Displaying publications 81 - 100 of 220 in total

Abstract:
Sort:
  1. Sonaimuthu P, Cheong FW, Chin LC, Mahmud R, Fong MY, Lau YL
    Exp Parasitol, 2015 Jun;153:118-22.
    PMID: 25812552 DOI: 10.1016/j.exppara.2015.03.010
    Malaria remains one of the world's most important infectious diseases and is responsible for enormous mortality and morbidity. Human infection with Plasmodium knowlesi is widely distributed in Southeast Asia. Merozoite surface protein-1₁₉ (MSP-1₁₉), which plays an important role in protective immunity against asexual blood stage malaria parasites, appears as a leading immunogenic antigen of Plasmodium sp. We evaluated the sensitivity and specificity of recombinant P. knowlesi MSP-1₁₉ (rMSP-1₁₉) for detection of malarial infection. rMSP-1₁₉ was expressed in Escherichia coli expression system and the purified rMSP-1₁₉ was evaluated with malaria, non-malaria and healthy human serum samples (n = 215) in immunoblots. The sensitivity of rMSP-1₁₉ for detection of P. knowlesi, Plasmodium falciparum, Plasmodium  vivax and Plasmodium  ovale infection was 95.5%, 75.0%, 85.7% and 100%, respectively. rMSP-1₁₉ did not react with all the non-malaria and healthy donor sera, which represents 100% specificity. The rMSP-1₁₉ could be used as a potential antigen in serodiagnosis of malarial infection in humans.
    Matched MeSH terms: Escherichia coli/genetics
  2. Manuvera VA, Kharlampieva DD, Bobrovsky PA, Grafskaia EN, Brovina KA, Lazarev VN
    Biochem Biophys Res Commun, 2024 Feb 12;696:149473.
    PMID: 38241814 DOI: 10.1016/j.bbrc.2024.149473
    The saliva of the medicinal leech contains various anticoagulants. Some of them, such as hirudin, are well known. However, it is reasonable to believe that not all anticoagulant proteins from medicinal leech saliva have been identified. We previously performed a comprehensive study of the transcriptome, genome, and proteome of leech salivary gland cells, which led to the discovery of several previously unknown hypothetical proteins that may have anticoagulant properties. Subsequently, we obtained a series of recombinant proteins and investigated their impact on coagulation in in vitro assays. We identified a previously undescribed protein that exhibited a high ability to suppress coagulation. The His-tagged recombinant protein was expressed in Escherichia coli and purified using metal chelate chromatography. To determine its activity, commonly used coagulation methods were used: activated partial thromboplastin time, prothrombin time, and thrombin inhibition clotting assay. Clotting and chromogenic assays for factor Xa inhibition were performed to evaluate anti-Xa activity. We used recombinant hirudin as a control anticoagulant protein in all experiments. The new protein showed significantly greater inhibition of coagulation than hirudin at the same molar concentrations in the activated partial thrombin time assay. However, hirudin demonstrated better results in the direct thrombin inhibition test, although the tested protein also exhibited the ability to inhibit thrombin. The chromogenic analysis of factor Xa inhibition revealed no activity, whereas the clotting test for factor Xa showed the opposite result. Thus, a new powerful anticoagulant protein has been discovered in the medicinal leech. This protein is homologous to antistatin, with 28 % identical amino acid residues. The recombinant protein was expressed in E. coli. This protein is capable of directly inhibiting thrombin, and based on indirect evidence, other proteases of the blood coagulation cascade have been identified.
    Matched MeSH terms: Escherichia coli/genetics
  3. Tan FH, Ng JF, Mohamed Alitheen NB, Muhamad A, Yong CY, Lee KW
    J Virol Methods, 2023 Sep;319:114771.
    PMID: 37437780 DOI: 10.1016/j.jviromet.2023.114771
    Virus-like particles (VLPs) is one of the most favourable subjects of study, especially in the field of nanobiotechnology and vaccine development because they possess good immunogenicity and self-adjuvant properties. Conventionally, VLPs can be tagged and purified using affinity chromatography or density gradient ultracentrifugation which is costly and time-consuming. Turnip yellow mosaic virus (TYMV) is a plant virus, where expression of the viral coat protein (TYMVc) in Escherichia coli (E. coli) has been shown to form VLP. In this study, we report a non-chromatographic method for VLP purification using C-terminally His-tagged TYMVc (TYMVcHis6) as a protein model. Firstly, the TYMVcHis6 was cloned and expressed in E. coli. Upon clarification of cell lysate, nickel (II) chloride [NiCl2; 15 µM or equivalent to 0.0000194% (w/v)] was added to precipitate TYMVcHis6. Following centrifugation, the pellet was resuspended in buffer containing 1 mM EDTA to chelate Ni2+, which is then removed via dialysis. A total of 50% of TYMVcHis6 was successfully recovered with purity above 0.90. Later, the purified TYMVcHis6 was analysed with sucrose density ultracentrifugation, dynamic light scattering (DLS), and transmission electron microscopy (TEM) to confirm VLP formation, which is comparable to TYMVcHis6 purified using the standard immobilized metal affinity chromatography (IMAC) column. As the current method omitted the need for IMAC column and beads while significantly reducing the time needed for column washing, nickel affinity precipitation represents a novel method for the purification of VLPs displaying poly-histidine tags (His-tags).
    Matched MeSH terms: Escherichia coli/genetics
  4. Chong HY, Leow CY, Leow CH
    Int J Biol Macromol, 2021 Aug 31;185:485-493.
    PMID: 34174313 DOI: 10.1016/j.ijbiomac.2021.06.146
    Co-existence of Japanese Encephalitis virus (JEV) with highly homologous antigenic epitopes results in antibody-based serodiagnosis being inaccurate at detecting and distinguishing JEV from other flaviviruses. This often causes misdiagnosis and inefficient treatments of flavivirus infection. Generation of JEV NS1 protein remains a challenge as it is notably expressed in the form of inactive aggregates known as inclusion bodies using bacterial expression systems. This study evaluated two trxB and gor E. coli strains in producing soluble JEV NS1 via a cold-shock expression system. High yield of JEV NS1 inclusion bodies was produced using cold-shocked expression system. Subsequently, a simplified yet successful approach in generating soluble, active JEV NS1 protein through solubilization, purification and in vitro refolding of JEV NS1 protein from inclusion bodies was developed. A step-wise dialysis refolding approach was used to facilitate JEV NS1 refolding. The authenticity of the refolded JEV NS1 was confirmed by specific antibody binding on indirect ELISA commercial anti-NS1 antibodies which showed that the refolded JEV NS1 was highly immunoreactive. This presented approach is cost-effective, and negates the need for mammalian or insect cell expression systems in order to synthesize this JEV NS1 protein of important diagnostic and therapeutic relevance in Japanese Encephalitis disease.
    Matched MeSH terms: Escherichia coli/genetics
  5. Alias FL, Nezhad NG, Normi YM, Ali MSM, Budiman C, Leow TC
    Mol Biotechnol, 2023 Nov;65(11):1737-1749.
    PMID: 36971996 DOI: 10.1007/s12033-023-00725-y
    Heterologous functional expression of the recombinant lipases is typically a bottleneck due to the expression in the insoluble fraction as inclusion bodies (IBs) which are in inactive form. Due to the importance of lipases in various industrial applications, many investigations have been conducted to discover suitable approaches to obtain functional lipase or increase the expressed yield in the soluble fraction. The utilization of the appropriate prokaryotic and eukaryotic expression systems, along with the suitable vectors, promoters, and tags, has been recognized as a practical approach. One of the most powerful strategies to produce bioactive lipases is using the molecular chaperones co-expressed along with the target protein's genes into the expression host to produce the lipase in soluble fraction as a bioactive form. The refolding of expressed lipase from IBs (inactive) is another practical strategy which is usually carried out through chemical and physical methods. Based on recent investigations, the current review simultaneously highlights strategies to express the bioactive lipases and recover the bioactive lipases from the IBs in insoluble form.
    Matched MeSH terms: Escherichia coli/genetics
  6. Chua LH, Tan SC, Liew MWO
    J Biotechnol, 2018 Jun 20;276-277:34-41.
    PMID: 29679607 DOI: 10.1016/j.jbiotec.2018.04.012
    An intensified process was developed that enables high level production of recombinant core streptavidin (cSAV), a non-glycosylated tetrameric protein utilised in a wide range of applications. A pH-stat fed-batch feeding strategy was employed to achieve high-cell-density and improve volumetric yield of cSAV which was expressed as inclusion bodies (IBs). The effect of induction at different cell densities (OD 20, 60 and 100) on volumetric and specific yield were then studied. Highest volumetric yield of cSAV (1550 mg L-1) was obtained from induction at OD 100 without significant reductions in specific yield. To recover active cSAV from IBs, the possibility of refolding using a temperature-based refolding method was investigated. Refolded cSAV obtained from temperature-based refolding were then compared against cSAV refolded with conventional dialysis and dilution methods using quantitative and qualitative metrics. The temperature-based refolding method was found to improve the yield of cSAV by 6-18% in comparison to conventional methods without compromising quality. Intensification was achieved by reductions in process volumes and a more concentrated product stream. Using the newly developed process, the volumetric yield of cSAV IBs was improved by thirty-six fold in comparison to low-cell-density shake flask cultivation, and 33% of cSAV can be recovered from IBs at 90% purity.
    Matched MeSH terms: Escherichia coli/genetics
  7. Wan KF, Radu S, Cheah YK, Benjamin PG, Ling CM, Hon SF, et al.
    PMID: 15115139
    Enteropathogenic Escherichia coli (EPEC) is a leading cause of diarrhea among infants in developing countries. A total of 38 EPEC isolates, obtained from diarrhea patients of Hospital Miri, Sarawak, were investigated through plasmid profile, antibiotic resistance and randomly amplified polymorphic DNA (RAPD) analysis. From the 8 types of antibiotics used, all isolates were 100% resistant to furoxime, cephalothin and sulphamethoxazole and showed high multiple antibiotic resistant (MAR) indexes, ranging from 0.5 to 1.0. In plasmid profiling, 22 isolates (58%) showed the presence of one or more plasmids in the range 1.0 to 30.9 mDa. The dendrogram obtained from the results of the RAPD-PCR discriminated the isolates into 30 single isolates and 3 clusters at the level of 40% similarity. The EPEC isolates were highly diverse, as shown by their differing plasmid profiles, antibiotic resistance patterns and RAPD profiles.
    Matched MeSH terms: Escherichia coli/genetics
  8. Lew MH, Lim RL
    Appl Microbiol Biotechnol, 2016 Jan;100(2):661-71.
    PMID: 26411458 DOI: 10.1007/s00253-015-6953-y
    Current diagnostic tools for peanut allergy using crude peanut extract showed low predictive value and reduced specificity for detection of peanut allergen-specific immunoglobulin E (IgE). The Ara h 2.02, an isoform of the major peanut allergen Ara h 2, contains three IgE epitope recognition sequence of 'DPYSPS' and may be a better reagent for component resolve diagnosis. This research aimed to generate a codon-optimised Ara h 2.02 gene for heterologous expression in Escherichia coli and allergenicity study of this recombinant protein. The codon-optimised gene was generated by PCR using overlapping primers and cloned into the pET-28a (+) expression vector. Moderate expression of a 22.5 kDa 6xhistidine-tagged recombinant Ara h 2.02 protein (6xHis-rAra h 2.02) in BL21 (DE3) host cells was observed upon induction with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). The insoluble recombinant protein was purified under denaturing condition using nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography and refolded by dialysis in decreasing urea concentration, amounting to a yield of 74 mg/l of expression culture. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) and immunoblot analysis confirmed the production of the recombinant 6xHis-rAra h 2.02. The refolded recombinant 6xHis-rAra h 2.02, with or without adjuvant, was able to elicit comparable level of allergen-specific IgE and IgG1 in sensitised Balb/c mice. In addition, the specific IgE antibodies raised against the recombinant protein were able to recognise the native Ara h 2 protein, demonstrating its allergenicity and potential as a reagent for diagnosis and therapeutic study.
    Matched MeSH terms: Escherichia coli/genetics*
  9. Yap PS, Krishnan T, Chan KG, Lim SH
    J Microbiol Biotechnol, 2015 Aug;25(8):1299-306.
    PMID: 25381741 DOI: 10.4014/jmb.1407.07054
    This study aimed to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of this combination showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oils. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.
    Matched MeSH terms: Escherichia coli/genetics
  10. Yap PS, Krishnan T, Yiap BC, Hu CP, Chan KG, Lim SH
    J Appl Microbiol, 2014 May;116(5):1119-28.
    PMID: 24779580 DOI: 10.1111/jam.12444
    The aim of this study was to investigate the mode of action of the lavender essential oil (LV) on antimicrobial activity against multi-drug-resistant Escherichia coli J53 R1 when used singly and in combination with piperacillin.
    Matched MeSH terms: Escherichia coli/genetics
  11. Lai YM, Zaw MT, Shamsudin SB, Lin Z
    J Microbiol Immunol Infect, 2016 Aug;49(4):591-4.
    PMID: 26212311 DOI: 10.1016/j.jmii.2015.06.002
    The putative pathogenicity island (PAI) containing the uropathogenic specific protein (usp) gene and three small open reading frames (orfU1, orfU2, and orfU3) encoding 98, 97, and 96 amino acid proteins is widely distributed among uropathogenic Escherichia coli (UPEC) strains. This PAI was designated as PAIusp. Sequencing analysis of PAIusp has revealed that the usp gene can be divided into two types - uspI and uspII - based on sequence variation at the 3' terminal region and the number and position of orfUs differ from strain to strain. Based on usp gene types and orfU sequential patterns, PAIusp can be divided into four subtypes. Subtyping of PAIusp is a useful method to characterize UPEC strains. In this study, we developed a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method to differentiate usp gene types. This method could correctly identify the usp gene type in usp-positive UPEC strains in our laboratory.
    Matched MeSH terms: Uropathogenic Escherichia coli/genetics*
  12. Lai YM, Zaw MT, Shamsudin SB, Lin Z
    J Infect Dev Ctries, 2016 Oct 31;10(10):1053-1058.
    PMID: 27801366 DOI: 10.3855/jidc.6944
    INTRODUCTION: Uropathogenic virulence factors have been identified by comparing the prevalence of these among urinary tract isolates and environmental strains. The uropathogenic-specific protein (USP) gene is present on the pathogenicity island (PAI) of uropathogenic Escherichia coli (UPEC) and, depending on its two diverse gene types and the sequential patterns of three open reading frame units (orfUs) following it, there is a method to characterize UPEC epidemiologically called PAIusp subtyping.
    METHODOLOGY: A total of 162 UPEC isolates from Sabah, Malaysia, were tested for the presence of the usp gene and the sequential patterns of three orfUs following it using polymerase chain reaction (PCR). In addition, by means of triplex PCR, the prevalence of the usp gene was compared with other two VFs of UPEC, namely alpha hemolysin (α-hly) and cytotoxic necrotizing factor (cnf-1) genes encoding two toxins.
    RESULTS: The results showed that the usp gene was found in 78.40% of UPEC isolates, indicating that its prevalence was comparable to that found in a previous study in Japan. The two or three orfUs were also associated with the usp gene in this study. All the PAIusp subtypes observed in Japan were present in this study, while subtype IIa was the most common in both studies. The usp gene was observed in a higher percentage of isolates when compared with α-hly and cnf-1 genes.
    CONCLUSIONS: The findings in Japan and Sabah, East Malaysia, were similar, indicating that PAIusp subtyping is applicable to the characterization of UPEC strains epidemiologically elsewhere in the world.
    Matched MeSH terms: Uropathogenic Escherichia coli/genetics*
  13. Jiao L, Chi H, Lu Z, Zhang C, Chia SR, Show PL, et al.
    J Biosci Bioeng, 2020 Jun;129(6):672-678.
    PMID: 32088137 DOI: 10.1016/j.jbiosc.2020.01.007
    l-Asparaginases have the potential to inhibit the formation of acrylamide, a harmful toxin formed during high temperature processing of food. A novel bacterium which produces l-asparaginase was screened. Type I l-asparaginase gene from Acinetobacter soli was cloned and expressed in Escherichia coli. The recombinant l-asparaginase had an activity of 42.0 IU mL-1 and showed no activity toward l-glutamine and d-asparagine. The recombinant l-asparaginase exhibited maximum catalytic activity at pH 8.0 and 40°C. The enzyme was stable in the pH ranging from 6.0 to 9.0. The activity of the recombinant enzyme was substantially enhanced by Ba2+, dithiothreitol, and β-mercaptoethanol. The Km and Vmax values of the l-asparaginase for the l-asparagine were 3.22 mmol L-1 and 1.55 IU μg-1, respectively. Moreover, the recombinant l-asparaginase had the ability to mitigate acrylamide formation in potato chips. Compared with the untreated group, the content of acrylamide in samples treated with the enzyme was effectively decreased by 55.9%. These results indicate that the novel type I l-asparaginase has the potential for application in the food processing industry.
    Matched MeSH terms: Escherichia coli/genetics
  14. Lu J, Zhang C, Leong HY, Show PL, Lu F, Lu Z
    J Biosci Bioeng, 2020 Mar;129(3):327-332.
    PMID: 31585857 DOI: 10.1016/j.jbiosc.2019.09.006
    In this study, the bacterial lipoxygenase (LOX) gene from Pseudomonas aeruginosa ATCC27853 (pse-LOX) was cloned, sequenced and heterologous expressed in Escherichia coli by auto-induction expression strategy. Production of the recombinant pse-LOX (pse-rLOX) gene up to 23,850 U/mL (264 mg pure protein/L bacterial culture fluid) was observed in the end of this process. To the best of our knowledge, this is the first attempt to manipulate LOX heterologous expression process using auto-induction expression approach, and it is the highest production of recombinant LOX compared with other reports. Subsequently, the resulted pse-rLOX was proved to efficiently degrade triphenylmethane dyes such as malachite green, brilliant green and aniline blue. Generally, an overproduction of the LOX from P. aeruginosa was observed in E. coli, and this recombinant gene is a potential candidate as biocatalyst for triphenylmethane dyes decolorization.
    Matched MeSH terms: Escherichia coli/genetics
  15. Chen SL, Ding Y, Apisarnthanarak A, Kalimuddin S, Archuleta S, Omar SFS, et al.
    Sci Rep, 2019 09 13;9(1):13245.
    PMID: 31519972 DOI: 10.1038/s41598-019-49467-5
    The ST131 multilocus sequence type (MLST) of Escherichia coli is a globally successful pathogen whose dissemination is increasing rates of antibiotic resistance. Numerous global surveys have demonstrated the pervasiveness of this clone; in some regions ST131 accounts for up to 30% of all E. coli isolates. However, many regions are underrepresented in these published surveys, including Africa, South America, and Asia. We collected consecutive bloodstream E. coli isolates from three countries in Southeast Asia; ST131 was the most common MLST type. As in other studies, the C2/H30Rx clade accounted for the majority of ST131 strains. Clinical risk factors were similar to other reported studies. However, we found that nearly all of the C2 strains in this study were closely related, forming what we denote the SEA-C2 clone. The SEA-C2 clone is enriched for strains from Asia, particularly Southeast Asia and Singapore. The SEA-C2 clone accounts for all of the excess resistance and virulence of ST131 relative to non-ST131 E. coli. The SEA-C2 strains appear to be locally circulating and dominant in Southeast Asia, despite the intuition that high international connectivity and travel would enable frequent opportunities for other strains to establish themselves.
    Matched MeSH terms: Escherichia coli/genetics
  16. Ramli N, Abd-Aziz S, Alitheen NB, Hassan MA, Maeda T
    Mol Biotechnol, 2013 Jul;54(3):961-8.
    PMID: 23338983 DOI: 10.1007/s12033-013-9647-7
    Regulation of RNA transcription in controlling the expression of genes at promoter and terminator regions is crucial as the interaction of RNA polymerase occurred at both sites. Gene encoding cyclodextrin glycosyltransferase (CGTase) from Bacillus sp. NR5 UPM isolated in the previous study was used for further construction of pTZCGT-SS, pTZCGT-BS and pTZCGT-BT expression systems for enhancement of CGTase production. The putative promoter regions, -35 and -10 sequences were found in the upstream of the mature gene start codon. Whereas, long inverted repeats sequences which can form a stable stem and loop structure was found downstream of the open reading frame (ORF) of Bacillus sp. NR5 UPM CGTase. The construction of E. coli strain harbouring pTZCGT-BS showed increment of 3.2-fold in CGTase activity compared to the wild type producer. However, insertion of terminator downstream of CGTase gene in E. coli strain harbouring pTZCGT-BT only resulted in 4.42 % increment of CGTase production compared to E. coli strain containing pTZCGT-BS, perhaps due to low intrinsic termination efficiency. Thus, it is suggested that the insertion of the putative promoter regions upstream of the coding sequence for the construction of CGTase expression system will further enhance in the recombinant enzyme production.
    Matched MeSH terms: Escherichia coli/genetics*
  17. Cheong FW, Fong MY, Lau YL, Mahmud R
    Malar J, 2013;12:454.
    PMID: 24354660 DOI: 10.1186/1475-2875-12-454
    Plasmodium knowlesi is the fifth Plasmodium species that can infect humans. The Plasmodium merozoite surface protein-1(42) (MSP-1(42)) is a potential candidate for malaria vaccine. However, limited studies have focused on P. knowlesi MSP-1(42).
    Matched MeSH terms: Escherichia coli/genetics
  18. Cheong FW, Lau YL, Fong MY, Mahmud R
    Am J Trop Med Hyg, 2013 May;88(5):835-40.
    PMID: 23509118 DOI: 10.4269/ajtmh.12-0250
    Plasmodium knowlesi is now known as the fifth Plasmodium species that can cause human malaria. The Plasmodium merozoite surface protein (MSP) has been reported to be potential target for vaccination and diagnosis of malaria. MSP-1(33) has been shown to be immunogenic and its T cell epitopes could mediate cellular immune protection. However, limited studies have focused on P. knowlesi MSP-133. In this study, an approximately 28-kDa recombinant P. knowlesi MSP-1(33) (pkMSP-1(33)) was expressed by using an Escherichia coli system. The purified pkMSP-1(33) reacted with serum samples of patients infected with P. knowlesi (31 of 31, 100%) and non-P. knowlesi malaria (27 of 28, 96.43%) by Western blotting. The pkMSP-1(33) also reacted with P. knowlesi (25 of 31, 80.65%) and non-P. knowlesi malaria sera (20 of 28, 71.43%) in an enzyme-linked immunosorbent assay (ELISA). Most of the non-malarial infection (49 of 52 in by Western blotting and 46 of 52 in the ELISA) and healthy donor serum samples (65 of 65 by Western blotting and ELISA) did not react with recombinant pkMSP-1(33).
    Matched MeSH terms: Escherichia coli/genetics
  19. Mienda BS, Shamsir MS, Md Illias R
    J Biomol Struct Dyn, 2016 Aug;34(8):1705-16.
    PMID: 26513379 DOI: 10.1080/07391102.2015.1090341
    Succinic acid is an important platform chemical with a variety of applications. Model-guided metabolic engineering strategies in Escherichia coli for strain improvement to increase succinic acid production using glucose and glycerol remain largely unexplored. Herein, we report what are, to our knowledge, the first metabolic knockout of the atpE gene to have increased succinic acid production using both glucose and alternative glycerol carbon sources in E. coli. Guided by a genome-scale metabolic model, we engineered the E. coli host to enhance anaerobic production of succinic acid by deleting the atpE gene, thereby generating additional reducing equivalents by blocking H(+) conduction across the mutant cell membrane. This strategy produced 1.58 and .49 g l(-1) of succinic acid from glycerol and glucose substrate, respectively. This work further elucidates a model-guided and/or system-based metabolic engineering, involving only a single-gene deletion strategy for enhanced succinic acid production in E. coli.
    Matched MeSH terms: Escherichia coli/genetics*
  20. Mienda BS, Shamsir MS, Md Illias R
    J Biomol Struct Dyn, 2016 Nov;34(11):2305-16.
    PMID: 26510527 DOI: 10.1080/07391102.2015.1113387
    Succinic acid is an important platform chemical that has broad applications and is been listed as one of the top twelve bio-based chemicals produced from biomass by the US Department of Energy. The metabolic role of Escherichia coli formate dehydrogenase-O (fdoH) under anaerobic conditions in relation to succinic acid production remained largely unspecified. Herein we report, what are to our knowledge, the first metabolic fdoH gene knockout that have enhanced succinate production using glucose and glycerol substrates in E. coli. Using the most recent E. coli reconstruction iJO1366, we engineered its host metabolism to enhance the anaerobic succinate production by deleting the fdoH gene, which blocked H(+) conduction across the mutant cell membrane for the enhanced succinate production. The engineered mutant strain BMS4 showed succinate production of 2.05 g l(-1) (41.2-fold in 7 days) from glycerol and .39 g l(-1) (6.2-fold in 1 day) from glucose. This work revealed that a single deletion of the fdoH gene is sufficient to increase succinate production in E. coli from both glucose and glycerol substrates.
    Matched MeSH terms: Escherichia coli/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links