Displaying publications 81 - 100 of 244 in total

Abstract:
Sort:
  1. Khor SY, Jegathesan M
    Med J Malaysia, 1983 Mar;38(1):19-22.
    PMID: 6633328
    Enterobacteriaceae isolated from clinical sources were examined for antibiotic resistance and the ability to transfer resistance to Escherichia coli. Twenty-nine out of 80 strains tested transferred part or all oftheir resistance genes. The strains carrying R plasmids included the genera Escherichia, Klebsiella, Salmonella, Enterobacter, Proteus, Providencia and Citrobacter. These results indicate that R plasmids possibly play a major role in the emergence of antibiotic resistance among clinical isolates of Enterobacteriaceae.
    Matched MeSH terms: Drug Resistance, Microbial
  2. Khor SY, Lim YS, Jegathesan M
    PMID: 7147009
    Forty samples of Malaysian cooked foods were examined for the presence of antibiotic-resistant coliforms and R plasmids. Twenty seven (68%) of the foods had antibiotic-resistant coliforms and 5 (13%) had R plasmids. Nineteen samples (48%) had total bacterial counts over 10(6) per gm and in 5 samples, no coliforms were detected. Our findings show that cooked food may be one possible way by which R plasmids are spread. The control of the spread of R plasmids is discussed.
    Matched MeSH terms: Drug Resistance, Microbial
  3. Khor SY, Jegathesan M
    Med J Malaysia, 1977 Sep;32(1):85-9.
    PMID: 609352
    Matched MeSH terms: Drug Resistance, Microbial
  4. Black F, Bygbjerg I, Effersøe P, Gomme G, Jepsen S, Jensen GA
    Trans R Soc Trop Med Hyg, 1981;75(5):715-6.
    PMID: 7036431
    A case of Plasmodium falciparum malaria resistant to Fansidar (sulphadoxine plus pyrimethamine) at a level corresponding to R III and resistant to chloroquine is reported. The infection was most certainly acquired in Malaysia, but diagnosed and treated in a non-malarious area. Normal resorption and elimination rates of the Fansidar components excludes cure failure due to abnormal drug fate in the host. P. falciparum parasites from the patient have been maintained in vitro cultures. The patient was permanently cured with mefloquine.
    Matched MeSH terms: Drug Resistance, Microbial
  5. Nik Khairulddin NY, Choo KE, Johari MR
    Singapore Med J, 1999 Feb;40(2):96-100.
    PMID: 10414167
    Data is lacking with regard to the epidemiology of invasive haemophilus influenzae (HI) disease in Malaysia. This study was carried out to document the epidemiology of invasive HI disease in hospitalised Kelantanese children.
    Matched MeSH terms: Drug Resistance, Microbial
  6. Snelling MR, Kam CM
    Tubercle, 1968 Jun;49(2):187-91.
    PMID: 5664317
    Matched MeSH terms: Drug Resistance, Microbial
  7. Lim YS, Jegathesan M, Koay AS, Kang SH
    Med J Malaysia, 1983 Mar;38(1):27-30.
    PMID: 6633330
    Enterotoxin production by strains of Staphylococcus aureus isolated from foods unconnected with outbreaks offood poisoning was investigated. Twenty-three percent of 217 strains examined produced enterotoxins A, B, C, D or E. Enterotoxin C was found to occur most frequently. Enterotoxin A was not detected alone from any of the strains examined, but occurred together with other enterotoxins. The overall number of strains isolated from raw foods which produced one or more enterotoxins was higher than that for cooked foods. Antibiotic sensitivities were unrelated to enterotoxin production and no correlation could be found between methicillin resistance and enterotoxigenicity.
    Matched MeSH terms: Drug Resistance, Microbial
  8. Son R, Rusu G, Karim MI
    J Appl Microbiol, 1997 Feb;82(2):240-4.
    PMID: 12452600
    Thirty-six strains of Escherichia coli isolated from animals in Bario, a remote area in Sarawak, Malaysia, were examined for presence of plasmid DNA and their susceptibility to nine antimicrobial agents. Of the total 36 isolates, five bovine and six canine isolates were found to contain plasmid DNA ranging in sizes from 2.6 to 70 kilobases. All were susceptible to chloramphenicol, erythromycin, gentamicin, nalidixic acid and neomycin but resistance to ampicillin (47%), erythromycin (19%), streptomycin (25%) and tetracycline (11%) was observed. Resistance was associated with carriage of a 47 kb (SC98), 70 kb, (SC133) and 56 and 4.6 kb (SC119) plasmids which were transmissible to the Escherichia coli K12 recipient. It is concluded that animals form a potential reservoir of R plasmids carrying E. coli in the study area.
    Matched MeSH terms: Drug Resistance, Microbial/genetics
  9. Banerjee S, Ooi MC, Shariff M, Khatoon H
    ScientificWorldJournal, 2012;2012:130136.
    PMID: 22619583 DOI: 10.1100/2012/130136
    Salmonella and Vibrio species were isolated and identified from Litopenaeus vannamei cultured in shrimp farms. Shrimp samples showed occurrence of 3.3% of Salmonella and 48.3% of Vibrio. The isolates were also screened for antibiotic resistance to oxolinic acid, sulphonamides, tetracycline, sulfamethoxazole/trimethoprim, norfloxacin, ampicillin, doxycycline hydrochloride, erythromycin, chloramphenicol, and nitrofurantoin. Salmonella enterica serovar Corvallis isolated from shrimp showed individual and multiple antibiotic resistance patterns. Five Vibrio species having individual and multiple antibiotic resistance were also identified. They were Vibrio cholerae (18.3%), V. mimicus (16.7%), V. parahaemolyticus (10%), V. vulnificus (6.7%), and V. alginolyticus (1.7%). Farm owners should be concerned about the presence of these pathogenic bacteria which also contributes to human health risk and should adopt best management practices for responsible aquaculture to ensure the quality of shrimp.
    Matched MeSH terms: Drug Resistance, Microbial*
  10. Jegathesan M, Khor SY
    Med J Malaysia, 1980 Jun;34(4):395-8.
    PMID: 7219270
    Four strains of S. typhi isolated in Malaysia were found to show resistance to chloramphenicol and other antibiotics. In two of these strains it was possible to show that this resistance was transferable.
    This problem which is widespread in neighbouring countries and undetected in Malaysia till recently has now been shown to exist in this country. Fears that the incidence of such strains will increase in the future are expressed and the need for vigilance is emphasised.
    Matched MeSH terms: Drug Resistance, Microbial
  11. Koh CL
    Trans R Soc Trop Med Hyg, 1986;80(1):158-61.
    PMID: 3726978
    Twenty-five strains of enterobacteria, isolated from man in Peninsular Malaysia and consisting of seven Enterobacter spp., five Escherichia coli, five Salmonella spp., four Klebsiella spp., two Shigella spp., one Proteus sp. and and one Providencia sp., were tested for antibiotic resistance and conjugative R plasmids. They were all sensitive to nalidixic acid and resistant to at least three antibiotics. The number of resistances ranged from 3 to 11 antibiotics, including cefoperazone and sisomicin (two) newly released antibiotics), in addition to common drugs of current use. Of the 25 isolates, 19 (76%) conjugally transferred, at varied frequencies, at least two resistance determinants. Results from equilibrium density gradient centrifugation, agarose gel electrophoresis and transformation experiments provided proof that the transferable resistances were plasmid-mediated. Restriction endonuclease cleavage patterns showed that the plasmids from Proteus strain K005 and Providencia strain K001 may be identical.
    Matched MeSH terms: Drug Resistance, Microbial
  12. Koh CL, Kok CH
    PMID: 6377513
    Fifteen independent E. coli strains of avian, bovine and porcine origin in Peninsular Malaysia were tested for antibiotic resistance and conjugative R plasmids. Eight (53%) isolates were found to be antibiotic resistant. Among them, 37.5% were mono-resistant and 62.5% were resistant to three or more antibiotics, i.e., multi-resistant. All of them were resistant to Tc and sensitive to Gm and Nx. Three of the eight antibiotic resistant strains were able to transfer all or part of their resistance to an E. coli K12 recipient by conjugation. The transfer frequencies of Km, Sm and Tc resistance of the three donors varied between 4.5 X 10(-8) to 6.8 X 10(-7). Analysis of the plasmid profiles of all the three donors and their respective transconjugants after agarose gel electrophoresis provided conclusive evidence that the transferable resistance traits were plasmid-mediated.
    Matched MeSH terms: Drug Resistance, Microbial
  13. Mohd R, Nesam T, Kamaruzaman L, Cader RA, Mustafar R, Kong WY
    Respir Med Case Rep, 2018;24:147-149.
    PMID: 29977783 DOI: 10.1016/j.rmcr.2018.05.019
    Acinetobacter baumannii is an aerobic Gram-negative coccobacillus that is associated with hospital acquired pneumonia. There is increased reporting of emergent cases of community acquired multidrug resistance (MDR) acinetobacter associated with a higher mortality due to antibiotic resistance. Community acquired MDR acinetobacter pneumonia has not been reported in Malaysia. Here we report a case of a 19-year-old army officer who presented with fever and respiratory symptoms for 5 days. He had no known medical illness before and no history of hospitalization. Upon arrival, he was in septicaemic shock, requiring invasive ventilator support and renal replacement therapy in intensive care unit. Chest radiograph showed bilateral lung consolidations and bronchoscopy revealed haemoserous and greenish bronchiole secretion. He was treated with broad spectrum antibiotics and oseltamivir. Unfortunately he died on day 3 of hospital admission. His bronchial lavage culture came back positive for MDR Acinetobacter baumannii. This case illustrates that clinicians need to be aware that MDR Acinetobacter baumannii can cause severe community acquired pneumonia. We may need to consider this diagnosis in patients who do not respond to standard therapy.
    Matched MeSH terms: Drug Resistance, Microbial
  14. Imchen M, Kumavath R
    FEMS Microbiol Ecol, 2020 10 01;96(10).
    PMID: 32845305 DOI: 10.1093/femsec/fiaa173
    Saline tolerant mangrove forests partake in vital biogeochemical cycles. However, they are endangered due to deforestation as a result of urbanization. In this study, we have carried out a metagenomic snapshot of the mangrove ecosystem from five countries to assess its taxonomic, functional and antibiotic resistome structure. Chao1 alpha diversity varied significantly (P 90% relative abundance. Comparative analysis of mangrove with terrestrial and marine ecosystems revealed the strongest heterogeneity in the mangrove microbial community. We also observed that the mangrove community shared similarities to both the terrestrial and marine microbiome, forming a link between the two contrasting ecosystems. The antibiotic resistant genes (ARG) resistome was comprised of nineteen level 3 classifications dominated by multidrug resistance efflux pumps (46.7 ± 4.3%) and BlaR1 family regulatory sensor-transducer disambiguation (25.2 ± 4.8%). ARG relative abundance was significantly higher in Asian countries and in human intervention datasets at a global scale. Our study shows that the mangrove microbial community and its antibiotic resistance are affected by geography as well as human intervention and are unique to the mangrove ecosystem. Understanding changes in the mangrove microbiome and its ARG is significant for sustainable development and public health.
    Matched MeSH terms: Drug Resistance, Microbial/genetics
  15. CHAN KE, LUCAS JK
    Med J Malaysia, 1964 Dec;19:150-3.
    PMID: 14279239
    Matched MeSH terms: Drug Resistance, Microbial*
  16. Mahizan NA, Yang SK, Moo CL, Song AA, Chong CM, Chong CW, et al.
    Molecules, 2019 Jul 19;24(14).
    PMID: 31330955 DOI: 10.3390/molecules24142631
    The evolution of antimicrobial resistance (AMR) in pathogens has prompted extensive research to find alternative therapeutics. Plants rich with natural secondary metabolites are one of the go-to reservoirs for discovery of potential resources to alleviate this problem. Terpenes and their derivatives comprising of hydrocarbons, are usually found in essential oils (EOs). They have been reported to have potent antimicrobial activity, exhibiting bacteriostatic and bactericidal effects against tested pathogens. This brief review discusses the activity of terpenes and derivatives against pathogenic bacteria, describing the potential of the activity against AMR followed by the possible mechanism exerted by each terpene class. Finally, ongoing research and possible improvisation to the usage of terpenes and terpenoids in therapeutic practice against AMR are discussed.
    Matched MeSH terms: Drug Resistance, Microbial/drug effects*
  17. Yang SK, Yusoff K, Ajat M, Wee CY, Yap PS, Lim SH, et al.
    Front Microbiol, 2021;12:635016.
    PMID: 33815320 DOI: 10.3389/fmicb.2021.635016
    Antibiotic-adjuvant combinatory therapy serves as a viable treatment option in addressing antibiotic resistance in the clinical setting. This study was carried out to assess and characterize the adjuvant potential and mode of action of linalool against carbapenemase-producing Klebsiella pneumoniae (KPC-KP). Linalool exhibited bactericidal activity alone (11,250 μg/ml) and in combination with meropenem (5,625 μg/ml). Comparative proteomic analysis showed significant reduction in the number of cytoplasmic and membrane proteins, indicating membrane damage in linalool-treated KPC-KP cells. Upregulation of oxidative stress regulator proteins and downregulation of oxidative stress-sensitive proteins indicated oxidative stress. Zeta potential measurement and outer membrane permeability assay revealed that linalool increases the bacterial surface charge as well as the membrane permeability. Intracellular leakage of nucleic acid and proteins was detected upon linalool treatment. Scanning and transmission electron microscopies further revealed the breakage of bacterial membrane and loss of intracellular materials. Linalool induced oxidative stress by generating reactive oxygen species (ROS) which initiates lipid peroxidation, leading to damage of the bacterial membrane. This leads to intracellular leakage, eventually killing the KPC-KP cells. Our study demonstrated that linalool possesses great potential in future clinical applications as an adjuvant along with existing antibiotics attributed to their ability in disrupting the bacterial membrane by inducing oxidative stress. This facilitates the uptake of antibiotics into the bacterial cells, enhancing bacterial killing.
    Matched MeSH terms: Drug Resistance, Microbial
  18. Yang SK, Tan NP, Chong CW, Abushelaibi A, Lim SH, Lai KS
    Evol Bioinform Online, 2021;17:1176934320938391.
    PMID: 34017165 DOI: 10.1177/1176934320938391
    Antibiotic resistance is a major global health issue that has seen alarming rates of increase in all parts of the world over the past two decades. The surge in antibiotic resistance has resulted in longer hospital stays, higher medical costs, and elevated mortality rates. Constant attempts have been made to discover newer and more effective antimicrobials to reduce the severity of antibiotic resistance. Plant secondary metabolites, such as essential oils, have been the major focus due to their complexity and bioactive nature. However, the underlying mechanism of their antimicrobial effect remains largely unknown. Understanding the antimicrobial mode of action of essential oils is crucial in developing potential strategies for the use of essential oils in a clinical setting. Recent advances in genomics and proteomics have enhanced our understanding of the antimicrobial mode of action of essential oils. We might well be at the dawn of completing a mystery on how essential oils carry out their antimicrobial activities. Therefore, an overview of essential oils with regard to their antimicrobial activities and mode of action is discussed in this review. Recent approaches used in identifying the antimicrobial mode of action of essential oils, specifically from the perspective of genomics and proteomics, are also synthesized. Based on the information gathered from this review, we offer recommendations for future strategies and prospects for the study of essential oils and their function as antimicrobials.
    Matched MeSH terms: Drug Resistance, Microbial
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links