutational study may be a useful prognostic marker for kinase inhibitor treatment of GIST.
    Matched MeSH terms: DNA Mutational Analysis
  11. Tai YC, Tan JA, Peh SC
    Pathol. Int., 2004 Nov;54(11):811-8.
    PMID: 15533223
    p53 gene mutation is not a frequent event in the tumorigenesis of lymphomas and the expression of p53 protein is independent of p53 gene mutations. The present study aimed to investigate mutations in the p53 gene in a series of extranodal B-cell lymphomas, and its association with p53 protein expression. A total of 52 cases were graded histologically into Grade 1, Grade 2 and Grade 3 tumors and p53 protein expression was detected using immunohistochemistry. Mutations in the p53 gene were analyzed using polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) and mobility shifts were confirmed by direct sequencing. The tumors comprised 26 (50%) Grade 1, 9 (17%) Grade 2 and 15 (29%) Grade 3. A high proportion of Grade 2 (25%) tumors expressed p53 protein (P = 0.051) and carried p53 gene mutation (33%) (P = 0.218). However, p53 protein expression was not associated with p53 gene mutations (P = 0.057). Transversion mutations (88%) were more frequently detected than transition mutations (12%). The present study revealed that p53 gene mutations and p53 protein expression occurred in higher frequencies in Grade 2 tumors, which may be of pathogenetic importance. The high frequency of transversion mutations may reflect the influence of an etiological agent in the tumorigenesis of mucosa-associated lymphoid tissue (MALT lymphoma).
    Matched MeSH terms: DNA Mutational Analysis
  12. Tan LP, Ng BK, Balraj P, Poh BH, Lim PK, Peh SC
    Hum Genet, 2005 Dec;118(3-4):539-40.
    PMID: 16521263
    Matched MeSH terms: DNA Mutational Analysis
  13. Tan LP, Ng BK, Balraj P, Lim PK, Peh SC
    Pathology, 2007 Apr;39(2):228-34.
    PMID: 17454753
    BACKGROUND AND AIMS: Colorectal cancers of different subtypes involve different pathogenic pathways like the Wnt and the mutator pathways. In this study, we screened 73 colorectal cancer cases from a multi-racial group for genetic and expression profile defects with the aim of correlating these with patients' clinicopathological characteristics.
    METHODS: Mutation screening of the entire coding region of APC and exon 3 of CTNNB1, loss of heterozygosity (LOH) of APC, and microsatellite instability (MSI) status were assessed for 44 patients with available paired frozen normal and tumour tissues. In addition, 29 cases with available paraffin embedded tumour blocks were screened for mutation in exon 3 of CTNNB1, the APC mutation cluster region (codon 1286-1513), and hMLH1, hMSH2, hMSH6 protein expressions by immunohistochemistry method.
    RESULTS: In our study, 15/73 cases showed APC mutations (20.5%), 1/73 cases had CTNNB1 mutation (1.4%), 5/32 cases had APC LOH (15.6%), and 16/70 (22.9%) cases revealed at least some form of mismatch repair (MMR) defect. Tumour grade (poor differentiation) was found to correlate significantly with right-sided tumour and mucinous histology (p = 0.01879 and 0.00320, respectively). Patients of younger age (below 45 years) more often had tumours of mucinous histology (p = 0.00014), while patients of older age (above 75 years) more often had tumours on the right side of the colon (p = 0.02448). Tumours of the mucinous histology subtype often had MMR defects (p = 0.02686). There was no difference in the occurrence of APC and CTNNB1 mutations and MMR defects found within our multi-racial colorectal cancer patient cohort.
    CONCLUSION: Our findings support the notion that racial factor may not be related to the occurrence of MMR defects and APC and CTNNB1 mutations in our multi-racial patient cohort.
    Matched MeSH terms: DNA Mutational Analysis
  14. Hoe SL, Lee ES, Khoo AS, Peh SC
    Pathology, 2009;41(6):561-5.
    PMID: 19900105
    AIMS: Nasopharyngeal carcinoma (NPC) is a common malignancy among men in Malaysia. To determine the role of p53 in NPC, we screened for p53 mutations and evaluated the protein expression levels in samples from local patients with NPC.

    METHODS: Fifty-three formalin-fixed, paraffin-embedded nasopharyngeal carcinoma tissue blocks were chosen for this study. The presence of Epstein-Barr virus (EBV) was determined by in situ hybridisation using an EBER probe. p53 protein expression was detected using immunohistochemistry. Simultaneously, amplifications by PCR were performed for p53 exons 5 to 8, followed by mutation screening via single strand conformation polymorphism (SSCP). Sequencing of all the four exons was performed in five samples with mobility shift. To rule out false negative results by SSCP, 13 samples with p53 overexpression and five samples with low p53 expression were randomly selected and sequenced.

    RESULTS: There was no mutation found in exons 5 to 8 in all the samples despite 46 (87%) of them having high p53 levels. EBV was detected in 51 (96%) out of 53 samples. There was no statistically significant association between p53 expression level and EBV presence.

    CONCLUSIONS: High-intensity staining for p53 by immunohistochemistry was common in our series of NPC tissue samples but was not associated with 'hot spot' mutations of exons 5-8 of the gene. We did not find a significant relationship between the expression level of p53 and presence of EBV. Our study confirms that mutation of the DNA-binding domain of p53 is rare in NPC.

    Matched MeSH terms: DNA Mutational Analysis
  15. Baker RJ, Dickins B, Wickliffe JK, Khan FAA, Gaschak S, Makova KD, et al.
    Evol Appl, 2017 09;10(8):784-791.
    PMID: 29151870 DOI: 10.1111/eva.12475
    Currently, the effects of chronic, continuous low dose environmental irradiation on the mitochondrial genome of resident small mammals are unknown. Using the bank vole (Myodes glareolus) as a model system, we tested the hypothesis that approximately 50 generations of exposure to the Chernobyl environment has significantly altered genetic diversity of the mitochondrial genome. Using deep sequencing, we compared mitochondrial genomes from 131 individuals from reference sites with radioactive contamination comparable to that present in northern Ukraine before the 26 April 1986 meltdown, to populations where substantial fallout was deposited following the nuclear accident. Population genetic variables revealed significant differences among populations from contaminated and uncontaminated localities. Therefore, we rejected the null hypothesis of no significant genetic effect from 50 generations of exposure to the environment created by the Chernobyl meltdown. Samples from contaminated localities exhibited significantly higher numbers of haplotypes and polymorphic loci, elevated genetic diversity, and a significantly higher average number of substitutions per site across mitochondrial gene regions. Observed genetic variation was dominated by synonymous mutations, which may indicate a history of purify selection against nonsynonymous or insertion/deletion mutations. These significant differences were not attributable to sample size artifacts. The observed increase in mitochondrial genomic diversity in voles from radioactive sites is consistent with the possibility that chronic, continuous irradiation resulting from the Chernobyl disaster has produced an accelerated mutation rate in this species over the last 25 years. Our results, being the first to demonstrate this phenomenon in a wild mammalian species, are important for understanding genetic consequences of exposure to low-dose radiation sources.
    Matched MeSH terms: DNA Mutational Analysis
  16. Yee PTI, Mohamed RAH, Ong SK, Tan KO, Poh CL
    Virus Res, 2017 06 15;238:243-252.
    PMID: 28705680 DOI: 10.1016/j.virusres.2017.07.010
    One of the leading causes of the hand, foot and mouth disease (HFMD) is Enterovirus 71 (EV-A71), displaying symptoms such as fever and ulcers in children but some strains can produce cardiopulmonary oedema which leads to death. There is no FDA-approved vaccine for prevention of severe HFMD. The molecular determinants of virulence for EV-A71 are unclear. It could be a single or a combination of amino acids that determines virulence in different EV-A71 genotype/sub-genotypes. Several EV-A71 strains bearing single nucleotide (nt) mutations were constructed and the contribution of each mutation to virulence was evaluated. The nt(s) that contributed to significant reduction in virulence in vitro were selected and each mutation was introduced separately into the genome to construct the multiply mutated EV-A71 strain (MMS) which carried six substitutions of nt(s) at the 5'-NTR (U700C), VP1-145 (E to G), VP1-98E, VP1-244K and G64R in the vaccine seed strain that had a partial deletion within the 5'-NTR region (nt. 475-485) of Δ11bp. In comparison to the wild type strain, the MMS showed low virulence as it produced very low RNA copy number, plaque count, VP1 and had 105-fold higher TCID50, indicative of a promising LAV candidate that should be further evaluated in vivo.
    Matched MeSH terms: DNA Mutational Analysis
  17. Yee PT, Tan KO, Othman I, Poh CL
    Virol J, 2016 11 28;13(1):194.
    PMID: 27894305
    BACKGROUND: Hand, foot and mouth disease is caused by Enterovirus 71 (EV-A71) and Coxsackieviruses. EV-A71 infection is associated with high fever, rashes and ulcers but more severe symptoms such as cardiopulmonary failure and death have been reported. The lack of vaccines highlighted the urgency of developing preventive agents against EV-A71. The molecular determinants of virulent phenotypes of EV-A71 is unclear. It remains to be investigated if specific molecular determinants would affect the cell culture growth characteristics of the EV-A71 fatal strain in Rhabdomyosarcoma (RD) cells.

    RESULTS: In this study, several genetically modified sub-genotype B4 EV-A71 mutants were constructed by site-directed mutations at positions 158, 475, 486, 487 and 5262 or through partial deletion of the 5'-NTR region (∆ 11 bp from nt 475 to 486) to generate a deletion mutant (PD). EV-A71 mutants 475 and PD caused minimal cytopathic effects, produced lowest viral RNA copy number, viral particles as well as minimal amount of viral protein (VP1) in RD cells when compared to mutants 158, 486, 487 and 5262.

    CONCLUSIONS: The molecular determinants of virulent phenotypes of EV-A71 sub-genotype B4 strain 41 (5865/Sin/000009) were found to differ from the C158 molecular determinant reported for the fatal EV-A71 sub-genotype B1 strain (clinical isolate 237). The site-directed mutations (SDM) introduced at various sites of the cDNA affected growth of the various mutants when compared to the wild type. Lowest viral RNA copy number, minimal number of plaques formed, higher infectious doses required for 50% lethality of RD cells and much reduced VP1 of the EV-A71 sub-genotype B4 strain 41 genome was attained in mutants carrying SDM at position 475 and through partial deletion of 11 bp at the 5'-NTR region.

    Matched MeSH terms: DNA Mutational Analysis
  18. Yenchitsomanus PT, Sawasdee N, Paemanee A, Keskanokwong T, Vasuvattakul S, Bejrachandra S, et al.
    J Hum Genet, 2003;48(9):451-456.
    PMID: 12938018 DOI: 10.1007/s10038-003-0059-6
    We have previously demonstrated that compound heterozygous (SAO/G701D) and homozygous (G701D/G701D) mutations of the anion exchanger 1 (AE1) gene, encoding erythroid and kidney AE1 proteins, cause autosomal recessive distal renal tubular acidosis (AR dRTA) in Thai patients. It is thus of interest to examine the prevalence of these mutations in the Thai population. The SAO and G701D mutations were examined in 844 individuals from north, northeast, central, and south Thailand. Other reported mutations including R602H, DeltaV850, and A858D were also examined in some groups of subjects. The SAO mutation was common in the southern Thai population; its heterozygote frequency was 7/206 and estimated allele frequency 1.70%. However, this mutation was not observed in populations of three other regions of Thailand. In contrast, the G701D mutation was not found in the southern population but was observed in the northern, northeastern, and central populations, with heterozygote frequencies of 1/216, 3/205, and 1/217, and estimated allele frequencies of 0.23%, 0.73%, and 0.23%, respectively. The higher allele frequency of the G701D mutation in the northeastern Thai population corresponds to our previous finding that all Thai patients with AR dRTA attributable to homozygous G701D mutation originate from this population. This suggests that the G701D allele that is observed in this region might arise in northeastern Thailand. The presence of patients with compound heterozygous SAO/G701D in southern Thailand and Malaysia and their apparently absence in northeastern Thailand indicate that the G701D allele may have migrated to the southern peninsular region where SAO is common, resulting in pathogenic allelic interaction.
    Matched MeSH terms: DNA Mutational Analysis
  19. Kham SK, Tan PL, Tay AH, Heng CK, Yeoh AE, Quah TC
    J Pediatr Hematol Oncol, 2002 Jun-Jul;24(5):353-9.
    PMID: 12142782
    The purpose of this study was to determine the frequency of thiopurine methyltransferase (TPMT) polymorphisms in a multiracial Asian population and to assess its relevance in the management of childhood acute lymphoblastic leukemia (ALL). Six hundred unrelated cord blood samples from 200 Chinese, Malay, and Indian healthy newborns were collected at the National University Hospital, Singapore; an additional 100 children with ALL were analyzed for five of the commonly reported TPMT variant alleles using polymerase chain reaction/restriction fragment length polymorphism and allele-specific polymerase chain reaction-based assays. In the cord blood study, the TPMT*3C variant was detected in all three ethnic groups; Chinese, Malays, and Indians had allele frequencies of 3%, 2.3%, and 0.8%, respectively. The TPMT*3A variant was found only among the Indians at a low allele frequency of 0.5%. The TPMT*6 variant was found in one Malay sample. Among the children with ALL, two white and one Chinese were heterozygous for the TPMT*3A variant and showed intermediate sensitivity to 6-mercaptopurine during maintenance therapy. Three Chinese patients and one Malay patient were heterozygous for the TPMT*3C variant. Mercaptopurine sensitivity could be validated in only one out of four TPMT*3C heterozygous patients. The overall allele frequency of the TPMT variants in this multiracial population was 2.5%. The TPMT*3C was the most common variant allele; TPMT*3A and TPMT*6 were rare. These results support the feasibility of performing TPMT genotyping in all children diagnosed with acute leukemia to minimize toxicity from thiopurine chemotherapy.
    Matched MeSH terms: DNA Mutational Analysis
  20. Yusnita Y, Norsiah MD, Rahman AJ
    Malays J Pathol, 2010 Dec;32(2):103-10.
    PMID: 21329181 MyJurnal
    Mitochondrial Subunit ND1 (mtND1) gene is involved in the first step of the electron transport chain of oxidative phosphorylation (OXPHOS). Alteration of the electron transport components by mutations in mtDNA may compromise the normal electron flow. This could lead to an increase of bifurcation and generation of superoxidase radicals and increase oxidative stress in various types of cancer cells. Genomic DNA was extracted from thirty matched primary colorectal tumour tissues and matching non-tumour tissues. Blood samples were obtained from twenty-five normal people. The mtNDI coding region was amplified by step-down PCR. The purified products were then subjected to direct sequencing and subsequently, the DNA sequences obtained were compared with the revised Cambridge Reference Sequence (rCRS) and MITOMAP. From the analysis, the mtND1 gene showed 11 (45.8%) different mutations and also 13 (54.2%) polymorphisms. The heteroplasmic mutation A4123A/G (I273I/V) might have a pathogenic significance as it fulfills various pathogenic criteria. Three mutations, T3394C (Y30H), A3434G (Y43C) and C3497T (A64V) which occur in a highly conserved region were likely to alter the structure and function of the ND1 protein. We suggest that these mutations, and in combination with the polymorphic variance in mtDNA, may cause slight changes that generate subtly higher levels of toxic reactive oxygen species (ROS).
    Matched MeSH terms: DNA Mutational Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links