METHODS: In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced.
RESULTS: GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes.
CONCLUSIONS: GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future.
METHODS: We used results from the Global Burden of Disease (GBD) 2017 study to report incidence, prevalence, years lived with disability, deaths, years of life lost and disability-adjusted life years for all locations in the GBD 2017 hierarchy from 1990 to 2017 for road injuries. Second, we measured mortality-to-incidence ratios by location. Third, we assessed the distribution of the natures of injury (eg, traumatic brain injury) that result from each road injury.
RESULTS: Globally, 1 243 068 (95% uncertainty interval 1 191 889 to 1 276 940) people died from road injuries in 2017 out of 54 192 330 (47 381 583 to 61 645 891) new cases of road injuries. Age-standardised incidence rates of road injuries increased between 1990 and 2017, while mortality rates decreased. Regionally, age-standardised mortality rates decreased in all but two regions, South Asia and Southern Latin America, where rates did not change significantly. Nine of 21 GBD regions experienced significant increases in age-standardised incidence rates, while 10 experienced significant decreases and two experienced no significant change.
CONCLUSIONS: While road injury mortality has improved in recent decades, there are worsening rates of incidence and significant geographical heterogeneity. These findings indicate that more research is needed to better understand how road injuries can be prevented.
OBJECTIVE: With a descriptive epidemiological framing, we assessed whether recent historical patterns of regional influenza burden are reflected in the observed heterogeneity in COVID-19 cases across regions of the world.
METHODS: Weekly surveillance data reported by the World Health Organization from January 2017 to December 2019 for influenza and from January 1, 2020 through October 31, 2020, for COVID-19 were used to assess seasonal and temporal trends for influenza and COVID-19 cases across the seven World Bank regions.
RESULTS: In regions with more pronounced influenza seasonality, COVID-19 epidemics have largely followed trends similar to those seen for influenza from 2017 to 2019. COVID-19 epidemics in countries across Europe, Central Asia, and North America have been marked by a first peak during the spring, followed by significant reductions in COVID-19 cases in the summer months and a second wave in the fall. In Latin America and the Caribbean, COVID-19 epidemics in several countries peaked in the summer, corresponding to months with the highest influenza activity in the region. Countries from regions with less pronounced influenza activity, including South Asia and sub-Saharan Africa, showed more heterogeneity in COVID-19 epidemics seen to date. However, similarities in COVID-19 and influenza trends were evident within select countries irrespective of region.
CONCLUSIONS: Ecological consistency in COVID-19 trends seen to date with influenza trends suggests the potential for shared individual, structural, and environmental determinants of transmission. Using a descriptive epidemiological framework to assess shared regional trends for rapidly emerging respiratory pathogens with better studied respiratory infections may provide further insights into the differential impacts of nonpharmacologic interventions and intersections with environmental conditions. Ultimately, forecasting trends and informing interventions for novel respiratory pathogens like COVID-19 should leverage epidemiologic patterns in the relative burden of past respiratory pathogens as prior information.
METHODS: Based on health stock data from 1990 to 2015 for 140 countries, we estimated Gini coefficients of health stock to investigate associations with a well-known economic flow indicator, Gross Domestic Product (GDP), stock-based national wealth indicator, Inclusive Wealth Index (IWI), and firm-level net income.
RESULTS: The estimated Gini coefficient of global health stock shows that health stock has experienced a global decline. The Gini coefficient for low-income countries (LICs) showed the fastest decline in health stock, dropping from 0.69 to 0.66 in 25 years. Next, rapid population growth and the rise in the youth share of the working-age population in LICs were most likely contributing factors to the decline in inequality. Most countries that experienced positive health stock growth also indicated a strong positive relationship with GDP and IWI. However, some countries showed a negative relationship with natural capital, which is a part of IWI. In addition, firm-level net income showed no obvious associations with health stock, GDP and IWI.
CONCLUSIONS: We argue that a negative relationship between health stock and natural capital is a sign of unstable development because sustainable development involves maintaining not only GDP but also IWI, as it is a collective set of assets or wealth comprising human, produced and natural capital. Moreover, in our analysis of firm-level income data, we also discuss that income will be influenced by other factors, such as innovations, human resources, organization culture and strategy. Therefore, the paper concludes that health stock is a vital component in measuring health inequality and health-related Sustainable Development Goals (SDGs). Thus, IWI is more comprehensive in measuring national wealth and can complement GDP in measuring progress toward sustainable development.
METHODS: We conducted a population-based study using data from the Global Cancer Observatory (GLOBOCAN) 2022 and predicted global radiotherapy demands and workforce requirements in 2050. We obtained incidence figures for 29 types of cancer across 183 countries and derived the cancer-specific radiotherapy use rate using the 2013 Collaboration for Cancer Outcomes Research and Evaluation model. We delineated the proportion of people with cancer who require radiotherapy and can be accommodated within the existing installed capacity, assuming an optimal use rate of 50% or 64%, in both 2022 and 2050. A use rate of 50% corresponds to the global average and a use rate of 64% considers potential re-treatment scenarios, as indicated by the 2013 Collaboration for Cancer Outcomes Research and Evaluation (CCORE) radiotherapy use rate model. We established specified requirements for teletherapy units at a ratio of 1:450 patients, for radiation oncologists at a ratio of 1:250 patients, for medical physicists at a ratio of 1:450 patients, and for radiation therapists at a ratio of 1:150 patients in all countries and consistently using these ratios. We collected current country-level data on the radiotherapy-professional workforce from national health reports, oncology societies, or other authorities from 32 countries.
FINDINGS: In 2022, there were an estimated 20·0 million new cancer diagnoses, with approximately 10·0 million new patients needing radiotherapy at an estimated use rate of 50% and 12·8 million at an estimated use rate of 64%. In 2050, GLOBOCAN 2022 data indicated 33·1 million new cancer diagnoses, with 16·5 million new patients needing radiotherapy at an estimated use rate of 50% and 21·2 million at an estimated use rate of 64%. These findings indicate an absolute increase of 8·4 million individuals requiring radiotherapy from 2022 to 2050 at an estimated use rate of 64%; at an estimated use rate of 50%, the absolute increase would be 6·5 million individuals. Asia was estimated to have the highest radiotherapy demand in 2050 (11 119 478 [52·6%] of 21 161 603 people with cancer), followed by Europe (3 564 316 [16·8%]), North America (2 546 826 [12·0%]), Latin America and the Caribbean (1 837 608 [8·7%]), Africa (1 799 348 [8·5%]), and Oceania (294 026 [1·4%]). We estimated that the global radiotherapy workforce in 2022 needed 51 111 radiation oncologists, 28 395 medical physicists, and 85 184 radiation therapists and 84 646 radiation oncologists, 47 026 medical physicists, and 141 077 radiation therapists in 2050. We estimated that the largest proportion of the radiotherapy workforce in 2050 would be in upper-middle-income countries (101 912 [38·8%] of 262 624 global radiotherapy professionals).
INTERPRETATION: Urgent strategies are required to empower the global health-care workforce and facilitate the fundamental human right of access to suitable health care. A collective effort with innovative and cost-contained health-care strategies from all stakeholders is warranted to enhance global accessibility to radiotherapy and address challenges in cancer care.
FUNDING: China Medical Board Global Health Leadership Development Program, Shanghai Science and Technology Committee Fund, China Ministry of Science and Technology Department of International Cooperation High Level Cooperation and Exchange Projects, and Fudan University Office of Global Partnerships Key Projects Development Fund.
TRANSLATIONS: For the Arabic, Chinese, French, Russian and Spanish translations of the summary see Supplementary Materials section.
METHODS: We downloaded COVID-19 outbreak data of the number of confirmed cases in all countries as of October 19, 2020. The IRT-based predictive model was built to determine the pandemic IP for each country. A model building scheme was demonstrated to fit the number of cumulative infected cases. Model parameters were estimated using the Solver add-in tool in Microsoft Excel. The absolute advantage coefficient (AAC) was computed to track the IP at the minimum of incremental points on a given ogive curve. The time-to-event analysis (a.k.a. survival analysis) was performed to compare the difference in IPs among continents using the area under the curve (AUC) and the respective 95% confidence intervals (CIs). An online comparative dashboard was created on Google Maps to present the epidemic prediction for each country.
RESULTS: The top 3 countries that were hit severely by COVID-19 were France, Malaysia, and Nepal, with IP days at 263, 262, and 262, respectively. The top 3 continents that were hit most based on IP days were Europe, South America, and North America, with their AUCs and 95% CIs at 0.73 (0.61-0.86), 0.58 (0.31-0.84), and 0.54 (0.44-0.64), respectively. An online time-event result was demonstrated and shown on Google Maps, comparing the IP probabilities across continents.
CONCLUSION: An IRT modeling scheme fitting the epidemic data was used to predict the length of IP days. Europe, particularly France, was hit seriously by COVID-19 based on the IP days. The IRT model incorporated with AAC is recommended to determine the pandemic IP.
METHODS: We estimated incidence, prevalence, death, and disability-adjusted life-year (DALY) counts and age-standardised rates per 100 000 people per year for overall stroke, ischaemic stroke, intracerebral haemorrhage, and subarachnoid haemorrhage, for 204 countries and territories from 1990 to 2021. We also calculated burden of stroke attributable to 23 risk factors and six risk clusters (air pollution, tobacco smoking, behavioural, dietary, environmental, and metabolic risks) at the global and regional levels (21 GBD regions and Socio-demographic Index [SDI] quintiles), using the standard GBD methodology. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline.
FINDINGS: In 2021, stroke was the third most common GBD level 3 cause of death (7·3 million [95% UI 6·6-7·8] deaths; 10·7% [9·8-11·3] of all deaths) after ischaemic heart disease and COVID-19, and the fourth most common cause of DALYs (160·5 million [147·8-171·6] DALYs; 5·6% [5·0-6·1] of all DALYs). In 2021, there were 93·8 million (89·0-99·3) prevalent and 11·9 million (10·7-13·2) incident strokes. We found disparities in stroke burden and risk factors by GBD region, country or territory, and SDI, as well as a stagnation in the reduction of incidence from 2015 onwards, and even some increases in the stroke incidence, death, prevalence, and DALY rates in southeast Asia, east Asia, and Oceania, countries with lower SDI, and people younger than 70 years. Globally, ischaemic stroke constituted 65·3% (62·4-67·7), intracerebral haemorrhage constituted 28·8% (28·3-28·8), and subarachnoid haemorrhage constituted 5·8% (5·7-6·0) of incident strokes. There were substantial increases in DALYs attributable to high BMI (88·2% [53·4-117·7]), high ambient temperature (72·4% [51·1 to 179·5]), high fasting plasma glucose (32·1% [26·7-38·1]), diet high in sugar-sweetened beverages (23·4% [12·7-35·7]), low physical activity (11·3% [1·8-34·9]), high systolic blood pressure (6·7% [2·5-11·6]), lead exposure (6·5% [4·5-11·2]), and diet low in omega-6 polyunsaturated fatty acids (5·3% [0·5-10·5]).
INTERPRETATION: Stroke burden has increased from 1990 to 2021, and the contribution of several risk factors has also increased. Effective, accessible, and affordable measures to improve stroke surveillance, prevention (with the emphasis on blood pressure, lifestyle, and environmental factors), acute care, and rehabilitation need to be urgently implemented across all countries to reduce stroke burden.
FUNDING: Bill & Melinda Gates Foundation.
METHODS: We estimated all-age and age-specific deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 22 pathogens, 84 pathogen-drug combinations, and 11 infectious syndromes in 204 countries and territories from 1990 to 2021. We collected and used multiple cause of death data, hospital discharge data, microbiology data, literature studies, single drug resistance profiles, pharmaceutical sales, antibiotic use surveys, mortality surveillance, linkage data, outpatient and inpatient insurance claims data, and previously published data, covering 520 million individual records or isolates and 19 513 study-location-years. We used statistical modelling to produce estimates of AMR burden for all locations, including those with no data. Our approach leverages the estimation of five broad component quantities: the number of deaths involving sepsis; the proportion of infectious deaths attributable to a given infectious syndrome; the proportion of infectious syndrome deaths attributable to a given pathogen; the percentage of a given pathogen resistant to an antibiotic of interest; and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden attributable to and associated with AMR, which we define based on two counterfactuals; respectively, an alternative scenario in which all drug-resistant infections are replaced by drug-susceptible infections, and an alternative scenario in which all drug-resistant infections were replaced by no infection. Additionally, we produced global and regional forecasts of AMR burden until 2050 for three scenarios: a reference scenario that is a probabilistic forecast of the most likely future; a Gram-negative drug scenario that assumes future drug development that targets Gram-negative pathogens; and a better care scenario that assumes future improvements in health-care quality and access to appropriate antimicrobials. We present final estimates aggregated to the global, super-regional, and regional level.
FINDINGS: In 2021, we estimated 4·71 million (95% UI 4·23-5·19) deaths were associated with bacterial AMR, including 1·14 million (1·00-1·28) deaths attributable to bacterial AMR. Trends in AMR mortality over the past 31 years varied substantially by age and location. From 1990 to 2021, deaths from AMR decreased by more than 50% among children younger than 5 years yet increased by over 80% for adults 70 years and older. AMR mortality decreased for children younger than 5 years in all super-regions, whereas AMR mortality in people 5 years and older increased in all super-regions. For both deaths associated with and deaths attributable to AMR, meticillin-resistant Staphylococcus aureus increased the most globally (from 261 000 associated deaths [95% UI 150 000-372 000] and 57 200 attributable deaths [34 100-80 300] in 1990, to 550 000 associated deaths [500 000-600 000] and 130 000 attributable deaths [113 000-146 000] in 2021). Among Gram-negative bacteria, resistance to carbapenems increased more than any other antibiotic class, rising from 619 000 associated deaths (405 000-834 000) in 1990, to 1·03 million associated deaths (909 000-1·16 million) in 2021, and from 127 000 attributable deaths (82 100-171 000) in 1990, to 216 000 (168 000-264 000) attributable deaths in 2021. There was a notable decrease in non-COVID-related infectious disease in 2020 and 2021. Our forecasts show that an estimated 1·91 million (1·56-2·26) deaths attributable to AMR and 8·22 million (6·85-9·65) deaths associated with AMR could occur globally in 2050. Super-regions with the highest all-age AMR mortality rate in 2050 are forecasted to be south Asia and Latin America and the Caribbean. Increases in deaths attributable to AMR will be largest among those 70 years and older (65·9% [61·2-69·8] of all-age deaths attributable to AMR in 2050). In stark contrast to the strong increase in number of deaths due to AMR of 69·6% (51·5-89·2) from 2022 to 2050, the number of DALYs showed a much smaller increase of 9·4% (-6·9 to 29·0) to 46·5 million (37·7 to 57·3) in 2050. Under the better care scenario, across all age groups, 92·0 million deaths (82·8-102·0) could be cumulatively averted between 2025 and 2050, through better care of severe infections and improved access to antibiotics, and under the Gram-negative drug scenario, 11·1 million AMR deaths (9·08-13·2) could be averted through the development of a Gram-negative drug pipeline to prevent AMR deaths.
INTERPRETATION: This study presents the first comprehensive assessment of the global burden of AMR from 1990 to 2021, with results forecasted until 2050. Evaluating changing trends in AMR mortality across time and location is necessary to understand how this important global health threat is developing and prepares us to make informed decisions regarding interventions. Our findings show the importance of infection prevention, as shown by the reduction of AMR deaths in those younger than 5 years. Simultaneously, our results underscore the concerning trend of AMR burden among those older than 70 years, alongside a rapidly ageing global community. The opposing trends in the burden of AMR deaths between younger and older individuals explains the moderate future increase in global number of DALYs versus number of deaths. Given the high variability of AMR burden by location and age, it is important that interventions combine infection prevention, vaccination, minimisation of inappropriate antibiotic use in farming and humans, and research into new antibiotics to mitigate the number of AMR deaths that are forecasted for 2050.
FUNDING: UK Department of Health and Social Care's Fleming Fund using UK aid, and the Wellcome Trust.
METHODS: This study was conducted based on the PRISMA 2020 criteria. Initial searching was conducted using MeSH (Medical Subject Headings)-based keywords with no time limitation (by August 1, 2024). Collected papers were transferred to Citation Management Software (EndNote). Duplicate studies were merged and primary and secondary screenings were applied based on the inclusion/exclusion criteria. Validation was considered to find high-quality assessments. Finally, eligible extractable papers were enrolled for data collection. Data was analyzed using Comprehensive Meta-Analysis software (v.2) The random effects model was used in case of I2 index above 50%.In order to investigate the factors affecting the heterogeneity of studies, meta-regression tests were used to examine factors such as sample size and year of study.
RESULTS: One hundred thirty-eight eligible studies with a total sample size of 135,098 pregnant women individuals were selected for data extraction and analysis. The heterogeneity index was found high (I2:98.9) and the random effect model was used for analysis. The egger test revealed the absence of publication bias in collected studies (p:0.088). Thus, the global seroprevalence of Toxoplasma gondii in pregnant women was reported at 36.6% (95%CI:33.7-39.6). the highest prevalence reported based on meta-analysis was reported in South America with 52.8% (95% CI:46.6-59), while only 15 studies were reviewed in this continent, most of which were in Brazil. Therefore, after the continent, the highest prevalence reported was reported in Africa with 46.8% (95% CI:39.5-54.3). Also, the lowest prevalence reported based on meta-analysis was in North America with 19.7% (95% CI:8.4-39.6) and Europe with 24.6% (95% CI:17.8-32.9).
CONCLUSION: This study revealed a high level of seroprevalence of Toxoplasma gondii in pregnant women worldwide. This value mostly depends on the individual's age, lifestyle, and disease awareness regarding toxoplasmosis in pregnant women. Thus, public awareness, along with comprehensive health programs regarding the detrimental effects of toxoplasmosis in pregnant women, seems necessary for prevention or even early diagnosis of toxoplasmosis in pregnant women.