Displaying publications 81 - 100 of 105 in total

Abstract:
Sort:
  1. Akanbi, T.O., Kamaruzaman, A.L., Abu Bakar, F., Sheikh Abdul Hamid, N., Radu, S., Abdul Manap, M.Y., et al.
    MyJurnal
    The activities of lipase produced by five lipases-producing thermophilic bacteria strains (SY1, SY5, SY6, SY7 and SY9) isolated from Selayang Hot Spring in the western part of Peninsular Malaysia were analyzed and compared. SY7 and SY9 had considerably higher lipolytic activities than those of SY1, SY5 and SY6. Thermostabilities of lipase produced by all strains were determined after heating at 80°C for 30 minutes. Strain SY7 retained the highest lipolytic activity of 77%, while others had infinitesimally low thermostability (retaining less than 34% of their original activity) at the same temperature and time. SY7 was chosen for further characterization because it showed exceptionally high lipase activity and thermostability. It was identified as belonging to Bacillus species by the conventional Gram-staining technique, Biochemical tests and Biolog Microstation system. By using 16S rRNA gene sequencing, strain SY7 generated the same expected PCR product with molecular weight of 1500 base pair. It displayed 98% sequence similarity to Bacillus cereus strain J-1 16S rRNA gene partial sequence with accession number: AY305275 and has been deposited in the database of Genbank.
    Matched MeSH terms: Databases, Nucleic Acid
  2. Lim VC, Ramli R, Bhassu S, Wilson JJ
    PeerJ, 2018;6:e4572.
    PMID: 29607265 DOI: 10.7717/peerj.4572
    Background: Intense landscaping often alters the plant composition in urban areas. Knowing which plant species that pollinators are visiting in urban areas is necessary for understanding how landscaping impacts biodiversity and associated ecosystem services. The cave nectar bat,Eonycteris spelaea, is an important pollinator for many plants and is often recorded in human-dominated habitats. Previous studies of the diet ofE. spelaearelied on morphological identification of pollen grains found in faeces and on the body of bats and by necessity disregarded other forms of digested plant material present in the faeces (i.e., plant juice and remnants). The main objective of this study was to examine the diet of the nectarivorous bat,E. spelaea,roosting in an urban cave at Batu Caves, Peninsular Malaysia by identifying the plant material present in the faeces of bats using DNA metabarcoding.

    Methods: Faeces were collected under the roost ofE. spelaeaonce a week from December 2015 to March 2016. Plant DNA was extracted from the faeces, Polymerase chain reaction (PCR) amplified atITS2andrbcLregions and mass sequenced. The resultant plant operational taxonomic units were searched against NCBI GenBank for identification.

    Results: A total of 55 species of plants were detected from faeces ofE. spelaeaincludingArtocarpus heterophyllus, Duabanga grandifloraandMusaspp. which are likely to be important food resources for the cave nectar bat.

    Discussion: Many native plant species that had not been reported in previous dietary studies ofE. spelaeawere detected in this study includingBauhinia strychnoideaandUrophyllum leucophlaeum, suggesting thatE. spelaearemains a crucial pollinator for these plants even in highly disturbed habitats. The detection of many introduced plant species in the bat faeces indicates thatE. spelaeaare exploiting them, particularlyXanthostemon chrysanthus,as food resources in urban area. Commercial food crops were detected from all of the faecal samples, suggesting thatE. spelaeafeed predominantly on the crops particularly jackfruit and banana and play a significant role in pollination of economically important plants. Ferns and figs were also detected in the faeces ofE. spelaeasuggesting future research avenues to determine whether the 'specialised nectarivorous'E. spelaeafeed opportunistically on other parts of plants.

    Matched MeSH terms: Databases, Nucleic Acid
  3. Ariff N, Abdullah A, Azmai MNA, Musa N, Zainathan SC
    Vet World, 2019 Aug;12(8):1273-1284.
    PMID: 31641308 DOI: 10.14202/vetworld.2019.1273-1284
    Background and Aim: Viral nervous necrosis (VNN) is a serious disease of several marine fish species. VNN causes 100% mortality in the larval stages, while lower losses have been reported in juvenile and adult fish. This study aimed to detect the occurrence of VNN while identifying its associated risk factors and the genotypes of its causative agent in a hybrid grouper hatchery in Malaysia.

    Materials and Methods: A batch of newly hatched hybrid grouper fry (Epinephelus fuscoguttatus × Epinephelus lanceolatus) were followed from the larval stage to market size. Samples of the hybrid groupers, water, live feed, and artificial fish pellets were collected periodically from day 0 to 180 in the hybrid grouper hatchery. Reverse transcription-polymerase chain reaction (RT-PCR) and nested PCR amplifications were carried out on VNN-related sequences. The phylogenetic tree including the sampled causative agent of VNN was inferred from the coat protein genes from all known Betanodavirus species using Molecular Evolutionary Genetics Analysis (MEGA). Pearson's correlation coefficient values were calculated to determine the strength of the correlation between the presence of VNN in hybrid grouper samples and its associated risk factors.

    Results: A total of 113 out of 146 pooled and individual samples, including hybrid grouper, water, and artificial fish pellet samples, demonstrated positive results in tests for the presence of VNN-associated viruses. The clinical signs of infection observed in the samples included darkened skin, deformation of the backbone, abdominal distension, skin lesions, and fin erosion. VNN was present throughout the life stages of the hybrid groupers, with the first detection occurring at day 10. VNN-associated risk factors included water temperature, dissolved oxygen content, salinity, ammonia level, fish size (adults more at risk than younger stages), and life stage (age). Detection of VNN-associated viruses in water samples demonstrated evidence of horizontal transmission of the disease. All the nucleotide sequences found in this study had high nucleotide identities of 88% to 100% to each other, striped jack nervous necrosis virus (SJNNV), and the reassortant strain red-spotted grouper NNV/SJNNV (RGNNV/SJNNV) isolate 430.2004 (GenBank accession number JN189932.1) (n=26). The phylogenetic analysis showed that quasispecies was present in each VNN-causing virus-positive sample, which differed based on the type of sample and life stage.

    Conclusion: This study was the first to confirm the existence of a reassortant strain (RGNNV/SJNNV) in hybrid groupers from Malaysia and Southeast Asia. However, the association between the mode of transmission and the risk factors of this virus needs to be investigated further to understand the evolution and potential new host species of the reassortant strain.

    Matched MeSH terms: Databases, Nucleic Acid
  4. Maniam P, Zainal Abidin Abu Hassan, Noor Embi, Hasidah Mohd Sidek
    Sains Malaysiana, 2012;41:721-729.
    Hepatic phosphoprotein levels are altered in mouse liver as a manifestation of bacteria, virus or parasite infection. Identification of signaling pathways mediated by these hepatic proteins contribute to the current understanding of the mechanism of pathogenesis in malarial infection. The present study was undertaken to evaluate the changes in hepatic phosphoprotein levels during Plasmodium berghei infection. Our study revealed changes in levels of three hepatic phosphoproteins following P. berghei infection compared to non-infected controls. Peptide fragment sequence analysis using tandem mass spectrometry (MS/MS) showed these hepatic proteins to be homologs to haemoglobin beta (HBB), class
    Pi glutathione S-tranferase (GSTPi) and carbonic anhydrase III (CAIII) proteins of Mus musculus species respectively from the NCBInr sequence database. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis predicted the involvement of these proteins in specific pathways in Mus musculus species; GSTPi in glutathione and drug metabolism and CAIII in nitrogen metabolism. This shows that P. berghei infection affects similar signaling pathways as those reported in other pathogenic infections such as that related to GSTPi and CAIII in response to oxidative stress.
    Matched MeSH terms: Databases, Nucleic Acid
  5. Zulperi D, Sijam K
    Plant Dis, 2014 Feb;98(2):275.
    PMID: 30708756 DOI: 10.1094/PDIS-03-13-0321-PDN
    During March 2011 to June 2012, 50 banana plants of cultivar Musa × paradisiaca 'Horn' with Moko disease symptoms were randomly sampled in 12 different locations of 5 outbreak states in Peninsular Malaysia comprising Kedah, Selangor, Pahang, Negeri Sembilan, and Johor, with disease incidence exceeding 90% in some severely affected plantations. The disease symptoms observed in the infected plants included yellowing and wilting of the oldest leaves, which became necrotic, and eventually led to their dieback or collapse. The pulp of banana fruits also became discolored and exuded bacterial ooze. Vascular tissues in pseudostems were discolored. Fragments from symptomatic plant samples were excised and cultured on Kelman's-tetrazolium salt (TZC) medium. Twenty positive samples produced fluidal colonies that were either entirely white or white with pink centers after incubation for 24 to 48 h at 28°C on Kelman's-TZC medium and appeared as gram-negative rods after Gram staining. They were also positive for potassium hydroxide (KOH), Kovacs oxidase, and catalase tests, but negative for utilization of disaccharides and hexose alcohols, which are characteristics of biovar 1 Ralstonia solanacearum. For the pathogenicity test, 30 μl of 108 CFU/ml bacterial suspension of three selected virulent strains were injected into banana (Musa × paradisiaca 'Horn') leaves explants grown in plastic pots of 1,440 cm3 volume in a greenhouse, with temperature range from 26 to 35°C. Leaves that were infiltrated with sterile distilled water served as a negative control. Inoculations with all isolates were performed in three replications, as well as the uninoculated control leaves explants. The inoculated plants produced the same symptoms as observed on naturally diseased samples, whereas control plants remained asymptomatic. Strain cultures were re-isolated and possessed the morphological and biochemical characteristics as previously described. PCR amplification using race 2 R. solanacearum primers ISRso19-F (5'-TGGGAGAGGATGGCGGCTTT-3') and ISRso19-R (5'-TGACCCGCCTTTCGGTGTTT-3') (3) produced a 1,900-bp product from DNA of all bacterial strains. BLAST searches resulted that the sequences were 95 to 98% identical to published R. solanacearum strain race 2 insertion sequence ISRso19 (GenBank Accession No. AF450275). These genes were later deposited in GenBank (KC812051, KC812052, and KC812053). Phylotype-specific multiplex PCR (Pmx-PCR) and Musa-specific multiplex PCR (Mmx-PCR) were performed to identify the phylotype and sequevar of all isolates (4). Pmx-PCR showed that all isolates belonged to phylotype II, whereas Mmx-PCR showed that they belonged to phylotype II sequevar 4 displaying 351-bp amplicon. Although there were previously extensive studies on R. solanacearum associated with bacterial wilt disease of banana crops in Malaysia, none related to Moko disease has been reported (1,2). The result has a great importance to better understand and document R. solanacearum race 2 biovar 1, since banana has been identified as the second most important commercial fruit crop with a high economic value in Malaysia. References: (1) R. Khakvar et al. Plant Pathol. J. 7:162, 2008. (2) R. Khakvar et al. Am. J. Agri. Biol. Sci. 3:490, 2008. (3) Y. A. Lee and C. N. Khor. Plant Pathol. Bull. 12:57, 2003. (4) P. Prior et al. Pages 405-414 in: Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex. The American Phytopathological Society, St. Paul, MN, 2005.
    Matched MeSH terms: Databases, Nucleic Acid
  6. Naderali N, Nejat N, Tan YH, Vadamalai G
    Plant Dis, 2013 Nov;97(11):1504.
    PMID: 30708488 DOI: 10.1094/PDIS-04-13-0412-PDN
    The foxtail palm (Wodyetia bifurcata), an Australian native species, is an adaptable and fast-growing landscape tree. The foxtail palm is most commonly used in landscaping in Malaysia. Coconut yellow decline (CYD) is the major disease of coconut associated with 16SrXIV phytoplasma group in Malaysia (1). Symptoms consistent with CYD, such as severe chlorosis, stunting, general decline, and death were observed in foxtail palms from the state of Selangor in Malaysia, indicating putative phytoplasma infection. Symptomatic trees loses their green and vivid appearance as a decorative and landscape ornament. To determine the presence of phytoplasma, samples were collected from the fronds of 12 symptomatic and four asymptomatic palms in September 2012, and total DNA was extracted using the CTAB method (3). Phytoplasma DNA was detected in eight symptomatic palms using nested PCR with universal phytoplasma 16S rDNA primer pairs, P1/P7 followed by R16F2n/R16R2 (2). Amplicons (1.2 kb in length) were generated from symptomatic foxtail palms but not from symptomless plants. Phytoplasma 16S rDNAs were cloned using a TOPO TA cloning kit (Invitrogen). Several white colonies from rDNA PCR products amplified from one sample with R16F2n/R16R2 were sequenced. Phytoplasma 16S rDNA gene sequences from single symptomatic foxtail palms showed 99% homology with a phytoplasma that causes Bermuda grass white leaf (AF248961) and coconut yellow decline (EU636906), which are both members of the 16SrXIV 'Candidatus Phytoplasma cynodontis' group. The sequences also showed 99% sequence identity with the onion yellows phytoplasma, OY-M strain, (NR074811), from the 'Candidatus Phytoplasma asteris' 16SrI-B subgroup. Sequences were deposited in the NCBI GenBank database (Accession Nos. KC751560 and KC751561). Restriction fragment length polymorphism (RFLP) analysis was done on nested PCR products produced with the primer pair R16F2n/R16R2. Amplified products were digested separately with AluI, HhaI, RsaI, and EcoRI restriction enzymes based on manufacturer's specifications. RFLP analysis of 16S rRNA gene sequences from symptomatic plants revealed two distinct profiles belonging to groups 16SrXIV and 16SrI with majority of the 16SrXIV group. RFLP results independently corroborated the findings from DNA sequencing. Additional virtual patterns were obtained by iPhyclassifier software (4). Actual and virtual patterns yielded identical profiles, similar to the reference patterns for the 16SrXIV-A and 16SrI-B subgroups. Both the sequence and RFLP results indicated that symptoms in infected foxtail palms were associated with two distinct phytoplasma species in Malaysia. These phytoplasmas, which are members of two different taxonomic groups, were found in symptomatic palms. Our results revealed that popular evergreen foxtail palms are susceptible to and severely affected by phytoplasma. To our knowledge, this is the first report of a mixed infection of a single host, Wodyetia bifurcata, by two different phytoplasma species, Candidatus Phytoplasma cynodontis and Candidatus Phytoplasma asteris, in Malaysia. References: (1) N. Nejat et al. Plant Pathol. 58:1152, 2009. (2) N. Nejat et al. Plant Pathol. J. 9:101, 2010. (3) Y. P. Zhang et al. J. Virol. Meth. 71:45, 1998. (4) Y. Zhao et al. Int. J. Syst. Evol. Microbiol. 59:2582, 2009.
    Matched MeSH terms: Databases, Nucleic Acid
  7. Green SK, Tsai WS, Shih SL, Black LL, Rezaian A, Rashid MH, et al.
    Plant Dis, 2001 Dec;85(12):1286.
    PMID: 30831796 DOI: 10.1094/PDIS.2001.85.12.1286A
    Production of tomato (Lycopersicon esculentum) in Bangladesh, Malaysia, Myanmar, Vietnam, and Laos has been severely affected by yellow leaf curl disease. Tomato leaf samples were collected from symptomatic tomato plants from farmers' fields in the five countries from 1997 to 1999. DNA was extracted from all samples, four from Vietnam, two each from Malaysia, Laos, and Myanmar, and seven from Bangladesh. Virus DNA was amplified by polymerase chain reaction (PCR) using the begomovirus-specific degenerate primer pair PAL1v 1978/PAR1c 715(1), which amplifies the top part of DNA A. All samples gave the expected 1.4-kb PCR product. The PCR product of one sample per country was cloned and sequenced. Based on the sequences of the 1.4-kb DNA products amplified by the first primer pair, specific primers were designed to complete each of the DNA A sequences. Computer-assisted sequence comparisons were performed with begomovirus sequences available in the laboratory at the Asian Vegetable Research and Development Center, Shanhua, Tainan, and in the GenBank sequence database. The five DNA species resembled DNA A of begomoviruses. For the detection of DNA B two degenerate primer pairs were used, DNABLC1/DNABLV2 and DNABLC2/DNABLV2 (DNABLC1: 5'-GTVAATGGRGTDCACTTCTG-3', DNABLC2: 5'-RGTDCACTT CTGYARGATGC-3', DNABLV2: 5'-GAGTAGTAGTGBAKGTTGCA-3'), which were specifically designed to amplify DNA B of Asian tomato geminiviruses. Only the virus associated with yellow leaf curl of tomato in Bangladesh was found to contain a DNA B component, which was detected with the DNABLC1/DNABLV2 primer pair. The DNA A sequence derived from the virus associated with tomato yellow leaf curl from Myanmar (GenBank Accession No. AF206674) showed highest sequence identity (94%) with tomato yellow leaf curl virus from Thailand (GenBank Accession No. X63015), suggesting that it is a closely related strain of this virus. The other four viruses were distinct begomoviruses, because their sequences shared less than 90% identity with known begomoviruses of tomato or other crops. The sequence derived from the virus associated with tomato yellow leaf curl from Vietnam (GenBank Accession No. AF264063) showed highest sequence identity (82%) with the virus associated with chili leaf curl from Malaysia (GenBank Accession No. AF414287), whereas the virus associated with yellow leaf curl symptoms in tomato in Bangladesh (GenBank Accession No. AF188481) had the highest sequence identity (88%) with a tobacco geminivirus from Yunnan, China (GenBank Accession No. AF240675). The sequence derived from the virus associated with tomato yellow leaf curl from Laos (GenBank Accession No. AF195782) had the highest sequence identity (88%) with the tomato begomovirus from Malaysia (GenBank Accession No. AF327436). This report provides further evidence of the great genetic diversity of tomato-infecting begomoviruses in Asia. Reference: M. R. Rojas et al. Plant Dis. 77:340, 1993.
    Matched MeSH terms: Databases, Nucleic Acid
  8. Rossman A, Melgar J, Walker D, Gonzales A, Ramirez T, Rivera J
    Plant Dis, 2012 May;96(5):765.
    PMID: 30727564 DOI: 10.1094/PDIS-01-12-0081-PDN
    In the last decade, rambutan (Nephelium lappaceum L., Sapindaceae) and pulasan (N. mutabile Blume) have been cultivated in Honduras to produce exotic fruits for export to North America (2). Recently, a disease was observed that produces dark brown to black fissured cankers from 1 to 3 cm long and 1 to 4 cm wide. The infected bark tissue becomes swollen with the middle region 3 to 8 mm thick. Symptoms appear when the trees are approximately 3 years old. As the trees mature, the cankers increase in size and weaken the branches, often resulting in breakage with the weight of the fruit causing substantial plant damage and fruit loss. In August 2010, fissured branch samples of rambutan and pulasan were collected from 6- to 8-year-old trees from the Humid Tropical Demonstrative Agroforestry Center in Honduras, Atlantida, La Masica (15°33'47.4″N, 87°05'2.5″W, elevation 106 m). A fungus associated with the cankers was identified as Dolabra nepheliae. It produces black, stipitate, elongate ascomata, 312 to 482 × 250 to 281 μm with broadly cylindric, bitunicate asci, 120 to 138 × 11.2 to 15.0 μm, and filiform, hyaline ascospores, 128 to 135 × 2.8 to 3.2 μm. Fungi from rambutan and pulasan were isolated on cornmeal agar plus 0.5% dextrose and antibiotics. On potato dextrose agar, the ascospores produced slow-growing colonies, 5 mm per week. In culture, isolates from both hosts produced pycnidia with elongated, slightly to strongly curved or S-shaped, hyaline conidia, 22.8 to 46.4 × 2.8 to 3.7 μm. This fungus was first reported on rambutan and pulasan from Malaysia (1,4), and later reported on rambutan and litchi in Hawaii and Puerto Rico (3). To our knowledge, this is the first report of D. nepheliae on pulasan and rambutan from Honduras. Specimens have been deposited at the U.S. National Fungus Collections (BPI 882442 on N. lappaceum and BPI 882443 on N. mutabile). Cultures were deposited at the Centraalbureau voor Schimmelcultures (CBS) as CBS 131490 on N. lappaceum and CBS 131491 on N. mutabile. Sequences of the internal transcribed spacer (ITS) region including ITS1, 5.8S, and ITS2 intergenic spacers were deposited in GenBank (Accession No. JQ004281 on N. lappaceum and Accession No. JQ004280 on N. mutabile). A BLAST search and pairwise comparison using the GenBank web server were used to compare ITS sequence data and recovered the following results: (i) CBS 131490 on N. lappaceum is 99% (538 of 544) identical to D. nepheliae CBS 123297 on Litchi chinensis from Puerto Rico; and (ii) CBS 131491 on N. mutabile is 99% (527 of 533) identical to the same strain of D. nepheliae. On the basis of the ITS sequence data, the isolates from Honduras were confirmed as the same species, D. nepheliae from Puerto Rico. Efforts to develop resistant germplasm and management strategies to control this disease have been initiated. References: (1) C. Booth and W. P. Ting. Trans. Brit. Mycol. Soc. 47:235, 1964. (2) T. Ramírez et al. Manual Para el Cultivo de Rambutan en Honduras. Fundación Hondureña de Investigación Agrícola. La Lima, Cortes, Honduras, 2003. (3) A. Y. Rossman et al. Plant Dis. 91:1685, 2007. (4) H. Zalasky et al. Can. J. Bot. 49:559, 1971.
    Matched MeSH terms: Databases, Nucleic Acid
  9. Nasehi A, Kadir JB, Abidin MAZ, Wong MY, Mahmodi F
    Plant Dis, 2012 Aug;96(8):1226.
    PMID: 30727066 DOI: 10.1094/PDIS-03-12-0223-PDN
    In June 2011, tomatoes (Solanum lycopersicum) in major growing areas of the Cameron Highlands and the Johor state in Malaysia were affected by a leaf spot disease. Disease incidence exceeded 80% in some severely infected regions. Symptoms on 50 observed plants initially appeared on leaves as small, brownish black specks, which later became grayish brown, angular lesions surrounded by a yellow border. As the lesions matured, the affected leaves dried up and became brittle and later developed cracks in the center of the lesions. A survey was performed in these growing areas and 27 isolates of the pathogen were isolated from the tomato leaves on potato carrot agar (PCA). The isolates were purified by the single spore technique and were transferred onto PCA and V8 agar media for conidiophore and conidia production under alternating light (8 hours per day) and darkness (16 hours per day) (4). Colonies on PCA and V8 agar exhibited grey mycelium and numerous conidia were formed at the terminal end of conidiophores. The conidiophores were up to 240 μm long. Conidia were oblong with 2 to 11 transverse and 1 to 6 longitudinal septa and were 24 to 69.6 μm long × 9.6 to 14.4 μm wide. The pathogen was identified as Stemphylium solani on the basis of morphological criteria (2). In addition, DNA was extracted and the internal transcribed spacer region (ITS) was amplified by universal primers ITS5 and ITS4 (1). The PCR product was purified by the commercial PCR purification kit and the purified PCR product sequenced. The resulting sequences were 100% identical to published S. solani sequences (GenBank Accestion Nos. AF203451 and HQ840713). The amplified ITS region was deposited with NCBI GenBank under Accession No. JQ657726. A representative isolate of the pathogen was inoculated on detached 45-day-old tomato leaves of Malaysian cultivar 152177-A for pathogenicity testing. One wounded and two nonwounded leaflets per leaf were used in this experiment. The leaves were wounded by applying pressure to leaf blades with the serrated edge of a forceps. A 20-μl drop of conidial suspension containing 105 conidia/ml was used to inoculate these leaves (3). The inoculated leaves were placed on moist filter paper in petri dishes and incubated for 48 h at 25°C. Control leaves were inoculated with sterilized distilled water. After 7 days, typical symptoms for S. solani similar to those observed in the farmers' fields developed on both wounded and nonwounded inoculated leaves, but not on noninoculated controls, and S. solani was consistently reisolated. To our knowledge, this is the first report of S. solani causing gray leaf spot of tomato in Malaysia. References: (1) M. P. S. Camara et al. Mycologia 94:660, 2002. (2) B. S. Kim et al. Plant Pathol. J. 15:348, 1999. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) E. G. Simmons. CBS Biodiversity Series 6:775, 2007.
    Matched MeSH terms: Databases, Nucleic Acid
  10. French-Monar RD, Patton AF, Douglas JM, Abad JA, Schuster G, Wallace RW, et al.
    Plant Dis, 2010 Apr;94(4):481.
    PMID: 30754480 DOI: 10.1094/PDIS-94-4-0481A
    In August 2008, 30% of tomato (Solanum lycopersicum) plants in plots in Lubbock County, Texas showed yellowing, lateral stem dieback, upward leaf curling, enlargement of stems, adventitious roots, and swollen nodes. Yellowing in leaves was similar to that seen with zebra chip disease (ZC) of potato that was confirmed in a potato field 112 km away in July 2008 and was associated with a 'Candidatus Liberibacter' species (1), similar to findings earlier in 2008 in New Zealand and California (2,3). Tissue from four symptomatic plants of cv. Spitfire and two of cv. Celebrity were collected and DNA was extracted from midribs and petioles with a FastDNA Spin Kit (Qbiogene, Inc., Carlsbad, CA,). PCR amplification was done with 16S rRNA gene primers OA2 and OI2c, which are specific for "Ca. Liberibacter solanacearum" from potato and tomato and amplify a 1.1-kb fragment of the 16S rRNA gene of this new species (1,3). Amplicons of 1.1 kb were obtained from all samples and these were sequenced in both orientations (McLab, San Francisco, CA). Sequences of the 16S rRNA gene were identical for both Spitfire and Celebrity and were submitted to the NCBI as GenBank Accession Nos. FJ939136 and FJ939137, respectively. On the basis of a BLAST search, sequence alignments revealed 99.9% identity with a new species of 'Ca. Liberibacter' from potato (EU884128 and EU884129) in Texas (1); 99.7% identity with the new species "Ca. Liberibacter solanacearum" described from potato and tomato (3) in New Zealand (EU849020 and EU834130, respectively) and from the potato psyllid Bactericera cockerelli in California (2) (EU812559, EU812556); 97% identity with 'Ca L. asiaticus' from citrus in Malaysia (EU224393) and 94% identity with both 'Ca. L. africanus' and 'Ca. L. americanus' from citrus (EU921620 and AY742824, respectively). A neighbor-joining cladogram constructed using the 16S rRNA gene fragments delineated four clusters corresponding to each species, and these sequences clustered with "Ca. L. solanacearum". A second PCR analysis was conducted with the CL514F/CL514R primer pair, which amplifies a sequence from the rplJ and rplL ribosomal protein genes of "Ca. L. solanacearum". The resulting 669-bp products were 100% identical to a sequence reported from tomato in Mexico (FJ498807). This sequence was submitted to NCBI (GU169328). ZC, a disease causing losses to the potato industry, is associated with a 'Candidatus Liberibacter' species (1-3) and was reported in Central America and Mexico in the 1990s, in Texas in 2000, and more recently in other states in the United States (4). In 2008, a "Ca. Liberibacter solanacearum" was detected on Capsicum annuum, S. betaceum, and Physalis peruviana in New Zealand (3). Several studies have shown that the potato psyllid, B. cockerelli, is a potential vector for this pathogen (2,4). To our knowledge, this is the first report of "Ca. Liberibacter solanacearum" in field tomatoes showing ZC-like foliar disease symptoms in the United States. References: (1). J. A. Abad et al. Plant Dis. 93:108, 2009 (2) A. K. Hansen et al. Appl. Environ. Microbiol. 74:5862, 2008. (3) L. W. Liefting et al. Plant Dis. 93:208, 2009. (4) G. A. Secor et al. Plant Dis. 93:574, 2009.
    Matched MeSH terms: Databases, Nucleic Acid
  11. Holcomb GE, Aime MC
    Plant Dis, 2010 Feb;94(2):272.
    PMID: 30754293 DOI: 10.1094/PDIS-94-2-0272C
    Plumeria spp., native to tropical America, are popular small trees grown widely in tropical areas of the world and as potted plants elsewhere. P. rubra and P. obtusa cultivars and hybrids are most common. A rust disease of a Plumeria sp. (likely P. rubra based on pointed leaf tips, leaves more than 18 cm (7 inches) long, and high rust susceptibility) was observed in November 2008 and again in June 2009 on homeowner plants in Baton Rouge, LA. A survey of five Baton Rouge retail nurseries in September 2009 revealed that 87% (90 of 103) of the plumeria plants were heavily infected with rust. Early symptoms included numerous 1-mm chlorotic spots on adaxial leaf surfaces followed by leaf chlorosis, necrosis, and abscission. Uredinia were numerous, mostly hypophyllous and yellowish orange. Urediniospores were catenulate, orange en masse, verrucose, globose, ovoid, ellipsoidal or angular, and measured 21.8 to 41.9 × 16.4 to 32.8 μm (average 29.4 × 22.6 μm). The rust was identified as Coleosporium plumeriae Pat. (= C. plumierae) (3). Teliospores were not found during this study. Pathogenicity tests were performed by spraying urediniospores (20,000/ml of deionized water) on three healthy Thai hybrid plumeria plants. Five leaves of each plant were misted with water and covered with plastic bags and three to five leaves were inoculated. Plants were held at 27°C for 27 h in a dew chamber and then moved outdoors. Typical rust symptoms and uredinia with urediniospores developed in 10 days on all inoculated leaves while noninoculated leaves remained healthy. Characteristics and spore measurements matched those of the rust from original infected plants. Additional plumeria rust inoculations were made to other Apocynaceae family members that included Allamanda cathartica, Catheranthus roseus (Madagascar periwinkle), Mandevilla splendens, Nerium oleander, and Vinca major. Catheranthus roseus was very susceptible to C. plumeriae with chlorotic leaf spots developing on the six inoculated plants after 8 days and uredinia with urediniospores appearing after 11 days. None of the other plant genera were susceptible to the rust. Plumeria rust was also observed on plumeria trees in urban landscapes in peninsular (Penang) and Bornean (Kota Kinabalu, Sabah) Malaysia in December 2007. To confirm identity, ~1,000 bp of nuclear rDNA 28S subunit from each (Lousiana, Penang, and Kota Kinabalu) was sequenced with rust-specific primers (1) and shared 100% identity (GenBank No. GU145555-6). Plumeria rust was first found on the island of Guadeloupe (3) and then spread to Central and South America. It has been known from Florida since 1960 under the synonym C. domingense (2), but has not been reported elsewhere in the continental United States. In more recent years, plumeria rust has spread to Hawaii, many Pacific islands, India, China, Taiwan, Thailand, Australia, and Nigeria (4). To our knowledge, this is the first report of plumeria rust from Louisiana and Malaysia and of susceptibility of another member of the Apocynaceae, Madagascar periwinkle, to C. plumeriae. Voucher material from Louisiana and Malaysia has been deposited in the Mycology Herbarium of Louisiana State University (LSUM). References: (1) M. C. Aime. Mycoscience 47:112, 2006. (2) Anonymous. Index of Plant Diseases in the United States. U.S. Dept. Agric. Handb. No. 165. Washington, D.C., 1960. (3) N. Patouillard. Bull. Soc. Mycol. Fr. 18:171, 1902. (4) C. To-Anun et al. Nat. Hist. J. Chulalongkorn Univ. 4:41, 2004.
    Matched MeSH terms: Databases, Nucleic Acid
  12. Siti Nursyazwani Maadon, Sarini Ahmad Wakid, Iwana Izni Zainudin, Lili Syahani Rusli, Mohd Syahril Mohd Zan, Nor’Aishah Hasan, et al.
    Sains Malaysiana, 2018;47:3025-3030.
    Endophytic fungi are those living inside the host plant without causing any apparent negative effect on the host plant. Two
    isolates endophytic fungi from leaves and two isolates from root at Universiti Teknologi MARA (UiTM) Reserve Forest,
    Negeri Sembilan were successfully isolated and identified by morphology and molecular characteristic. Samples were
    surface sterilized and sub-cultured to obtain a pure culture. Characteristics of the isolates such as colony appearance,
    mycelial texture, conidia/spores and pigmentation were studied to explore their morphology. Isolates were also subjected to
    a PCR-based genotyping test. There were noticeable differences in morphological characteristics among the four isolates.
    Microscopic analysis showed four isolates consist of septa and conidia/spores. The pigmentation result showed that
    colony in A1leaf samples demonstrated an orange color on potato dextrose agar (PDA) media, colony in A1root demonstrate
    a black texture in PDA media while hairy colonies in the others two isolates showed a white color on PDA media. Based on
    molecular analyses the fungal genera showed 99-100% similarity with the related fungi recorded in the GenBank. Both
    morphology and molecular sequencing of internal transcribed spacer (ITS) regions of endophytic fungi showed that three
    isolates (A1root, C2leaf, and C3root) were grouped in Basidiomycota while one isolate (A1leaf) belonged to Ascomycota. The
    endophyte funguses were identified as Daldinia sp. (A1leaf), Polyporales sp. (A1root,) Lentinus sp. (C2leaf,) and Rigidoporus
    sp. (C3root). Overall, the new discoveries of isolated endophyte fungal have dyeing potential of fungal pigments which
    offer a viable alternative to natural vegetable and harmful synthetic dyes.
    Matched MeSH terms: Databases, Nucleic Acid
  13. Do TD, Thi Mai N, Duy Khoa TN, Abol-Munafi AB, Liew HJ, Kim CB, et al.
    Evol Bioinform Online, 2019;15:1176934319853580.
    PMID: 31236006 DOI: 10.1177/1176934319853580
    Temperature is an abiotic factor that affects various biological and physiological processes in fish. Temperature stress is known to increase the production of reactive oxygen species (ROS) that subsequently cause oxidative stress. Fish is known to evolve a system of antioxidant enzymes to reduce ROS toxicology. Glutathione peroxidase (GPx) family consists of key enzymes that protect fish from oxidative stress. In this study, full-length GPx1 cDNA (GenBank accession no. KY984468) of Tor tambroides was cloned and characterized by rapid amplification of cDNA ends (RACE). The 899-base-pair (bp) GPx1 cDNA includes a 576-bp open reading frame encoding for 191 amino acids, plus 28 bp of 5'-untranslated region (UTR) and 295 bp of 3'-UTR. Homology analysis revealed that GPx1 of T tambroides (Tor-GPx1) shared high similarity with GPx1 sequences of other fish species. The phylogenetic construction based on the amino acid sequence showed that Tor-GPx1 formed a clade with GPx1 sequences of various fish species. Real-time polymerase chain reaction (PCR) was performed to assess the levels of GPx1 gene expression in the liver and muscle of T tambroides under thermal stress. The results indicated that GPx1 gene expression was down-regulated under decreased temperature. However, there was no significant difference between GPx1 gene expression in fish exposed to high temperature and control. Our study provides the first data regarding GPx gene expression in T tambroides under thermal stress.
    Matched MeSH terms: Databases, Nucleic Acid
  14. Sharifdini M, Ghanbarzadeh L, Kouhestani-Maklavani N, Mirjalali H, Saraei M
    Iran J Parasitol, 2017 Jul-Sep;12(3):374-381.
    PMID: 28979347
    BACKGROUND: Hookworm infection is one of the important Neglected Tropical Diseases (NTD) in the world. It was previously more prevalent in the northern and southern parts of Iran with a prevalence rate higher than 40% in some endemic regions; nevertheless, the infection rate has decreased to less than 1%. This study aimed to determine prevalence and molecular aspects of hookworm infections in rural inhabitants of Fouman County, Guilan Province, northern Iran.

    METHODS: This cross-sectional study was performed in 31 villages of Fouman district in Guilan Province, northern Iran during 2015-2016. Stool samples were collected from 1500 rural inhabitants and examined by formalin ethyl-acetate concentration as well as agar plate culture techniques. After treatment with albendazole, adult hookworms were isolated. Following DNA extraction, PCR amplification of ITS2-rDNA region was performed and the product was sequenced, followed by genetic variation analysis.

    RESULTS: Of 1500 samples, one case was morphologically diagnosed as N. americanus. In addition, molecular characterization verified the presence of N. americanus, showing more than 95% similarity with sequences of N. americanus present in GenBank. The patient showed no clinical symptoms and a mild hypereosinophilia was the only laboratory finding observed.

    CONCLUSION: A reduced prevalence of human hookworms was demonstrated within Guilan Province located in north of Iran. The N. americanus originated from Guilan had a high homology with the isolates found in Japan, Laos, Malaysia, and Australia.
    Matched MeSH terms: Databases, Nucleic Acid
  15. Yamada M, Shishito N, Nozawa Y, Uni S, Nishioka K, Nakaya T
    Trop Med Health, 2017;45:26.
    PMID: 29118653 DOI: 10.1186/s41182-017-0067-4
    Background: Dirofilaria ursi is a filarial nematode that parasitizes the subcutaneous tissues of the American black bear (Ursus americanus) and Japanese black bear (Ursus thiabetanus japonicus). D. ursi that has parasitized black bears has the potential to subsequently infect humans. In addition, extra-gastrointestinal anisakiasis is less common in Japan.

    Case presentation: We report a case of ventral subcutaneous anisakiasis and dorsal subcutaneous dirofilariasis that was acquired in Fukushima, in the northern part of Japan. The patient was an 83-year-old Japanese female, and subcutaneous parasitic granulomas were present on her left abdomen (near the navel) and left scapula. A pathological examination of the surgically dissected tissue sections from each region demonstrated eosinophilic granulomas containing different species of parasites. To enable the morphological and molecular identification of these parasites, DNA was extracted from paraffin-embedded sections using DEXPAT reagent, and the cytochrome oxidase 2 (COX2), internal transcribed spacer 1 (ITS1), 5.8S and ITS2 regions of the Anisakis larvae, and the 5S rRNA region of the male Dirofilaria were sequenced. The PCR products were examined and compared with DNA databases. Molecular analysis of the COX2 and 5S rRNA sequences of each worm revealed that the nematode found in the ventral region belonged to Anisakis simplex sensu stricto (s.s.) and the male Dirofilaria found in the dorsal region was classified as D. ursi.

    Conclusion: The present case showed a combined human case of D. ursi and A. simplex s.s. infections in subcutaneous tissues. The results of this study will contribute to the identification of unknown parasites in histological sections.
    Matched MeSH terms: Databases, Nucleic Acid
  16. Rayani M, Hatam G, Unyah NZ, Ashrafmansori A, Abdullah WO, Hamat RA
    Iran J Parasitol, 2017 Oct-Dec;12(4):522-533.
    PMID: 29317877
    Background: This study is the first phylogenetic genotype analysis of Giardia lamblia in Iran. The main objective was to determine genotyping and identify the sub-assemblages of Giardia lamblia isolates involved in the transmission of giardiasis in Fars Province, south of Iran, in 2012.

    Methods: Forty G. lamblia isolates were collected from the patient's fecal samples with gastrointestinal discomfort referred to the health centers and hospitals in Shiraz, Fars Province, south of Iran. Purification of G. lamblia cysts from fecal samples and DNA extraction were performed using monolayer of sucrose density gradient and Phenol-Chloroform-Isoamylalcohol (PCI) respectively. Semi-nested PCR and sequence analysis were then performed using the primers (GDHeF, GDHiF, and GDHiR) which amplified a 432-bp fragment of Giardia glutamate dehydrogenase (gdh) gene. Phylogenetic analysis was carried out using a neighbor-joining tree composed of the nucleotide sequences of G. lamblia isolates obtained in this study and the known sequences isolates published in GenBank.

    Results: G. lamblia sub-assemblage AII was the most prevalent genotype with 80% of the cases and 20% of the cases belong to sub-assemblage BIII and BIV based on the DNA sequence of the gdh. G. lamblia isolates at Fars Province were widely distributed within assemblage A cluster (sub-assemblage AII) and the remaining isolates were dispersed throughout the assemblage B cluster (sub-assemblage BIII and BIV).

    Conclusion: PCR Sequencing and phylogenetic analysis was a proper molecular method for genotyping and discriminating of the of G. lamblia sub-assemblages in fecal samples, using the glutamate dehydrogenase gene that suggests a human contamination origin of giardiasis.
    Matched MeSH terms: Databases, Nucleic Acid
  17. Li JF, Dai YT, Lilljebjörn H, Shen SH, Cui BW, Bai L, et al.
    Proc Natl Acad Sci U S A, 2018 12 11;115(50):E11711-E11720.
    PMID: 30487223 DOI: 10.1073/pnas.1814397115
    Most B cell precursor acute lymphoblastic leukemia (BCP ALL) can be classified into known major genetic subtypes, while a substantial proportion of BCP ALL remains poorly characterized in relation to its underlying genomic abnormalities. We therefore initiated a large-scale international study to reanalyze and delineate the transcriptome landscape of 1,223 BCP ALL cases using RNA sequencing. Fourteen BCP ALL gene expression subgroups (G1 to G14) were identified. Apart from extending eight previously described subgroups (G1 to G8 associated with MEF2D fusions, TCF3-PBX1 fusions, ETV6-RUNX1-positive/ETV6-RUNX1-like, DUX4 fusions, ZNF384 fusions, BCR-ABL1/Ph-like, high hyperdiploidy, and KMT2A fusions), we defined six additional gene expression subgroups: G9 was associated with both PAX5 and CRLF2 fusions; G10 and G11 with mutations in PAX5 (p.P80R) and IKZF1 (p.N159Y), respectively; G12 with IGH-CEBPE fusion and mutations in ZEB2 (p.H1038R); and G13 and G14 with TCF3/4-HLF and NUTM1 fusions, respectively. In pediatric BCP ALL, subgroups G2 to G5 and G7 (51 to 65/67 chromosomes) were associated with low-risk, G7 (with ≤50 chromosomes) and G9 were intermediate-risk, whereas G1, G6, and G8 were defined as high-risk subgroups. In adult BCP ALL, G1, G2, G6, and G8 were associated with high risk, while G4, G5, and G7 had relatively favorable outcomes. This large-scale transcriptome sequence analysis of BCP ALL revealed distinct molecular subgroups that reflect discrete pathways of BCP ALL, informing disease classification and prognostic stratification. The combined results strongly advocate that RNA sequencing be introduced into the clinical diagnostic workup of BCP ALL.
    Matched MeSH terms: Databases, Nucleic Acid
  18. Ikryannikova LN, Afanas'ev MV, Akopian TA, Il'ina EN, Kuz'min AV, Larionova EE, et al.
    J Microbiol Methods, 2007 Sep;70(3):395-405.
    PMID: 17602768
    A MALDI TOF MS based minisequencing method has been developed and applied for the analysis of rifampin (RIF)- and isoniazid (INH)-resistant M. tuberculosis strains. Eight genetic markers of RIF resistance-nucleotide polymorphisms located in RRDR of rpoB gene, and three of INH resistance including codon 315 of katG gene and -8 and -15 positions of the promoter region of fabG1-inhA operon were worked out. Based on the analysis of 100 M. tuberculosis strains collected from the Moscow region in 1997-2005 we deduced that 91% of RIF-resistant and 94% of INH-resistant strains can be identified using the technique suggested. The approach is rapid, reliable and allows to reveal the drug resistance of M. tuberculosis strains within 12 h after sample isolation.
    Matched MeSH terms: Databases, Nucleic Acid*
  19. Hossain MA, Roslan HA
    ScientificWorldJournal, 2014;2014:186029.
    PMID: 25165734 DOI: 10.1155/2014/186029
    beta-D-N-Acetylhexosaminidase, a family 20 glycosyl hydrolase, catalyzes the removal of β-1,4-linked N-acetylhexosamine residues from oligosaccharides and their conjugates. We constructed phylogenetic tree of β-hexosaminidases to analyze the evolutionary history and predicted functions of plant hexosaminidases. Phylogenetic analysis reveals the complex history of evolution of plant β-hexosaminidase that can be described by gene duplication events. The 3D structure of tomato β-hexosaminidase (β-Hex-Sl) was predicted by homology modeling using 1now as a template. Structural conformity studies of the best fit model showed that more than 98% of the residues lie inside the favoured and allowed regions where only 0.9% lie in the unfavourable region. Predicted 3D structure contains 531 amino acids residues with glycosyl hydrolase20b domain-I and glycosyl hydrolase20 superfamily domain-II including the (β/α)8 barrel in the central part. The α and β contents of the modeled structure were found to be 33.3% and 12.2%, respectively. Eleven amino acids were found to be involved in ligand-binding site; Asp(330) and Glu(331) could play important roles in enzyme-catalyzed reactions. The predicted model provides a structural framework that can act as a guide to develop a hypothesis for β-Hex-Sl mutagenesis experiments for exploring the functions of this class of enzymes in plant kingdom.
    Matched MeSH terms: Databases, Nucleic Acid
  20. Tan LK, Mohd-Farid B, Salsabil S, Heselynn H, Wahinuddin S, Lau IS, et al.
    Hum Immunol, 2016 Oct;77(10):818-819.
    PMID: 27370684 DOI: 10.1016/j.humimm.2016.06.022
    A total of 951 Southeast Asia Malays from Peninsular Malaysia were genotyped for HLA-A, -B, -C -DRB1, and -DQB1 loci using polymerase chain reaction sequence-specific oligonucleotide probe hybridization methods. In this report, there were significant deviation from Hardy-Weinberg proportions for the HLA-A (p<0.0001), -B (p<0.0001), -DRB1 (p<0.0001) and -DQB1 (p<0.01) loci. Minor deviations from HWEP were detected for HLA-C (p=0.01). This genotype data was available in Allele Frequencies Network Database (AFND) Gonzalez-Galarza et al. (2015).
    Matched MeSH terms: Databases, Nucleic Acid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links