Displaying publications 81 - 100 of 242 in total

Abstract:
Sort:
  1. Al-Raad AA, Hanafiah MM
    J Environ Manage, 2021 Dec 15;300:113696.
    PMID: 34509809 DOI: 10.1016/j.jenvman.2021.113696
    Electrocoagulation (ECoag) technique has shown considerable potential as an effective method in separating different types of pollutants (including inorganic pollutants) from various sources of water at a lower cost, and that is environmentally friendly. The EC method's performance depends on several significant parameters, including current density, reactor geometry, pH, operation time, the gap between electrodes, and agitation speed. There are some challenges related to the ECoag technique, for example, energy consumption, and electrode passivation as well as its implementation at a larger scale. This review highlights the recent studies published about ECoag capacity to remove inorganic pollutants (including salts), the emerging reactors, and the effect of reactor geometry designs. In addition, this paper highlights the integration of the ECoag technique with other advanced technologies such as microwave and ultrasonic to achieve higher removal efficiencies. This paper also presents a critical discussion of the major and minor reactions of the electrocoagulation technique with several significant operational parameters, emerging designs of the ECoag cell, operating conditions, and techno-economic analysis. Our review concluded that optimizing the operating parameters significantly enhanced the efficiency of the ECoag technique and reduced overall operating costs. Electrodes geometry has been recommended to minimize the passivation phenomenon, promote the conductivity of the cell, and reduce energy consumption. In this review, several challenges and gaps were identified, and insights for future development were discussed. We recommend that future studies investigate the effect of other emerging parameters like perforated and ball electrodes on the ECoag technique.
    Matched MeSH terms: Environmental Pollutants*
  2. Hassan NS, Jalil AA, Khusnun NF, Bahari MB, Hussain I, Firmansyah ML, et al.
    J Environ Manage, 2023 Feb 01;327:116869.
    PMID: 36455446 DOI: 10.1016/j.jenvman.2022.116869
    Photocatalytic degradation is a valuable direction for eliminating organic pollutants in the environment because of its exceptional catalytic activity and low energy requirements. As one of the prospective photocatalysts, zirconium dioxide (ZrO2) is a promising candidate for photoactivity due to its favorable redox potential and higher chemical stability. ZrO2 has a high rate of electron-hole recombination and poor light-harvesting capabilities. Still, modification has demonstrated enhancements, especially extra-modification, and is therefore worthy of investigation. This present review provides a comprehensive overview of the extra-modifications of ZrO2 for enhanced photocatalytic performance, including coupling with other semiconductors, doping with metal, non-metal, and co-doping with metal and non-metal. The extra-modified ZrO2 showed superior performance in degrading the organic pollutant, particularly dyes and phenolic compounds. Interestingly, this review also briefly highlighted the probable mechanisms of the extra-modification of ZrO2 such as p-n heterojunction, type II heterojunction, and Z-scheme heterojunction. The latter heterojunction with excellent electron-hole space separation improved the photoactivity. Extensive research on ZrO2's photocatalytic potential is presented, including the removal of heavy metals, the redox of heavy metals and organic pollutants, and the evolution of hydrogen. Modified ZrO2's photocatalytic effectiveness depends on its band position, oxygen vacancy concentration, and metal defect sites. The opportunities and future problems of the extra-modified ZrO2 photocatalyst are also discussed. This review aims to share knowledge regarding extra-modified ZrO2 photocatalysts and inspire new environmental remediation applications.
    Matched MeSH terms: Environmental Pollutants*
  3. Mokhtar MB, Murad W
    J Environ Health, 2010 Apr;72(8):24-9.
    PMID: 20420051
    Environmental health problems in Malaysia are mostly attributed to atmospheric pollution, water pollution, climate change, ozone depletion, and solid waste management, as well as toxic, chemical, and hazardous waste management. The Ministry of Health, Malaysia, has been vigorously pursuing the environmental health agenda by collaborating with other agencies at district, state, national, and international levels. This article discusses the issues and management framework of environmental health in Malaysia. Some issues requiring further investigation in order to clearly understand the trade-off between atmospheric change and environmental health are suggested. These suggestions are developed with particular reference to appraisals concerned with the development and implementation of environmental policy, programs, and practice. Research on the relevant issues is discussed and a framework is built involving a comprehensive review of the literature and existing framework of Malaysian environmental health.
    Matched MeSH terms: Environmental Pollutants
  4. Halmi MI, Hussin WS, Aqlima A, Syed MA, Ruberto L, MacCormack WP, et al.
    J Environ Biol, 2013 Nov;34(6):1077-82.
    PMID: 24555340
    A bacterium capable of biodegrading surfactant sodium dodecyl sulphate (SDS) was isolated from Antarctic soil. The isolate was tentatively identified as Pseudomonas sp. strain DRY15 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Growth characteristic studies showed that the bacterium grew optimally at 10 degrees C, 7.25 pH, 1 g l(-1) SDS as a sole carbon source and 2 g l(-1) ammonium sulphate as nitrogen source. Growth was completely inhibited at 5 g l(-1) SDS. At a tolerable initial concentration of 2 g l(-1), approximately 90% of SDS was degraded after an incubation period of eight days. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibition with a correlation coefficient value of 0.97. The maximum growth rate was 0.372 hr(-1) while the saturation constant or half velocity constant (Ks) and inhibition constant (Ki), were 0.094% and 11.212 % SDS, respectively. Other detergent tested as carbon sources at 1 g l(-1) was Tergitol NP9, Tergitol 15S9, Witconol 2301 (methyl oleate), sodium dodecylbenzene sulfonate (SDBS), benzethonium chloride, and benzalkonium chloride showed Tergitol NP9, Tergitol 15S9, Witconol 2301 and the anionic SDBS supported growth with the highest growth exhibited by SDBS.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  5. Tham LG, Perumal N, Syed MA, Shamaan NA, Shukor MY
    J Environ Biol, 2009 Jan;30(1):135-8.
    PMID: 20112875
    An inhibitive assay of insecticides using Acetylcholinesterase (AChE) from the local fish Clarias batrachus is reported. AChE was assayed according to the modified method of Ellman. Screening of insecticide and heavy metals showed that carbofuran and carbaryl strongly inhibited C. batrachus AChE. The inhibition concentration (IC) IC50 values (and the 95% confidence interval) for both carbofuran and carbaryl inhibition on C. batrachus AChE at 6.66 (5.97-7.52) and 130.00 (119.3-142.5) microg l(-1), respectively was within the IC50 range of Electrophorus electricus at 6.20 (6.03-6.39) and 133.01 (122.40-145.50) microg l(-1), respectively and were much lower than bovine AChE at 20.94 (19.53-22.58) and 418.80 (390.60-451.60) microg l(-1), respectively. The results showed that C. batrachus have the potential to be used as a cheaper and more readily available source of AChE than other more commercially available sources.
    Matched MeSH terms: Environmental Pollutants/analysis*; Environmental Pollutants/chemistry
  6. Shukor MY, Gusmanizar N, Ramli J, Shamaan NA, MacCormack WP, Syed MA
    J Environ Biol, 2009 Jan;30(1):107-12.
    PMID: 20112871
    The presence of acrylamide in the environment poses a threat due to its well known neurotoxic, carcinogenic and teratogenic properties. Human activities in various geographical areas are the main anthropogenic source of acrylamide pollution. In this work, an acrylamide-degrading bacterium was isolated from Antarctic soil. The physiological characteristics and optimum growth conditions of the acrylamide-degrading bacteria were investigated. The isolate was tentatively identified as Pseudomonas sp. strain DRYJ7 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. The results showed that the best carbon sources for growth was glucose and sucrose with no significant difference in terms of cellular growth between the two carbon sources (p>0.05). This was followed by fructose and maltose with fructose giving significantly higher cellular growth compared to maltose (p<0.05). Lactose and citric acid did not support growth. The optimum acrylamide concentration as a nitrogen source for cellular growth was at 500 mgl(-1). At this concentration, bacterial growth showed a 2-day lag phase before degradation took place concomitant with an increase in cellular growth. The isolate exhibited optimum growth in between pH 7.5 and 8.5. The effect of incubation temperature on the growth of this isolate showed an optimum growth at 15 degrees C. The characteristics of this isolate suggest that it would be useful in the bioremediation of acrylamide.
    Matched MeSH terms: Environmental Pollutants/metabolism*; Environmental Pollutants/chemistry
  7. Syed MA, Sim HK, Khalid A, Shukor MY
    J Environ Biol, 2009 Jan;30(1):89-92.
    PMID: 20112868
    A stab-culture method was adapted to screen for azo dyes-decolorizing bacteria from soil and water samples. Decolorized azo dye in the lower portion of the solid media indicates the presence of anaerobic azo dyes-decolorizing bacteria, while aerobic decolorizing bacteria decolorizes the surface portion of the solid media. Of twenty soil samples tested, one soil sample shows positive results for the decolourisation of two azo dyes; Biebrich scarlet (BS) and Direct blue 71 (DB) under anaerobic conditions. A gram negative and oxidase negative bacterial isolate was found to be the principal azo dyes degrader The isolate was identified by using the Biolog identification system as Serratia marcescens.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  8. Rahman MF, Shukor MY, Suhaili Z, Mustafa S, Shamaan NA, Syed MA
    J Environ Biol, 2009 Jan;30(1):65-72.
    PMID: 20112865
    The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  9. Shukor MY, Bakar NA, Othman AR, Yunus I, Shamaan NA, Syed MA
    J Environ Biol, 2009 Jan;30(1):39-44.
    PMID: 20112861
    In this work the development of an inhibitive assay for copper using the molybdenum-reducing enzyme assay is presented. The enzyme is assayed using 12-molybdophosphoric acid at pH 5.0 as an electron acceptor substrate and NADH as the electron donor substrate. The enzyme converts the yellowish solution into a deep blue solution. The assay is based on the ability of copper to inhibit the molybdenum-reducing enzyme from the molybdate-reducing Serratia sp. Strain DRY5. Other heavy metals tested did not inhibit the enzyme at 10 mg l(-1). The best model with high regression coefficient to measure copper inhibition is one-phase binding. The calculated IC50 (concentration causing 50% inhibition) is 0.099 mg l(-1) and the regression coefficient is 0.98. The comparative LC50, EC50 and IC50 data for copper in different toxicity tests show that the IC50 value for copper in this study is lower than those for immobilized urease, bromelain, Rainbow trout, R. meliloti, Baker's Yeast dehydrogenase activity Spirillum volutans, P. fluorescens, Aeromonas hydrophilia and synthetic activated sludge assays. However the IC50 value is higher than those for Ulva pertusa and papain assays, but within the reported range for Daphnia magna and Microtox assays.
    Matched MeSH terms: Environmental Pollutants/analysis*
  10. Shukor MY, Gusmanizar N, Azmi NA, Hamid M, Ramli J, Shamaan NA, et al.
    J Environ Biol, 2009 Jan;30(1):57-64.
    PMID: 20112864
    Several local acrylamide-degrading bacteria have been isolated. One of the isolate that exhibited the highest growth on acrylamide as a nitrogen source was then further characterized. The isolate was tentatively identified as Bacillus cereus strain DRY135 based on carbon utilization profiles using Biolog GP plates and partial 16S rDNA molecular phylogeny. The isolate grew optimally in between the temperatures of 25 and 30 degrees C and within the pH range of 6.8 to 7.0. Glucose, fructose, lactose, maltose, mannitol, citric acid and sucrose supported growth with glucose being the best carbon source. Different concentrations of acrylamide ranging from 100 to 4000 mg l(-1) incorporated into the growth media shows that the highest growth was obtained at acrylamide concentrations of between 500 to 1500 mg l(-1). At 1000 mg l(-1) of acrylamide, degradation was 90% completed after ten days of incubation with concomitant cell growth. The metabolite acrylic acid was detected in the media during degradation. Other amides such as methacrylamide, nicotinamide, acetamide, propionamide and urea supported growth with the highest growth supported by acetamide, propionamide and urea. Strain DRY135, however was not able to assimilate 2-chloroacetamide. The characteristics of this isolate suggest that it would be useful in the bioremediation of acrylamide.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  11. Kamaruzzaman BY, Ong MC, Jalal KC, Shahbudin S, Nor OM
    J Environ Biol, 2009 Sep;30(5 Suppl):821-4.
    PMID: 20143712
    The accumulative partitioning of Pb and Cu in the Rhizophora apiculata was studied randomly in the Setiu mangrove forest, Terengganu. Samples of leaves, barks and roots were collected randomly from the selected studied species. Sediments between the roots of the sampled mangrove plants were also collected. The results from analysis for Rhizophora apiculata shows that the concentration of Pb and Cu were accumulated higher in root tissue compared to bark and leaf tissue but lower than surrounding sediment level. The average concentration of Cu for Rhizophora apiculata in leaf, bark, root and sediment was 2.73, 3.94, 5.21 and 9.42 mg I(-1), respectively. Meanwhile, the average concentration of Pb in leaf, bark, root and sediment was 1.43, 1.38, 2.05 and 11.66 mg l(-1), respectively. Results of concentration factors (CF) show that the overall the concentration of Pb and Cu were accumulated much higher in roots system of Rhizophora apiculata.
    Matched MeSH terms: Environmental Pollutants/analysis; Environmental Pollutants/metabolism*
  12. Batool S, Rashid SA, Moah MJ, Sarfraz M, Ashraf MA
    J Environ Biol, 2016 09;37(5 Spec No):1125-1134.
    PMID: 29989744
    The sources, distribution, transformation, toxicity and accumulation of persistent organic pollutants (POPs) in aquatic and terrestrial ecosystems have attracted global concern and attention over the last several decades. Although, POPs are toxic, degrade slowly and have a tendency to accumulate in the food chain, they are still widely used worldwide in many fields, such as industrial and agricultural activities. In addition, discharge of POPs into waterways may lead to serious health-related and environmental problems. This review provides an overview of the continental distributions of many types of POPs and the health risks associated with the exposure to POPs in daily life. This review also discusses the distribution of POPs in Malaysia, and the future work that will be conducted in the Klang River, one of the basins subjected to pollution due to development and urbanization.
    Matched MeSH terms: Environmental Pollutants/chemistry*
  13. Ghazali AR, Abdul Razak NE, Othman MS, Othman H, Ishak I, Lubis SH, et al.
    J Environ Public Health, 2012;2012:758349.
    PMID: 22536276 DOI: 10.1155/2012/758349
    Heavy metals, particularly cadmium, lead, and arsenic, constitute a significant potential threat to human health. This study was conducted to determine the levels of cadmium, lead, and arsenic in nail samples from farmers at Muda Agricultural Development Authority (MADA), Kedah, Malaysia, and evaluate factors that can contribute to their accumulations. A total of 116 farmers participated in this study. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze concentration of heavy metals in the nail samples and questionnaires were given to participants to get demographic, health status, and their agricultural activities data. In this paper, the level of heavy metals was within the normal range and varies according to demographic factors. We found that there were significant correlations between working period with level of lead and arsenic (r=0.315 and r=0.242, resp., P<0.01) and age with lead level (r=0.175, P<0.05). Our findings suggested that agricultural activities could contribute to the accumulation of heavy metals in farmers. Hence, the control of environmental levels of and human exposure to these metals to prevent adverse health effects is still an important public health issue.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  14. Sanagi MM, Loh SH, Wan Ibrahim WA, Hasan MN, Aboul Enein HY
    J Chromatogr Sci, 2013 Feb;51(2):112-6.
    PMID: 22776739 DOI: 10.1093/chromsci/bms113
    In this work, a two-phase hollow fiber liquid-phase microextraction (HF-LPME) method combined with gas chromatography-mass spectrometry (GC-MS) is developed to provide a rapid, selective and sensitive analytical method to determine polycyclic aromatic hydrocarbons (PAHs) in fresh milk. The standard addition method is used to construct calibration curves and to determine the residue levels for the target analytes, fluorene, phenanthrene, fluoranthene, pyrene and benzo[a]pyrene, thus eliminating sample pre-treatment steps such as pH adjustment. The HF-LPME method shows dynamic linearity from 5 to 500 µg/L for all target analytes with R(2) ranging from 0.9978 to 0.9999. Under optimized conditions, the established detection limits range from 0.07 to 1.4 µg/L based on a signal-to-noise ratio of 3:1. Average relative recoveries for the determination of PAHs studied at 100 µg/L spiking levels are in the range of 85 to 110%. The relative recoveries are slightly higher than those obtained by conventional solvent extraction, which requires saponification steps for fluorene and phenanthrene, which are more volatile and heat sensitive. The HF-LPME method proves to be simple and rapid, and requires minimal amounts of organic solvent that supports green analysis.
    Matched MeSH terms: Environmental Pollutants
  15. Ekeoma BC, Ekeoma LN, Yusuf M, Haruna A, Ikeogu CK, Merican ZMA, et al.
    J Biotechnol, 2023 Jun 10;369:14-34.
    PMID: 37172936 DOI: 10.1016/j.jbiotec.2023.05.003
    The issue of environmental pollution has been worsened by the emergence of new contaminants whose morphology is yet to be fully understood . Several techniques have been adopted to mitigate the pollution effects of these emerging contaminants, and bioremediation involving plants, microbes, or enzymes has stood out as a cost-effective and eco-friendly approach. Enzyme-mediated bioremediation is a very promising technology as it exhibits better pollutant degradation activity and generates less waste. However, this technology is subject to challenges like temperature, pH, and storage stability, in addition to recycling difficulty as it is arduous to isolate them from the reaction media. To address these challenges, the immobilization of enzymes has been successfully applied to ameliorate the activity, stability, and reusability of enzymes. Although this has significantly increased the uses of enzymes over a wide range of environmental conditions and facilitated the use of smaller bioreactors thereby saving cost, it still comes with additional costs for carriers and immobilization. Additionally, the existing immobilization methods have their individual limitations. This review provides state-of-the-art information to readers focusing on bioremediation using enzymes. Different parameters such as: the sustainability of biocatalysts, the ecotoxicological evaluation of transformation contaminants, and enzyme groups used were reviewed. The efficacy of free and immobilized enzymes, materials and methods for immobilization, bioreactors used, challenges to large-scale implementation, and future research needs were thoroughly discussed.
    Matched MeSH terms: Environmental Pollutants*
  16. Oyewusi HA, Huyop F, Wahab RA
    J Biomol Struct Dyn, 2020 Oct 23.
    PMID: 33094694 DOI: 10.1080/07391102.2020.1835727
    The high dependency and surplus use of agrochemical products have liberated enormous quantities of toxic halogenated pollutants into the environment and threaten the well-being of humankind. Herein, this study performed molecular docking, molecular dynamic (MD) simulations, molecular mechanics-Poisson Boltzmann Surface Area (MM-PBSA) calculations on the DehH2 from Bacillus thuringiensis, to identify the order of which the enzyme degrades different substrates, haloacids, haloacetate and chlorpyrifos. The study discovered that the DehH2 favored the degradation of haloacids and haloacetates (-3.3 - 4.6 kcal/mol) and formed three hydrogen bonds with Asp125, Arg201 and Lys202. Despite the inconclusive molecular docking result, chlorpyrifos was consistently shown to be the least favored substrate of the DehH2 in MD simulations and MM-PBSA calculations. Results of MD simulations revealed the DehH2-haloacid- (RMSD 0.15 - 0.25 nm) and DehH2-haloacetates (RMSF 0.05 - 0.25 nm) were more stable, with the DehH2-L-2CP complex being the most stable while the least was the DehH2-chlorpyrifos (RMSD 0.295 nm; RMSF 0.05 - 0.59 nm). The Molecular Mechanics Poisson-Boltzmann Surface Area calculations showed the DehH2-L-2CP complex (-24.27 kcal/mol) having the lowest binding energy followed by DehH2-MCA (-22.78 kcal/mol), DehH2-D-2CP (-21.82 kcal/mol), DehH2-3CP (-21.11 kcal/mol), DehH2-2,2-DCP (-18.34 kcal/mol), DehH2-2,3-DCP (-8.34 kcal/mol), DehH2-TCA (-7.62 kcal/mol), while chlorpyrifos was unable to spontaneously bind to DehH2 (+127.16 kcal/mol). In a nutshell, the findings of this study offer valuable insights into the rational tailoring of the DehH2 for expanding its substrate specificity and catalytic activity in the near future.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Environmental Pollutants
  17. Oyewusi HA, Huyop F, Wahab RA, Hamid AAA
    J Biomol Struct Dyn, 2022;40(19):9332-9346.
    PMID: 34014147 DOI: 10.1080/07391102.2021.1927846
    Increased scientific interest has led to the rise in biotechnological uses of halophilic and halotolerant microbes for hypersaline wastewater bioremediation. Hence, this study performed molecular docking, molecular dynamic (MD) simulations, and validation by Molecular Mechanic Poisson-Boltzmann Surface Area (MM-PBSA) calculations on the DehH2 from Bacillus thuringiensis H2. We aimed to identify the interactions of DehH2 with substrates haloacids, haloacetates, and chlorpyrifos under extreme salinity (35% NaCl). MD simulations revealed that DehH2 preferentially degraded haloacids and haloacetates (-6.3 to -4.7 kcal/mol) by forming three or four hydrogen bonds to the catalytic triad, Asp125, Arg201, and Lys202. Conversely, chlorpyrifos was the least preferred substrate in both MD simulations and MM-PBSA calculations. MD simulation results ranked the DehH2-L-2CP complex (RMSD □0.125-0.23 nm) as the most stable while the least was the DehH2-chlorpyrifos complex (RMSD 0.32 nm; RMSF 0.0 - 0.29). The order of stability was as follows: DehH2-L-2CP > DehH2-MCA > DehH2-D-2CP > DehH2-3CP > DehH2-2,2-DCP > DehH2-2,3-DCP > DehH2-TCA > DehH2-chlorpyrifos. The MM-PBSA calculations further affirmed the DehH2-L-2CP complex's highest stability with the lowest binding energy of -45.14 kcal/mol, followed closely by DehH2-MCA (-41.21 kcal/mol), DehH2-D-2CP (-31.59 kcal/mol), DehH2-3CP (-30.75 kcal/mol), DehH2-2,2- DCP (-29.72 kcal/mol), DehH2-2,3-DCP (-22.20 kcal/mol) and DehH2-TCA (-18.46 kcal/mol). The positive binding energy of the DehH2-chlorpyrifos complex (+180.57 kcal/mol) proved the enzyme's non-preference for the substrate. The results ultimately illustrated the unique specificity of the DehH2 to degrade the above-said pollutants under a hypersaline condition.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Environmental Pollutants*
  18. Abbas SZ, Rafatullah M, Ismail N, Lalung J
    J Basic Microbiol, 2014 Dec;54(12):1279-87.
    PMID: 24852724 DOI: 10.1002/jobm.201400157
    This study focused on the isolation and characterization of high cadmium-resistant bacterial strains, possible exploitation of its cadmium-accumulation and cadmium-induced proteins. Cadmium-resistant bacterial strains designated as RZ1 and RZ2 were isolated from industrial wastewater of Penang, Malaysia. These isolates were identified as Enterobacter mori and Enterobacter sp. WS12 on the basis of phenotypic, biochemical and 16S rDNA sequence based molecular phylogenetic characteristics. Both isolates were Gram negative, cocci, and growing well in Lauria-Bertani broth medium at 35 °C temperature and pH 7.0. Results also indicated that Enterobacter mori and Enterobacter sp. WS12are capable to remove 87.75 and 85.11% of the cadmium from 100 µg ml(-1) concentration, respectively. This study indicates that these strains can be useful as an inexpensive and efficient bioremediation technology to remove and recover the cadmium from wastewater.
    Matched MeSH terms: Environmental Pollutants/metabolism*; Environmental Pollutants/chemistry
  19. Emparan Q, Harun R, Sing Jye Y
    Int J Phytoremediation, 2021;23(5):454-461.
    PMID: 32976718 DOI: 10.1080/15226514.2020.1825327
    Palm oil mill effluent (POME) has high chemical oxygen demand (COD), thus requires effective treatments to environmentally benign levels before discharge. In this study, immobilized microalgae cells are used for removing pollutants in treated palm oil mill effluent (TPOME). Different ratios of microalgae beads to TPOME concentration were examined at 1:2.5, 1:5, and 1:10. The biomass concentration and COD removal were measured through a standard method. The color of the cultivated microalgae beads changed from light green to darker green after the POME treatment for 9 days, hence demonstrating that microalgae cells were successfully grown inside the beads with pH up to 9.84. The immobilized cells cultivated in the POME at 1:10 achieved a higher biomass concentration of 1.268 g/L and a COD removal percentage of 72% than other treatment ratios. The increment of the ratio of microalgae cells beads to POME concentration did not cause any improvement in COD removal efficiency. This was due to the inhibitory effect of self-shading resulting in the slow growth rate of microalgae cells which responsible for low COD removal. Therefore, this system could be a viable technology for simultaneous biomass production and POME treatment. This will contribute to research efforts toward the development of new and improved technologies in treating POME.
    Matched MeSH terms: Environmental Pollutants*
  20. Dadrasnia A, Ismail S
    Int J Environ Res Public Health, 2015 Aug;12(8):9848-63.
    PMID: 26295402 DOI: 10.3390/ijerph120809848
    This study investigated the capability of a biosurfactant produced by a novel strain of Bacillus salmalaya to enhance the biodegradation rates and bioavailability of organic contaminants. The biosurfactant produced by cultured strain 139SI showed high physicochemical properties and surface activity in the selected medium. The biosurfactant exhibited a high emulsification index and a positive result in the drop collapse test, with the results demonstrating the wetting activity of the biosurfactant and its potential to produce surface-active molecules. Strain 139SI can significantly reduce the surface tension (ST) from 70.5 to 27 mN/m, with a critical micelle concentration of 0.4%. Moreover, lubricating oil at 2% (v/v) was degraded on Day 20 (71.5). Furthermore, the biosurfactant demonstrated high stability at different ranges of salinity, pH, and temperature. Overall, the results indicated the potential use of B. salmalaya 139SI in environmental remediation processes.
    Matched MeSH terms: Environmental Pollutants/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links