Displaying publications 81 - 100 of 502 in total

Abstract:
Sort:
  1. Naidu R, Har YC, Taib NA
    J Exp Clin Cancer Res, 2007 Mar;26(1):133-40.
    PMID: 17550142
    The p27 V109G polymorphism was investigated using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method in a hospital-based Malaysian population. Peripheral blood samples were collected from 230 breast cancer patients and 200 normal and healthy women who had no history of breast disease or breast cancer. We evaluated the association between the p27 polymorphism and breast cancer risk, and clinico-pathological parameters in the population. The distribution of genotype and allele frequencies of p27 V109G polymorphism were not significantly different between the breast cancer cases and normal subjects (P=0.376). Women who were homozygous (OR=1.73; 95% CI, 0.62-4.92) or heterozygous (OR=1.26; 95% CI, 0.75-2.12) for G allele, or carriers of G allele genotype (OR=1.34; 95%, 0.83-2.16) or G allele (OR=1.36; 95% CI, 0.90-2.05) were not associated with breast cancer risk. No significant correlation was noted between G allele genotype and breast cancer risk among patients under 50 (OR=1.28; 95% CI, 0.62-2.66) or 50 years and older (OR=1.38; 95% CI, 0.71-2.66) at diagnosis. The G allele genotype was significantly associated with lymph node metastases but independent of ER status and histological grade. In conclusion, the polymorphic variant at codon 109 of p27 gene may not be a marker for determining patients' risk of developing breast cancer but it may be a potential genetic marker for poor prognosis, thereby a marker for tumor prognosis.
    Matched MeSH terms: Genetic Predisposition to Disease
  2. See MH, Bhoo-Pathy N, Jamaris S, Kiran A, Evans DG, Yip CH, et al.
    World J Surg, 2018 05;42(5):1270-1277.
    PMID: 29124356 DOI: 10.1007/s00268-017-4319-6
    BACKGROUND: The rate of contralateral risk-reducing mastectomy (CRRM) is increasing in the West with controversial evidence of improved survival in early breast cancer patients. Although uptake of CRRM in Asia appears low, the trends may rise, and there is currently an urgent need to provide evidence for informed decision-making in clinical practice. This study aims to determine the risk of contralateral breast cancer (CBC) and its associated factors in an Asian setting.

    METHOD: A total of 2937 newly diagnosed patients with stage I and stage II breast cancer in University Malaya Medical Centre between Jan 1993 to Dec 2012 were included in the study. Multinomial logistic regression analysis allowing death to compete with CBC as a study outcome was used; patients with unilateral breast cancer who were alive were taken as reference. A stepwise backward regression analysis including age at diagnosis, ethnicity, family history of breast cancer, TNM stage, hormonal receptor status, HER2 status, chemotherapy, radiotherapy, and hormone therapy was conducted.

    RESULTS: Fifty women developed CBC, over a median follow-up of 6 years. The 5- and 10-year cumulative risk of contralateral breast cancer was 1.0% (95% CI 0.6-1.4%) and 2.8% (95% CI 2.0-3.6%), respectively. Young age at diagnosis of first cancer, positive family history, and stage I disease were independent predictors of CBC.

    DISCUSSION: The current study suggests that the risk of CBC is very low in a Southeast Asian setting. Any recommendations or practice of CRRM should be reviewed with caution and patients must be counseled appropriately.

    Matched MeSH terms: Genetic Predisposition to Disease
  3. Naidu R, Har YC, Taib NA
    Scand J Clin Lab Invest, 2011 Oct;71(6):500-6.
    PMID: 21745146 DOI: 10.3109/00365513.2011.590223
    The purpose of this study was to investigate the association between the peptidyl-propyl-cis/trans isomerase 1 (PIN1) -842(G > C) and -667(T > C) polymorphic variants and breast cancer risk among Malaysian ethnic groups namely the Malays, Chinese and Indians, as well as clinico-pathological characteristics of the patients.
    Matched MeSH terms: Genetic Predisposition to Disease*
  4. Tan JT, Ng DP, Nurbaya S, Ye S, Lim XL, Leong H, et al.
    J Clin Endocrinol Metab, 2010 Jan;95(1):390-7.
    PMID: 19892838 DOI: 10.1210/jc.2009-0688
    CONTEXT:
    Novel type 2 diabetes mellitus (T2DM) susceptibility loci, identified through genome-wide association studies (GWAS), have been replicated in many European and Japanese populations. However, the association in other East Asian populations is less well characterized.

    OBJECTIVE:
    To examine the effects of SNPs in CDKAL1, CDKN2A/B, IGF2BP2, HHEX, SLC30A8, PKN2, LOC387761, and KCNQ1 on risk of T2DM in Chinese, Malays, and Asian-Indians in Singapore.

    DESIGN:
    We genotyped these candidate single-nucleotide polymorphisms (SNPs) in subjects from three major ethnic groups in Asia, namely, the Chinese (2196 controls and 1541 cases), Malays (2257 controls and 1076 cases), and Asian-Indians (364 controls and 246 cases). We also performed a metaanalysis of our results with published studies in East Asians.

    RESULTS:
    In Chinese, SNPs in CDKAL1 [odds ratio (OR) = 1.19; P = 2 x 10(-4)], HHEX (OR = 1.15; P = 0.013), and KCNQ1 (OR = 1.21; P = 3 x 10(-4)) were significantly associated with T2DM. Among Malays, SNPs in CDKN2A/B (OR = 1.22; P = 3.7 x 10(-4)), HHEX (OR = 1.12; P = 0.044), SLC30A8 (OR = 1.12; P = 0.037), and KCNQ1 (OR = 1.19-1.25; P = 0.003-2.5 x 10(-4)) showed significant association with T2DM. The combined analysis of the three ethnic groups revealed significant associations between SNPs in CDKAL1 (OR = 1.13; P = 3 x 10(-4)), CDKN2A/B (OR = 1.16; P = 9 x 10(-5)), HHEX (OR = 1.14; P = 6 x 10(-4)), and KCNQ1 (OR = 1.16-1.20; P = 3 x 10(-4) to 3 x 10(-6)) with T2DM. SLC30A8 (OR = 1.06; P = 0.039) showed association only after adjustment for gender and body mass index. Metaanalysis with data from other East Asian populations showed similar effect sizes to those observed in populations of European ancestry.

    CONCLUSIONS:
    SNPs at T2DM susceptibility loci identified through GWAS in populations of European ancestry show similar effects in Asian populations. Failure to detect these effects across different populations may be due to issues of power owing to limited sample size, lower minor allele frequency, or differences in genetic effect sizes.
    Matched MeSH terms: Genetic Predisposition to Disease
  5. Mohd Aris NK, Md Ismail NA, Mahdy ZA, Ahmad S, Mohd Naim N, Siraj HH, et al.
    Recent association studies have described genetic variants among type 2 diabetes mellitus (T2DM) and their related traits. Gestational diabetes mellitus (GDM) is pathophysiologically similar to T2DM and may share genetic susceptibility.However, genetic susceptibility within GDM in our own population is still not yet explored. This study was to determine the association of GDM genetic variants in the Malaysian population. We genotyped 384 T2DM related SNPs among 174 cases of GDM and 114 controls of pregnant women using Illumina’s Golden Gate genotyping assay. In this case-control study, a custom of 384-SNP plex of 236 candidate genes was designed using the Illumina’s Assay Design Tool. The data analysis showed 12 SNPs had a significant association with GDM among Malaysians with p values 0.002 to 0.048 with their respective odd ratios. The SNPs rs7754840, rs10946398, rs9465871, rs7756992, rs6823091, rs7935082,rs237889, rs7903146, rs7961581 were significant under additive model while rs10811661, rs1016472, rs2270031 were associated with GDM under recessive model. Three SNPs namely rs7935082, rs1016472 and rs2270031 had reduced risk towards GDM while another nine SNPs which were rs7754840, rs10946398, rs9465871, rs7756992,rs10811661, rs6823091, rs237889, rs7903146 and rs7961581 had increased risk as much 1.75 to 2.62 times. Twelve genetic variants of T2DM were replicated in the SNP profiling among Malaysians GDM. Thus with a more significant result in a bigger sample, SNP screening is potentially a useful method in predicting the risk of gestational diabetes mellitus.
    Study name: The Malaysian Cohort (TMC) project
    Matched MeSH terms: Genetic Predisposition to Disease
  6. Ng SC, Tsoi KK, Kamm MA, Xia B, Wu J, Chan FK, et al.
    Inflamm Bowel Dis, 2012 Jun;18(6):1164-76.
    PMID: 21887729 DOI: 10.1002/ibd.21845
    BACKGROUND: Inflammatory bowel diseases (IBD) result from an interaction between genetic and environmental factors. Preliminary findings suggest that susceptibility genes differ between IBD patients in Asia and the West. We aimed to evaluate disease-predisposing genes in Asian IBD patients.

    METHODS: A systematic review and meta-analysis were performed of published studies from 1950 to 2010 using keyword searches in MEDLINE, EMBASE, EBM Reviews, and BIOSIS Previews.

    RESULTS: In all, 477 abstracts were identified and data extracted from 93 studies, comprising 17,976 IBD patients and 27,350 age- and sex-matched controls. Major nucleotide oligomerization domain (NOD)-2 variants in Western Crohn's disease (CD) patients were not associated with CD in Han Chinese, Japanese, South Korean, Indian, and Malaysian populations. New NOD2 mutations were, however, associated with CD in Malaysians (JW1), Han Chinese, and Indians (P268S). Autophagy-related protein 16-linked 1 (ATG16L1) was not associated with CD in East Asians (odds ratio [OR] 0.97; 95% confidence interval [CI] 0.84-1.13). Interleukin (IL)-23R was associated with CD in South Koreans (OR 1.8; 95% CI 1.16-2.82) and a single nucleotide polymorphism in IL-23R (Gly149Arg) was protective of CD in Han Chinese (OR 0.3; 95% CI 0.15-0.60). Tumor necrosis factor (TNF) superfamily gene-15 (SF15) polymorphisms were associated with CD (OR 2.68; 95% CI 1.86-3.86), while TNF-308 polymorphisms (OR 1.82; 95% CI 1.15-2.9), cytotoxic T lymphocyte antigen (CTLA)-4 (OR 2.75; 95% CI 1.22-6.22) and MICA allele (OR 2.41; 95% CI 1.89-3.07) were associated with ulcerative colitis in Asians.

    CONCLUSIONS: Genetic mutations of IBD in Asians differ from Caucasians. New mutations and susceptibility genes identified in Asian IBD patients provide an opportunity to explore new disease-associated mechanisms in this population of rising incidence.

    Matched MeSH terms: Genetic Predisposition to Disease*
  7. Xiao WZ, Han DH, Wang F, Wang YQ, Zhu YH, Wu YF, et al.
    Tumour Biol., 2014 Jul;35(7):6687-93.
    PMID: 24705863 DOI: 10.1007/s13277-014-1885-1
    We conducted a meta-analysis in order to investigate the relationships between PTEN gene mutations and the prognosis in glioma. The following electronic databases were searched for relevant articles without any language restrictions: Web of Science (1945 ~ 2013), the Cochrane Library Database (Issue 12, 2013), PubMed (1966 ~ 2013), EMBASE (1980 ~ 2013), CINAHL (1982 ~ 2013), and the Chinese Biomedical Database (CBM) (1982 ~ 2013). Meta-analyses were conducted using the STATA software (Version 12.0, Stata Corporation, College Station, Texas USA). Hazard ratio (HR) with its corresponding 95 % confidence interval (95%CI) was calculated. Six independent cohort studies with a total of 357 glioma patients met our inclusion criteria. Our meta-analysis results indicated that glioma patients with PTEN gene mutations exhibited a significantly shorter overall survival (OS) than those without PTEN gene mutations (HR = 3.66, 95%CI = 2.02 ~ 5.30, P < 0.001). Ethnicity-stratified subgroup analysis demonstrated that PTEN gene mutations were closely linked to poor prognosis in glioma among Americans (HR = 3.72, 95%CI = 1.72 ~ 5.73, P < 0.001), while similar correlations were not observed among populations in Sweden, Italy, and Malaysia (all P > 0.05). Our meta-analysis provides direct and strong evidences for the speculation of PTEN gene mutations' correlation with poor prognosis of glioma patients.
    Matched MeSH terms: Genetic Predisposition to Disease
  8. Annuar AA, Ankathil R, Mohd Yunus N, Husin A, Ab Rajab NS, Abdul Aziz AA, et al.
    Asian Pac J Cancer Prev, 2021 Feb 01;22(2):565-571.
    PMID: 33639675 DOI: 10.31557/APJCP.2021.22.2.565
    BACKGROUND: The FAS mediated apoptosis pathway involving the FAS and FASL genes plays a crucial role in the regulation of apoptotic cell death and imatinib mesylate (IM) mechanism of action. Promoter polymorphisms FAS-670 A>G and FAS-844 T>C which alter the transcriptional activity of these genes may grant a risk to develop cancer and revamp the drug activities towards the cancer cell. We investigated the association of these two polymorphisms with the susceptibility risk and IM treatment response in Malaysian chronic myeloid leukaemia (CML) patients.

    METHODS: This is a retrospective study, which included 93 CML patients and 98 controls. The polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method was used to genotype the FAS and FASL polymorphisms. Data nanlysis was done using SPSS Version 22. The associations of the genotypes with susceptibility risk and IM response in CML patients were assessed by means of logistic regression analysis and deriving odds ratio with 95% CI.

    RESULTS: We observed a significant association between FASL-844T>C polymorphism and CML susceptibility risk and IM response. Variant C allele and FASL-844 CC variant genotype carriers had significantly higher risk for CML susceptibility (OR 1.756, CI 1.163-2.652, p=0.007 and OR 2.261, CI 1.013-5.047, p=0.047 respectively). Conversely, the heterozygous genotype FASL-844 TC conferred lower risk for CML susceptibility (OR 0.379, CI 0.176-0.816, p=0.013). The heterozygous and homozygous variant genotypes and variant C alleles were found to confer a lower risk for the development of IM resistance with OR 0.129 (95% CI: 0.034-0.489 p=0.003), OR 0.257 (95% CI: 0.081-0.818, p=0.021), and OR 0.486 (95% CI: 0.262-0.899, p=0.021) respectively. We also found that FAS-670 A>G polymorphism was not associated with CML susceptibility risk or IM response.

    CONCLUSION: The genetic polymorphism FASL-844 T>C may contribute to the CML susceptibility risk and also IM treatment response in CML patients. Accodringly, it may be useful as a biomarker for predicting CML susceptibility risk and IM resistance.

    Matched MeSH terms: Genetic Predisposition to Disease/genetics*
  9. Ghazali N, Rahman NA, Kannan TP, Ahmad A, Sulong S
    BMC Oral Health, 2023 Nov 29;23(1):945.
    PMID: 38031027 DOI: 10.1186/s12903-023-03464-3
    BACKGROUND: Nonsyndromic cleft lip and/or without cleft palate (NSCL/P) with or without hypodontia is a common developmental aberration in humans and animals. This study aimed to identify the loss of heterozygosity (LOH) involved in hypodontia and NSCL/P pathogenesis.

    METHODS: This is a cross-sectional study that conducted genome-wide copy number analysis using CytoScan 750K array on salivary samples from Malay subjects with NSCL/P with or without hypodontia aged 7-13 years. To confirm the significant results, simple logistic regression was employed to conduct statistical data analysis using SPSS software.

    RESULTS: The results indicated the most common recurrent copy neutral LOH (cnLOH) observed at 1p33-1p32.3, 1q32.2-1q42.13 and 6p12.1-6p11.1 loci in 8 (13%), 4 (7%), and 3 (5%) of the NSCL/P subjects, respectively. The cnLOHs at 1p33-1p32.3 (D1S197), 1q32.2-1q42.13 (D1S160), and 6p12.1-6p11.1 (D1S1661) were identified observed in NSCL/P and noncleft children using microsatellite analysis markers as a validation analysis. The regions affected by the cnLOHs at 1p33-1p32.3, 1q32.2-1q42.13, and 6p12.1-6p11.1 loci contained selected genes, namely FAF1, WNT3A and BMP5, respectively. There was a significant association between the D1S197 (1p33-32.3) markers containing the FAF1 gene among NSCL/P subjects with or without hypodontia compared with the noncleft subjects (p-value = 0.023).

    CONCLUSION: The results supported the finding that the genetic aberration on 1p33-32.3 significantly contributed to the development of NSCL/P with or without hypodontia. These results have an exciting prospect in the promising field of individualized preventive oral health care.

    Matched MeSH terms: Genetic Predisposition to Disease
  10. Walsh N, Zhang H, Hyland PL, Yang Q, Mocci E, Zhang M, et al.
    J Natl Cancer Inst, 2019 Jun 01;111(6):557-567.
    PMID: 30541042 DOI: 10.1093/jnci/djy155
    BACKGROUND: Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes.

    METHODS: We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided.

    RESULTS: We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P ≤ 1.3 × 10-5), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets.

    CONCLUSION: Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.

    Matched MeSH terms: Genetic Predisposition to Disease
  11. Mocci E, Kundu P, Wheeler W, Arslan AA, Beane-Freeman LE, Bracci PM, et al.
    Cancer Res, 2021 Jun 01;81(11):3134-3143.
    PMID: 33574088 DOI: 10.1158/0008-5472.CAN-20-3267
    Germline variation and smoking are independently associated with pancreatic ductal adenocarcinoma (PDAC). We conducted genome-wide smoking interaction analysis of PDAC using genotype data from four previous genome-wide association studies in individuals of European ancestry (7,937 cases and 11,774 controls). Examination of expression quantitative trait loci data from the Genotype-Tissue Expression Project followed by colocalization analysis was conducted to determine whether there was support for common SNP(s) underlying the observed associations. Statistical tests were two sided and P < 5 × 10-8 was considered statistically significant. Genome-wide significant evidence of qualitative interaction was identified on chr2q21.3 in intron 5 of the transmembrane protein 163 (TMEM163) and upstream of the cyclin T2 (CCNT2). The most significant SNP using the Empirical Bayes method, in this region that included 45 significantly associated SNPs, was rs1818613 [per allele OR in never smokers 0.87, 95% confidence interval (CI), 0.82-0.93; former smokers 1.00, 95% CI, 0.91-1.07; current smokers 1.25, 95% CI 1.12-1.40, P interaction = 3.08 × 10-9). Examination of the Genotype-Tissue Expression Project data demonstrated an expression quantitative trait locus in this region for TMEM163 and CCNT2 in several tissue types. Colocalization analysis supported a shared SNP, rs842357, in high linkage disequilibrium with rs1818613 (r 2 = 0. 94) driving both the observed interaction and the expression quantitative trait loci signals. Future studies are needed to confirm and understand the differential biologic mechanisms by smoking status that contribute to our PDAC findings. SIGNIFICANCE: This large genome-wide interaction study identifies a susceptibility locus on 2q21.3 that significantly modified PDAC risk by smoking status, providing insight into smoking-associated PDAC, with implications for prevention.
    Matched MeSH terms: Genetic Predisposition to Disease*
  12. Yuan F, Hung RJ, Walsh N, Zhang H, Platz EA, Wheeler W, et al.
    Cancer Res, 2020 Sep 15;80(18):4004-4013.
    PMID: 32641412 DOI: 10.1158/0008-5472.CAN-20-0447
    Registry-based epidemiologic studies suggest associations between chronic inflammatory intestinal diseases and pancreatic ductal adenocarcinoma (PDAC). As genetic susceptibility contributes to a large proportion of chronic inflammatory intestinal diseases, we hypothesize that the genomic regions surrounding established genome-wide associated variants for these chronic inflammatory diseases are associated with PDAC. We examined the association between PDAC and genomic regions (±500 kb) surrounding established common susceptibility variants for ulcerative colitis, Crohn's disease, inflammatory bowel disease, celiac disease, chronic pancreatitis, and primary sclerosing cholangitis. We analyzed summary statistics from genome-wide association studies data for 8,384 cases and 11,955 controls of European descent from two large consortium studies using the summary data-based adaptive rank truncated product method to examine the overall association of combined genomic regions for each inflammatory disease group. Combined genomic susceptibility regions for ulcerative colitis, Crohn disease, inflammatory bowel disease, and chronic pancreatitis were associated with PDAC at P values < 0.05 (0.0040, 0.0057, 0.011, and 3.4 × 10-6, respectively). After excluding the 20 PDAC susceptibility regions (±500 kb) previously identified by GWAS, the genomic regions for ulcerative colitis, Crohn disease, and inflammatory bowel disease remained associated with PDAC (P = 0.0029, 0.0057, and 0.0098, respectively). Genomic regions for celiac disease (P = 0.22) and primary sclerosing cholangitis (P = 0.078) were not associated with PDAC. Our results support the hypothesis that genomic regions surrounding variants associated with inflammatory intestinal diseases, particularly, ulcerative colitis, Crohn disease, inflammatory bowel disease, and chronic pancreatitis are associated with PDAC. SIGNIFICANCE: The joint effects of common variants in genomic regions containing susceptibility loci for inflammatory bowel disease and chronic pancreatitis are associated with PDAC and may provide insights to understanding pancreatic cancer etiology.
    Matched MeSH terms: Genetic Predisposition to Disease*
  13. Rabbolini DJ, Morel-Kopp MC, Chen Q, Gabrielli S, Dunlop LC, Chew LP, et al.
    J Thromb Haemost, 2017 Nov;15(11):2245-2258.
    PMID: 28880435 DOI: 10.1111/jth.13843
    Essentials The phenotypes of different growth factor-independent 1B (GFI1B) variants are not established. GFI1B variants produce heterogeneous clinical phenotypes dependent on the site of mutation. Mutation of the first non-DNA-binding zinc-finger causes a mild platelet and clinical phenotype. GFI1B regulates the CD34 promoter; platelet CD34 expression is an indicator of GFI1B mutation.

    SUMMARY: Background Mutation of the growth factor-independent 1B (GFI1B) fifth DNA-binding zinc-finger domain causes macrothrombocytopenia and α-granule deficiency leading to clinical bleeding. The phenotypes associated with GFI1B variants disrupting non-DNA-binding zinc-fingers remain uncharacterized. Objectives To determine the functional and phenotypic consequences of GFI1B variants disrupting non-DNA-binding zinc-finger domains. Methods The GFI1B C168F variant and a novel GFI1B c.2520 + 1_2520 + 8delGTGGGCAC splice variant were identified in four unrelated families. Phenotypic features, DNA-binding properties and transcriptional effects were determined and compared with those in individuals with a GFI1B H294 fs mutation of the fifth DNA-binding zinc-finger. Patient-specific induced pluripotent stem cell (iPSC)-derived megakaryocytes were generated to facilitate disease modeling. Results The DNA-binding GFI1B variant C168F, which is predicted to disrupt the first non-DNA-binding zinc-finger domain, is associated with macrothrombocytopenia without α-granule deficiency or bleeding symptoms. A GFI1B splice variant, c.2520 + 1_2520 + 8delGTGGGCAC, which generates a short GFI1B isoform that lacks non-DNA-binding zinc-fingers 1 and 2, is associated with increased platelet CD34 expression only, without quantitative or morphologic platelet abnormalities. GFI1B represses the CD34 promoter, and this repression is attenuated by different GFI1B zinc-finger mutations, suggesting that deregulation of CD34 expression occurs at a direct transcriptional level. Patient-specific iPSC-derived megakaryocytes phenocopy these observations. Conclusions Disruption of GFI1B non-DNA-binding zinc-finger 1 is associated with mild to moderate thrombocytopenia without α-granule deficiency or bleeding symptomatology, indicating that the site of GFI1B mutation has important phenotypic implications. Platelet CD34 expression appears to be a common feature of perturbed GFI1B function, and may have diagnostic utility.

    Matched MeSH terms: Genetic Predisposition to Disease
  14. Parsons MT, Tudini E, Li H, Hahnen E, Wappenschmidt B, Feliubadaló L, et al.
    Hum Mutat, 2019 Sep;40(9):1557-1578.
    PMID: 31131967 DOI: 10.1002/humu.23818
    The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification.
    Matched MeSH terms: Genetic Predisposition to Disease
  15. Krishnappa P, Kong HM, Mohamad IB, Voon K, Somanath SD
    J Obstet Gynaecol Res, 2017 May;43(5):923-928.
    PMID: 28181356 DOI: 10.1111/jog.13277
    AIM: The aim of this study was to determine the allelic frequency of single nucleotide polymorphisms (SNPs) in the human CD40 gene in cervical cancer.

    METHODS: A total of 200 cases were selected from the records of the Department of Pathology, Hospital Tuanku Jaafar, Seremban, Malaysia. The samples were collected in three separate groups: cervicitis (n = 61), cervical intraepithelial neoplasia (n = 69), and cervical carcinoma (n = 70). The patients' demographic data and the respective paraffin-embedded tissue samples from Hospital Tuanku Jaafar, Seremban were obtained upon consent. The sample tissues were submitted for DNA extraction using G-spin Total DNA Extraction Kit. DNA obtained was then submitted for nested PCR before restriction enzyme digestion.

    RESULTS: SNP rs1883832 showed higher prevalence of T alleles in the cervical carcinoma group compared to the control groups and in rs3765459, a higher prevalence of G alleles in the cervical carcinoma group was noted. The results of rs1800686 and rs4810485 were insignificant.

    CONCLUSION: The data from our study indicates a potential association between the rs1883832 and rs3765459 CD40 gene polymorphism and susceptibility to cervical cancer.

    Matched MeSH terms: Genetic Predisposition to Disease
  16. Salleh MZ, Teh LK, Lee LS, Ismet RI, Patowary A, Joshi K, et al.
    PLoS One, 2013;8(8):e71554.
    PMID: 24009664 DOI: 10.1371/journal.pone.0071554
    BACKGROUND: With a higher throughput and lower cost in sequencing, second generation sequencing technology has immense potential for translation into clinical practice and in the realization of pharmacogenomics based patient care. The systematic analysis of whole genome sequences to assess patient to patient variability in pharmacokinetics and pharmacodynamics responses towards drugs would be the next step in future medicine in line with the vision of personalizing medicine.

    METHODS: Genomic DNA obtained from a 55 years old, self-declared healthy, anonymous male of Malay descent was sequenced. The subject's mother died of lung cancer and the father had a history of schizophrenia and deceased at the age of 65 years old. A systematic, intuitive computational workflow/pipeline integrating custom algorithm in tandem with large datasets of variant annotations and gene functions for genetic variations with pharmacogenomics impact was developed. A comprehensive pathway map of drug transport, metabolism and action was used as a template to map non-synonymous variations with potential functional consequences.

    PRINCIPAL FINDINGS: Over 3 million known variations and 100,898 novel variations in the Malay genome were identified. Further in-depth pharmacogenetics analysis revealed a total of 607 unique variants in 563 proteins, with the eventual identification of 4 drug transport genes, 2 drug metabolizing enzyme genes and 33 target genes harboring deleterious SNVs involved in pharmacological pathways, which could have a potential role in clinical settings.

    CONCLUSIONS: The current study successfully unravels the potential of personal genome sequencing in understanding the functionally relevant variations with potential influence on drug transport, metabolism and differential therapeutic outcomes. These will be essential for realizing personalized medicine through the use of comprehensive computational pipeline for systematic data mining and analysis.

    Matched MeSH terms: Genetic Predisposition to Disease
  17. Loh HC, Tang PY, Tee SF, Chow TJ, Cheah YC, Singh SS
    Genet. Mol. Res., 2012;11(1):725-30.
    PMID: 22576830 DOI: 10.4238/2012.March.22.2
    A number of studies have pointed to the association of BDNF (brain-derived neurotrophic factor) and DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, 32 kDa) with schizophrenia. The purpose of this study was to determine whether these two genes are involved in the pathogenesis of schizophrenia in the Malay population. Two single nucleotide polymorphisms Val66Met of BDNF, -2036C>G and g.1238delG of DARPP-32 were genotyped in the Malay population in 200 patients with schizophrenia and 256 healthy controls. Analysis of allele and genotype frequencies in these two groups revealed no significant association of BDNF or DARPP-32 polymorphisms with schizophrenia in Malays. This is the first such association study in the Malay population.
    Matched MeSH terms: Genetic Predisposition to Disease
  18. Chakraborty D, Mazumdar P, Than M, Singh R
    Med J Malaysia, 2001 Jun;56(2):223-6.
    PMID: 11771083
    Dermatoglyphic is the study of the epidermal ridges and the pattern formed by them. It may be pointed out that genetic factors have a large share in determining the variations in dermatoglyphics. It is however, suggested by evidence that bipolar mood disorder factors are determined more by genetic factors than by the environmental factors. The experiment has been undertaken to look for the effects of the bipolar mood disorder on dermatoglyphics. The dermatoglyphic characteristics of subjects with bipolar mood disorder when compared with control group revealed significant differences. The radial loop were increased in bipolar mood disorder, but there were little changes in 'atd' angles between normal and bipolar mood disorder.
    Matched MeSH terms: Genetic Predisposition to Disease
  19. Singh HJ
    Malays J Med Sci, 2009 Jan;16(1):7-15.
    PMID: 22589643 MyJurnal
    Hypertensive disorders of pregnancy complicate almost 7 - 10 % of all pregnancies. The dyad of hypertension and proteinuria after 20 weeks of gestation is referred to as pre-eclampsia. It is a major cause of maternal morbidity and mortality and is also associated with increased perinatal problems. Despite intensive research over the years the exact cause of pre-eclampsia remains unknown. Nevertheless, information gleaned from published studies point to the placenta as the probable pathogenetic focus of pre-eclampsia, as the disease usually resolves within 24 - 48 hours after delivery of the placenta. Although the precise involvement of the placenta in pre-eclampsia remains unclear there are indications that the trophoblastic invasion of the uterine spiral arteries is abnormal in women who develop pre-eclampsia. This impaired invasion leads to decreased placental perfusion and ultimately to placental hypoxia. The distressed or ischaemic placenta then secretes a factor(s) into the maternal circulation, which cause/s widespread endothelial cell dysfunction characterized by vasospasm, activation of coagulation system and organ ischaemia. The cause of the defective cytotrophoblastic invasion of the spiral arteries and the link between placental ischaemia and generalized maternal endothelial dysfunction remain unknown. Although the placenta appears to have a major role in the pathogenesis of pre-eclampsia, evidence also suggests that factors like maternal genetic predisposition, dietary, environmental and behaviour, which surface during the stress of pregnancy might also be involved in the development of pre-eclampsia. It is known that not all women with poor cytotrophoblast invasion develop pre-eclampsia and not all women with preeclampsia show poor cytotrophoblast invasion. Over the years, a number of potential risk factors associated with the development of pre-eclampsia are being recognized and it might be appropriate now to develop some preventative strategies based upon the available information.
    Matched MeSH terms: Genetic Predisposition to Disease
  20. Milne RL, Kuchenbaecker KB, Michailidou K, Beesley J, Kar S, Lindström S, et al.
    Nat Genet, 2017 Dec;49(12):1767-1778.
    PMID: 29058716 DOI: 10.1038/ng.3785
    Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified independent associations at P < 5 × 10-8 with ten variants at nine new loci. At P < 0.05, we replicated associations with 10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 16% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer.
    Matched MeSH terms: Genetic Predisposition to Disease/ethnology; Genetic Predisposition to Disease/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links