Displaying publications 81 - 100 of 138 in total

Abstract:
Sort:
  1. Thong KL, Tang SS, Tan WS, Devi S
    Microbiol. Immunol., 2007;51(11):1045-52.
    PMID: 18037781
    Polyclonal sera from typhoid patients and a monoclonal antibody, mAb ATVi, which recognizes the capsular polysaccharide Vi antigen (ViCPS), were used to select for peptides that mimic the ViCPS by using a phage-displayed random 12-mer peptide library. Two major common mimotopes selected from the library carried the amino acid sequences TSHHDSHGLHRV and ENHSPVNIAHKL. Enzyme-linked immunosorbent assays (ELISAs) showed that these peptides carry mimotopes to ViCPS. Phage clones that contained the 12-mer peptides were also tested against pooled/individual typhoid patients' sera and found to have 3 to 5 times higher binding compared to normal sera. By using Phage-ELISA assays, the derived synthetic peptides, TSHHDSHGLHRV and ENHSPVNIAHKL, were tested against a monoclonal antibody mAb ATVi and over 2-fold difference in binding was found between these peptides and a control unrelated peptide, CTLTTKLYC. Inhibition of the mAb's binding to ViCPS indicated that the synthetic peptides successfully competed with the capsular polysaccharide for antibody binding.
    Matched MeSH terms: Epitopes/immunology
  2. Tan GH, Yusoff K, Seow HF, Tan WS
    J Med Virol, 2005 Dec;77(4):475-80.
    PMID: 16254965
    The immunodominant region of hepatitis B virus (HBV) located in the viral small surface antigen (S-HBsAg) elicits virus-neutralizing and protective antibodies. In order to develop an easy and inexpensive method to produce this region without the need for extensive purification, amino acid residues 111-156 of S-HBsAg were fused to the C-terminal end of the 10B capsid protein of T7 phage. Western blotting and ELISA confirmed the expression of the recombinant protein on the surface of the phage particles. The recombinant phage exhibited the antigenic and immunogenic characteristics of HBsAg, illustrating its potential as an immunological reagent and vaccine.
    Matched MeSH terms: Epitopes, B-Lymphocyte/immunology
  3. Chun-Lai T, Murad S, Erlandsson MC, Hussein H, Sulaiman W, Dhaliwal JS, et al.
    Medicine (Baltimore), 2015 Jan;94(4):e468.
    PMID: 25634192 DOI: 10.1097/MD.0000000000000468
    Survivin is a biomarker of cancer known for its anti-apoptotic and cell-cycle regulating properties. In the context of non-cancer pathology, high levels of survivin may be measured in blood and synovial fluid of patients with rheumatoid arthritis (RA) and associate with early joint damage and poor therapy response. The aim of the study was to investigate the value of survivin measurements in blood for diagnosis of RA in the frame of the Malaysian epidemiological investigation of rheumatoid arthritis (MyEIRA) study. The study enrolled RA patients from eight rheumatology centres in Peninsular Malaysia. The healthy controls matched by age, gender and ethnicity were recruited on the community basis from the residential area of the patients. Levels of survivin were measured in blood of RA patients (n = 1233) and controls (n = 1566) by an enzyme-linked immuno-sorbent assay (ELISA). The risk for RA was calculated as odds ratio (OR) and 95% confidence intervals in the individuals with high levels of survivin. The risk was calculated in relation to antibodies against cyclic citrullinated peptides (ACPA), detected by ELISA and HLA-DRB1 shared epitope (SE) alleles, identified by the polymerase chain reaction using sequence specific oligonucleotide method. High levels of survivin were detected in 625 of 1233 (50.7%) RA cases and in 85 of 1566 (5.4%) controls, indicating its high specificity for RA. Survivin was association with an increase in RA risk in the patients having neither SE-alleles nor ACPA (OR = 5.40, 95% CI 3.81-7.66). For the patients combining survivin, SE, and ACPA, the estimated risk for RA was 16-folds higher compared to the survivin negative patients with SE and ACPA(OR = 16.21, 95% CI 5.70-46.18). To conclude, detection of survivin in blood provides a simple test to improve diagnostic and to increase predictability for RA.
    Matched MeSH terms: Epitopes/genetics
  4. Rahumatullah A, Ahmad A, Noordin R, Lai JY, Baharudeen Z, Lim TS
    Exp Parasitol, 2020 Dec;219:108029.
    PMID: 33096112 DOI: 10.1016/j.exppara.2020.108029
    Echinococcus granulosus is a worldwide zoonotic infection that causes human cystic echinococcosis (CE) or hydatid disease. The present study describes the isolation and production of a monoclonal antibody against recombinant AgB protein using the developed Human AntibodY Disease ENhanced (HAYDEN)-Filariasis library. The DNA sequences of the isolated clones were analyzed, followed by gene analysis and binding assays. Clone E1 showed a full-length sequence and represents the IgHV5-LV3 antibody gene family. The antibody protein yield was satisfactory, and it reacted specifically against rAgB. The novel E1 protein is potentially useful for the development of an antigen detection assay for CE. The ability of the Brugia malayi immune antibody library to isolate antibodies against Echinococcus granulosus antigens highlights the broad coverage of immune antibody libraries.
    Matched MeSH terms: Epitopes/immunology
  5. Li C, Liu J, Shaozhou W, Bai X, Zhang Q, Hua R, et al.
    Viruses, 2016 Nov 10;8(11).
    PMID: 27834908
    Duck Tembusu virus (DTMUV) causes substantial egg drop disease. DTMUV was first identified in China and rapidly spread to Malaysia and Thailand. The antigenicity of the DTMUV E protein has not yet been characterized. Here, we investigated antigenic sites on the E protein using the non-neutralizing monoclonal antibodies (mAbs) 1F3 and 1A5. Two minimal epitopes were mapped to (221)LD/NLPW(225) and (87)YAEYI(91) by using phage display and mutagenesis. DTMUV-positive duck sera reacted with the epitopes, thus indicating the importance of the minimal amino acids of the epitopes for antibody-epitope binding. The performance of the dot blotting assay with the corresponding positive sera indicated that YAEYI was DTMUV type-specific, whereas (221)LD/NLPW(225) was a cross-reactive epitope for West Nile virus (WNV), dengue virus (DENV), and Japanese encephalitis virus (JEV) and corresponded to conserved and variable amino acid sequences among these strains. The structure model of the E protein revealed that YAEYI and LD/NLPW were located on domain (D) II, which confirmed that DII might contain a type-specific non-neutralizing epitope. The YAEYI epitope-based antigen demonstrated its diagnostic potential by reacting with high specificity to serum samples obtained from DTMUV-infected ducks. Based on these observations, a YAEYI-based serological test could be used for DTMUV surveillance and could differentiate DTMUV infections from JEV or WNV infections. These findings provide new insights into the organization of epitopes on flavivirus E proteins that might be valuable for the development of epitope-based serological diagnostic tests for DTMUV.
    Matched MeSH terms: Epitopes/immunology*
  6. Reginald K, Chew FT
    Sci Rep, 2018 02 21;8(1):3391.
    PMID: 29467434 DOI: 10.1038/s41598-018-21792-1
    Epitope mapping of Der p 2, a clinically important dust-mite allergen is the first step in designing immunotherapy hypoallergen vaccine candidates. Twenty-one single alanine mutants of Der p 2 were generated and their secondary structure was analysed using circular dichroism spectra. Only one mutant, K96A resulted in a misfolded protein. All mutants were tested for serum IgE reactivity using serum from dust mite allergic individuals by immuno dot-blots. Mutations to five residues, N10, E25, K77, K96 and E102 consistently showed reduced IgE reactions compared to wild-type Der p 2, and therefore these residues constitute the major IgE epitopes of Der p 2. Two mutants with consistent low IgE binding, K96A and E102A, were subsequently evaluated as hypoallergen candidates. IgG antibodies raised in mice against both mutants could inhibit human IgE-binding to WT Der p 2. Both mutants had intact T-cell epitopes as they were able to stimulate peripheral blood mononuclear cell proliferation similar to WT Der p 2. However, a switch in Th1:Th2 cytokine profile was not observed. In summary, we have identified the major conformational epitopes of Der p 2, and evaluated two Der p 2 hypoallergen vaccine candidates for immunotherapy.
    Matched MeSH terms: Epitopes/immunology*
  7. Aw-Yong KL, Sam IC, Koh MT, Chan YF
    PLoS One, 2016;11(11):e0165659.
    PMID: 27806091 DOI: 10.1371/journal.pone.0165659
    Enterovirus A71 (EV-A71) is one of the main causative agents of hand, foot and mouth disease (HFMD). Unlike other enteroviruses that cause HFMD, EV-A71 is more frequently associated with severe neurological complications and fatality. To date, no effective licensed antivirals are available to combat EV-A71 infection. Little is known about the immunogenicity of viral non-structural proteins in humans. Previous studies have mainly focused on characterization of epitopes of EV-A71 structural proteins by using immunized animal antisera. In this study, we have characterized human antibody responses against the structural and non-structural proteins of EV-A71. Each viral protein was cloned and expressed in either bacterial or mammalian systems, and tested with antisera by western blot. Results revealed that all structural proteins (VP1-4), and non-structural proteins 2A, 3C and 3D were targets of EV-A71 IgM, whereas EV-A71 IgG recognized all the structural and non-structural proteins. Sixty three synthetic peptides predicted to be immunogenic in silico were synthesized and used for the characterization of EV-A71 linear B-cell epitopes. In total, we identified 22 IgM and four IgG dominant epitopes. Synthetic peptide PEP27, corresponding to residues 142-156 of VP1, was identified as the EV-A71 IgM-specific immunodominant epitope. PEP23, mapped to VP1 41-55, was recognized as the EV-A71 IgG cross-reactive immunodominant epitope. The structural protein VP1 is the major immunodominant site targeted by anti-EV-A71 IgM and IgG antibodies, but epitopes against non-structural proteins were also detected. These data provide new understanding of the immune response to EV-A71 infection, which benefits the development of diagnostic tools, potential therapeutics and subunit vaccine candidates.
    Matched MeSH terms: Immunodominant Epitopes/immunology*
  8. Tommy YB, Lim TS, Noordin R, Saadatnia G, Choong YS
    BMC Struct Biol, 2012 Nov 27;12:30.
    PMID: 23181504 DOI: 10.1186/1472-6807-12-30
    BACKGROUND: Toxoplasma gondii is an intracellular coccidian parasite that causes toxoplasmosis. It was estimated that more than one third of the world population is infected by T. gondii, and the disease is critical in fetuses and immunosuppressed patients. Thus, early detection is crucial for disease diagnosis and therapy. However, the current available toxoplasmosis diagnostic tests vary in their accuracy and the better ones are costly.

    RESULTS: An earlier published work discovered a highly antigenic 12 kDa excretory-secretory (ES) protein of T. gondii which may potentially be used for the development of an antigen detection test for toxoplasmosis. However, the three-dimensional structure of the protein is unknown. Since epitope identification is important prior to designing of a specific antibody for an antigen-detection based diagnostic test, the structural elucidation of this protein is essential. In this study, we constructed a three dimensional model of the 12 kDa ES protein. The built structure possesses a thioredoxin backbone which consists of four α-helices flanking five β-strands at the center. Three potential epitopes (6-8 residues) which can be combined into one "single" epitope have been identified from the built structure as the most potential antibody binding site.

    CONCLUSION: Together with specific antibody design, this work could contribute towards future development of an antigen detection test for toxoplasmosis.

    Matched MeSH terms: Epitopes/immunology*
  9. Chua CL, Chan YF, Sam IC
    J Virol Methods, 2014 Jan;195:126-33.
    PMID: 24134938 DOI: 10.1016/j.jviromet.2013.10.015
    Chikungunya virus (CHIKV) is a mosquito-borne arbovirus which has recently re-emerged globally and poses a major threat to public health. Infection leads to severe arthralgia, and disease management remains supportive in the absence of vaccines and anti-viral interventions. The high specificities of monoclonal antibodies (mAbs) have been exploited in immunodiagnostics and immunotherapy in recent decades. In this study, eight different clones of mAbs were generated and characterised. These mAbs targeted the linear epitopes on the CHIKV E2 envelope glycoprotein, which is the major target antigen during infection. All the mAbs showed binding activity against the purified CHIKV virion or recombinant E2 when analysed by immunofluorescence, ELISA and Western blot. The epitopes of each mAb were mapped by overlapping synthetic peptide-based ELISA. The epitopes are distributed at different functional domains of E2 glycoprotein, namely at domain A, junctions of β-ribbons with domains A and B, and domain C. Alignment of mAb epitope sequences revealed that some are well-conserved within different genotypes of CHIKV, while some are identical to and likely to cross-react with the closely-related alphavirus O'nyong-nyong virus. These mAbs with their mapped epitopes are useful for the development of diagnostic or research tools, including immunofluorescence, ELISA and Western blot.
    Matched MeSH terms: Epitopes, B-Lymphocyte/immunology*
  10. Meldal BH, Bon AH, Prati D, Ayob Y, Allain JP
    J Viral Hepat, 2011 Feb;18(2):91-101.
    PMID: 20196797 DOI: 10.1111/j.1365-2893.2010.01282.x
    Malaysia is a medium endemic country for hepatitis B virus (HBV) infection but little is known about HBV strains circulating in Malaysian blood donors. Viral load, HBsAg concentrations and nested PCR products from 84 HBV surface antigen (HBsAg) positive samples were analysed in detail. Median viral load was 3050 IU/mL and median HBsAg 1150 IU/mL. Fifty-six full genome, 20 pre-S/S, 1 S gene and six basic core promoter/precore-only sequences were obtained. Genotypes B and C were present at a ratio of 2:1, and two genotype D samples were obtained, both from donors of Indian background. Phylogenetically, genotype B was more diverse with subgenotypes B2-5, B7 and B8 present, while most genotype C strains were from subgenotype C1. Genotypes B and C were equally frequent in ethnic Malays, but 80% of strains from Chinese were genotype B. HBsAg concentrations were higher in genotype C than in genotype B, in Chinese than Malays and in donors under the age of 30. HBV vaccine escape substitutions (P120S/T, I126N and G145G) were present in six strains. In the large surface protein, immuno-inactive regions were more mutated than CD8 epitopes and the major hydrophilic region. Strains of genotype B or from ethnic Malays had higher genetic diversity than strains of genotype C or from Chinese donors. Hence HBV strains circulating in Malaysia are phylogenetically diverse reflecting the ethnic mix of its population. Ethnic Malays carry lower HBsAg levels and higher genetic diversity of the surface antigen, possibly resulting in more effective immune control of the infection.
    Matched MeSH terms: Epitopes/genetics; Epitopes/immunology
  11. Ooi JD, Jiang JH, Eggenhuizen PJ, Chua LL, van Timmeren M, Loh KL, et al.
    Nat Commun, 2019 07 29;10(1):3392.
    PMID: 31358739 DOI: 10.1038/s41467-019-11255-0
    Autoreactivity to myeloperoxidase (MPO) causes anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), with rapidly progressive glomerulonephritis. Here, we show that a Staphylococcus aureus peptide, homologous to an immunodominant MPO T-cell epitope (MPO409-428), can induce anti-MPO autoimmunity. The peptide (6PGD391-410) is part of a plasmid-encoded 6-phosphogluconate dehydrogenase found in some S. aureus strains. It induces anti-MPO T-cell autoimmunity and MPO-ANCA in mice, whereas related sequences do not. Mice immunized with 6PGD391-410, or with S. aureus containing a plasmid expressing 6PGD391-410, develop glomerulonephritis when MPO is deposited in glomeruli. The peptide induces anti-MPO autoreactivity in the context of three MHC class II allomorphs. Furthermore, we show that 6PGD391-410 is immunogenic in humans, as healthy human and AAV patient sera contain anti-6PGD and anti-6PGD391-410 antibodies. Therefore, our results support the idea that bacterial plasmids might have a function in autoimmune disease.
    Matched MeSH terms: Epitopes, T-Lymphocyte/genetics; Epitopes, T-Lymphocyte/immunology
  12. Masir N, Campbell LJ, Jones M, Mason DY
    Pathology, 2010 Apr;42(3):212-6.
    PMID: 20350212 DOI: 10.3109/00313021003631296
    The t(14;18)(q32;q21) chromosomal translocation induces BCL2 protein expression in most follicular lymphomas. However, a small number of cases lack BCL2 expression despite carrying the t(14;18)(q32;q21) translocation. This study aims to explore the mechanism accounting for the lack of BCL2 protein expression when the t(14;18) translocation is present.
    Matched MeSH terms: Epitopes, B-Lymphocyte/genetics*; Epitopes, B-Lymphocyte/immunology
  13. Mahlangu JN, Weldingh KN, Lentz SR, Kaicker S, Karim FA, Matsushita T, et al.
    J Thromb Haemost, 2015 Nov;13(11):1989-98.
    PMID: 26362483 DOI: 10.1111/jth.13141
    BACKGROUND: Vatreptacog alfa, a recombinant human factor VIIa (rFVIIa) analog developed to improve the treatment of bleeds in hemophilia patients with inhibitors, differs from native FVIIa by three amino acid substitutions. In a randomized, double-blind, crossover, confirmatory phase III trial (adept(™) 2), 8/72 (11%) hemophilia A or B patients with inhibitors treated for acute bleeds developed anti-drug antibodies (ADAs) to vatreptacog alfa.

    OBJECTIVES: To characterize the formation of anti-vatreptacog alfa ADAs in hemophilia patients with inhibitors.

    METHODS/PATIENTS: This was a post hoc analysis of adept(™) 2. Immunoglobulin isotype determination, specificity analysis of rFVIIa cross-reactive antibodies, epitope mapping of rFVIIa single mutant analogs and pharmacokinetic (PK) profiling were performed to characterize the ADAs.

    RESULTS: Immunoglobulin isotyping indicated that the ADAs were of the immunoglobulin G subtype. In epitope mapping, none of the rFVIIa single mutant analogs (V158D, E296V or M298Q) contained the complete antibody epitope, confirming that the antibodies were specific for vatreptacog alfa. In two patients, for whom PK profiling was performed both before and after the development of ADAs, vatreptacog alfa showed a prolonged elimination phase following ADA development. During the follow-up evaluation, the rFVIIa cross-reactivity disappeared after the last vatreptacog alfa exposure, despite continued exposure to rFVIIa as part of standard care.

    CONCLUSIONS: Results from the vatreptacog alfa phase III trial demonstrate that the specific changes made, albeit relatively small, to the FVIIa molecule alter its clinical immunogenicity.

    Matched MeSH terms: Epitopes/immunology; Epitopes/chemistry
  14. Yong CY, Yeap SK, Goh ZH, Ho KL, Omar AR, Tan WS
    Appl Environ Microbiol, 2015 Feb;81(3):882-9.
    PMID: 25416760 DOI: 10.1128/AEM.03695-14
    Hepatitis B virus (HBV) is a deadly pathogen that has killed countless people worldwide. Saccharomyces cerevisiae-derived HBV vaccines based upon hepatitis B surface antigen (HBsAg) is highly effective. However, the emergence of vaccine escape mutants due to mutations on the HBsAg and polymerase genes has produced a continuous need for the development of new HBV vaccines. In this study, the "a" determinant within HBsAg was displayed on the recombinant capsid protein of Macrobrachium rosenbergii nodavirus (MrNV), which can be purified easily in a single step through immobilized metal affinity chromatography (IMAC). The purified protein self-assembled into virus-like particles (VLPs) when observed under a transmission electron microscope (TEM). Immunization of BALB/c mice with this chimeric protein induced specific antibodies against the "a" determinant. In addition, it induced significantly more natural killer and cytotoxic T cells, as well as an increase in interferon gamma (IFN-γ) secretion, which are vital for virus clearance. Collectively, these findings demonstrated that the MrNV capsid protein is a potential carrier for the HBV "a" determinant, which can be further extended to display other foreign epitopes. This paper is the first to report the application of MrNV VLPs as a novel platform to display foreign epitopes.
    Matched MeSH terms: Epitopes/genetics; Epitopes/immunology*
  15. Kosuwin R, Putaporntip C, Tachibana H, Jongwutiwes S
    PLoS One, 2014;9(10):e110463.
    PMID: 25333779 DOI: 10.1371/journal.pone.0110463
    Thrombospondin-related adhesive protein (TRAP) of malaria parasites is essential for sporozoite motility and invasions into mosquito's salivary gland and vertebrate's hepatocyte; thereby, it is a promising target for pre-erythrocytic vaccine. TRAP of Plasmodium vivax (PvTRAP) exhibits sequence heterogeneity among isolates, an issue relevant to vaccine development. To gain insights into variation in the complete PvTRAP sequences of parasites in Thailand, 114 vivax malaria patients were recruited in 2006-2007 from 4 major endemic provinces bordering Myanmar (Tak in the northwest, n = 30 and Prachuap Khirikhan in the southwest, n = 25), Cambodia (Chanthaburi in the east, n = 29) and Malaysia (Yala and Narathiwat in the south, n = 30). In total, 26 amino acid substitutions were detected and 9 of which were novel, resulting in 44 distinct haplotypes. Haplotype and nucleotide diversities were lowest in southern P. vivax population while higher levels of diversities were observed in other populations. Evidences of positive selection on PvTRAP were demonstrated in domains II and IV and purifying selection in domains I, II and VI. Genetic differentiation was significant between each population except that between populations bordering Myanmar where transmigration was common. Regression analysis of pairwise linearized Fst and geographic distance suggests that P. vivax populations in Thailand have been isolated by distance. Sequence diversity of PvTRAP seems to be temporally stable over one decade in Tak province based on comparison of isolates collected in 1996 (n = 36) and 2006-2007. Besides natural selection, evidences of intragenic recombination have been supported in this study that could maintain and further generate diversity in this locus. It remains to be investigated whether amino acid substitutions in PvTRAP could influence host immune responses although several predicted variant T cell epitopes drastically altered the epitope scores. Knowledge on geographic diversity in PvTRAP constitutes an important basis for vaccine design provided that vaccination largely confers variant-specific immunity.
    Matched MeSH terms: Epitopes, T-Lymphocyte/chemistry
  16. Ch'ng WC, Saw WT, Yusoff K, Shafee N
    Acta Virol., 2011;55(3):227-33.
    PMID: 21978156
    Enterovirus 71 (EV71) is one of the viruses that cause hand, foot and mouth disease. Its viral capsid protein 1 (VP1), which contains many neutralization epitopes, is an ideal target for vaccine development. Recently, we reported the induction of a strong immune response in rabbits to a truncated VP1 fragment (Nt-VP1t) displayed on a recombinant Newcastle disease virus (NDV) capsid protein. Protective efficacy of this vaccine, however, can only be tested in mice, since all EV71 animal models thus far were developed in mouse systems. In this study, we evaluated the type of immune responses against the protein developed by adult BALB/c mice. Nt-VP1t protein induced high levels of VP1 IgG antibody production in mice. Purified VP1 antigen stimulated activation, proliferation and differentiation of splenocytes harvested from these mice. They also produced significant levels of IFN-γ, a Th1-related cytokine. Taken together, Nt-VP1t protein is a potent immunogen in adult mice and our findings provide the data needed for testing of its protective efficacy in mouse models of EV71 infections.
    Matched MeSH terms: Epitopes/immunology
  17. Moeini H, Omar AR, Rahim RA, Yusoff K
    Comp Immunol Microbiol Infect Dis, 2011 May;34(3):227-36.
    PMID: 21146874 DOI: 10.1016/j.cimid.2010.11.006
    In the present study, we describe the development of a DNA vaccine against chicken anemia virus. The VP1 and VP2 genes of CAV were amplified and cloned into pBudCE4.1 to construct two DNA vaccines, namely, pBudVP1 and pBudVP2-VP1. In vitro and in vivo studies showed that co-expression of VP1 with VP2 are required to induce significant levels of antibody against CAV. Subsequently, the vaccines were tested in 2-week-old SPF chickens. Chickens immunized with the DNA-plasmid pBudVP2-VP1 showed positive neutralizing antibody titer against CAV. Furthermore, VP1-specific proliferation induction of splenocytes and also high serum levels of Th1 cytokines, IL-2 and IFN-γ were detected in the pBudVP2-VP1-vaccinated chickens. These results suggest that the recombinant DNA plasmid co-expressing VP1 and VP2 can be used as a potential DNA vaccine against CAV.
    Matched MeSH terms: Epitopes/immunology
  18. Fong MY, Ahmed MA, Wong SS, Lau YL, Sitam F
    PLoS One, 2015;10(9):e0137734.
    PMID: 26379157 DOI: 10.1371/journal.pone.0137734
    Plasmodium knowlesi is a simian malaria parasite that has been identified to cause malaria in humans. To date, several thousand cases of human knowlesi malaria have been reported around Southeast Asia. Thus far, there is no detailed study on genetic diversity and natural selection of P. knowlesi circumsporozoite protein (CSP), a prominent surface antigen on the sporozoite of the parasite. In the present study, the genetic diversity and natural selection acting on the nonrepeat regions of the gene encoding P. knowlesi CSP were investigated, focusing on the T-cell epitope regions at the C-terminal of the protein.
    Matched MeSH terms: Epitopes, T-Lymphocyte/genetics*
  19. Adams SC, Broom AK, Sammels LM, Hartnett AC, Howard MJ, Coelen RJ, et al.
    Virology, 1995 Jan 10;206(1):49-56.
    PMID: 7530394
    Previous studies have found Kunjin (KUN) virus isolates from within Australia to be genetically homogenous and that the envelope protein of the type strain (MRM61C) was unglycosylated and lacked a potential glycosylation site. We investigated the extent of antigenic variation between KUN virus isolates from Australia and Sarawak using an immunoperoxidase assay and a panel of six monoclonal antibodies. The glycosylation status of the E protein of each virus was also determined by N glycosidase F (PNGase F) digestion and limited sequence analysis. The results showed that KUN viruses isolated within Australia oscillated between three antigenic types defined by two epitopes whose expression was influenced by passage history and host cell type. In contrast an isolate from Sarawak formed a stable antigenic type that was not influenced by passage history and was distinct from all Australian isolates. PNGase F digestions of KUN isolates indicated that 19 of the 33 viruses possessed a glycosylated E protein. Nucleotide sequence of the 5' third of the E gene of selected KUN isolates revealed that a single base change in PNGase F sensitive strains changed the tripeptide N-Y-F (amino acids 154-156 of the published sequence) to the potential glycosylation site N-Y-S. Further analysis revealed that passage history also had a significant influence on glycosylation.
    Matched MeSH terms: Epitopes/immunology
  20. Foong YT, Cheng HM, Sam CK, Dillner J, Hinderer W, Prasad U
    Int J Cancer, 1990 Jun 15;45(6):1061-4.
    PMID: 1693600
    The Epstein-Barr virus nuclear antigen I (EBNA I) is the only latent EBV antigen consistently expressed in malignant tissues of the nasopharynx. A 20-amino-acid synthetic peptide, p107 contains a major epitope of EBNA I. We tested sera from 210 patients with nasopharyngeal carcinoma (NPC) and from 128 normal individuals (NHS) for IgA antibodies to p107 using an enzyme-linked immunosorbent assay (ELISA). Whereas 191/210 (91%) of NPC patients had IgA antibodies to p107, only 17/128 (13.3%) of NHS had such antibodies and only 6/57 (10.5%) of sera from patients with malignancies other than NPC had IgA-p107 reactivity. Thirty-nine salivary samples from 46 NPC patients (84.8%) also contained IgA-p107 antibodies whereas only 3/42 (7.1%) of normal saliva samples were IgA-p107 positive. The results suggest that IgA antibodies to EBNA I may become a useful, easily measurable, marker for NPC.
    Matched MeSH terms: Epitopes/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links