Displaying publications 81 - 100 of 737 in total

Abstract:
Sort:
  1. Shazleen SS, Yasim-Anuar TAT, Ibrahim NA, Hassan MA, Ariffin H
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513688 DOI: 10.3390/polym13030389
    Polylactic acid (PLA), a potential alternative material for single use plastics, generally portrays a slow crystallization rate during melt-processing. The use of a nanomaterial such as cellulose nanofibers (CNF) may affect the crystallization rate by acting as a nucleating agent. CNF at a certain wt.% has been evidenced as a good reinforcement material for PLA; nevertheless, there is a lack of information on the correlation between the amount of CNF in PLA that promotes its functionality as reinforcement material, and its effect on PLA nucleation for improving the crystallization rate. This work investigated the nucleation effect of PLA incorporated with CNF at different fiber loading (1-6 wt.%) through an isothermal and non-isothermal crystallization kinetics study using differential scanning calorimetry (DSC) analysis. Mechanical properties of the PLA/CNF nanocomposites were also investigated. PLA/CNF3 exhibited the highest crystallization onset temperature and enthalpy among all the PLA/CNF nanocomposites. PLA/CNF3 also had the highest crystallinity of 44.2% with an almost 95% increment compared to neat PLA. The highest crystallization rate of 0.716 min-1 was achieved when PLA/CNF3 was isothermally melt crystallized at 100 °C. The crystallization rate was 65-fold higher as compared to the neat PLA (0.011 min-1). At CNF content higher than 3 wt.%, the crystallization rate decreased, suggesting the occurrence of agglomeration at higher CNF loading as evidenced by the FESEM micrographs. In contrast to the tensile properties, the highest tensile strength and Young's modulus were recorded by PLA/CNF4 at 76.1 MPa and 3.3 GPa, respectively. These values were, however, not much different compared to PLA/CNF3 (74.1 MPa and 3.3 GPa), suggesting that CNF at 3 wt.% can be used to improve both the crystallization rate and the mechanical properties. Results obtained from this study revealed the dual function of CNF in PLA nanocomposite, namely as nucleating agent and reinforcement material. Being an organic and biodegradable material, CNF has an increased advantage for use in PLA as compared to non-biodegradable material and is foreseen to enhance the potential use of PLA in single use plastics applications.
    Matched MeSH terms: Hot Temperature
  2. Liu C, Zhao M, Zheng Y, Cheng L, Zhang J, Tee CATH
    Langmuir, 2021 Jan 26;37(3):983-1000.
    PMID: 33443436 DOI: 10.1021/acs.langmuir.0c02758
    When two or more droplets coalesce on a superhydrophobic surface, the merged droplet can jump spontaneously from the surface without requiring any external energy. This phenomenon is defined as coalescence-induced droplet jumping and has received significant attention due to its potential applications in a variety of self-cleaning, anti-icing, antifrosting, and condensation heat-transfer enhancement uses. This article reviews the research and applications of coalescence-induced droplet jumping behavior in recent years, including the influence of droplet parameters on coalescence-induced droplet jumping, such as the droplet size, number, and initial velocity, to name a few. The main structure types and influence mechanism of the superhydrophobic substrates for coalescence-induced droplet jumping are described, and the potential application areas of coalescence-induced droplet jumping are summarized and forecasted.
    Matched MeSH terms: Hot Temperature
  3. Rahman AM, Jamayet NB, Nizami MMUI, Johari Y, Husein A, Alam MK
    J Prosthet Dent, 2021 Jan 17.
    PMID: 33472753 DOI: 10.1016/j.prosdent.2020.07.026
    STATEMENT OF PROBLEM: The climate of tropical Southeast Asia includes high humidity and ultraviolet radiation that reduce the lifespan of silicone prostheses by inducing changes in their mechanical properties and color stability. Studies on the surface roughness (SR) and mechanical properties of different silicone elastomers (SEs) subjected to the natural tropical weather of Southeast Asia are lacking.

    PURPOSE: The purpose of this in vitro study was to evaluate the SR, tensile strength (TS), and percentage elongation (% E) of different SEs subjected to outdoor weathering in the Malaysian climate.

    MATERIAL AND METHODS: Type-II dumbbell-shaped specimens (N-120) (nonweathered=15, weathered=15) were made from 3 room-temperature vulcanized (A-2000, A-2006, and A-103) and 1 heat-temperature vulcanized (M-511) silicone (Factor II). For 6 months, weathered specimens were subjected to outdoor weathering inside a custom exposure rack. Simultaneously, the nonweathered specimens were kept in a dehumidifier. Subsequently, the SR was measured with a profilometer; TS and % E were measured by using a universal testing machine. Two-way ANOVA was used to compare the means of the tested properties of the nonweathered and weathered specimens, and pairwise comparison was carried out between the silicones (α=.05).

    RESULTS: After outdoor weathering, the SR, TS, and % E were adversely affected by weathering in the Malaysian environment. Among the silicone materials, A-2000 showed the least TS changes (2.51 MPa), while A-2006 demonstrated significant changes in percentage elongation after outdoor weathering (266.5%). M-511 exhibited the highest mean value (2.50 μm) for SR changes. In addition, A-103 SE showed statistically significant differences in most pairwise comparisons for all 3 dependent variables.

    CONCLUSIONS: Based on the evaluation of mechanical properties, A-103 can be suggested as a suitable silicone for maxillofacial prostheses fabricated for tropical climates. However, A-2000 can be a suitable alternative, although significant changes to surface roughness were detected after outdoor weathering.

    Matched MeSH terms: Hot Temperature
  4. Ahmad Tarmizi AH, Kuntom A
    PMID: 33397128 DOI: 10.1080/10408398.2020.1865264
    3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) are processed-developed contaminants presence in vegetable oils after undergo refining process under excessive heat. Refined oils are extensively used in various frying applications, nevertheless, the reservation against their quality and safety aspects are of major concern to consumers and food industry. Realizing the importance to address these issues, this article deliberates an overview of published studies on the manifestation of 3-MCPDE and GE when vegetable oils undergo for frying process. With the modest number of published frying research associated to 3-MCPDE and GE, we confined our review from the perspectives of frying conditions, product properties, antioxidants and additives, pre-frying treatments and frying oil management. Simplicity of the frying process is often denied by the complexity of reactions occurred between oil and food which led to the development of unwanted contaminants. The behavior of 3-MCPDE and GE is closely related to physico-chemical characteristics of oils during frying. As such, relationships between 3-MCPDE and/or GE with frying quality indices - i.e. acidity in term of free fatty acid or acid value); secondary oxidation in term of p-anisidine value, total polar compounds and its fractions, and refractive index - were also discussed when oils were subjected under intermittent and continuous frying conditions.
    Matched MeSH terms: Hot Temperature
  5. Chua CY, Wong CMVL
    Can J Microbiol, 2021 Jan;67(1):64-74.
    PMID: 33084348 DOI: 10.1139/cjm-2019-0461
    The effects of global warming are increasingly evident, where global surface temperatures and atmospheric concentration of carbon dioxide have increased in past decades. Given the role of terrestrial bacteria in various ecological functions, it is important to understand how terrestrial bacteria would respond towards higher environmental temperatures. This study aims to determine soil bacterial diversity in the tropics and their response towards in situ warming using an open-top chamber (OTC). OTCs were set up in areas exposed to sunlight throughout the year in the tropical region in Malaysia. Soil samples were collected every 3 months to monitor changes in bacterial diversity using V3-V4 16S rDNA amplicon sequencing inside the OTCs (treatment plots) and outside the OTCs (control plots). After 12 months of simulated warming, an average increase of 0.81 to 1.15 °C was recorded in treatment plots. Significant changes in the relative abundance of bacterial phyla such as Bacteroidetes and Chloroflexi were reported. Increases in the relative abundance of Actinobacteria were also observed in treatment plots after 12 months. Substantial changes were observed at the genus level, where most bacterial genera decreased in relative abundance after 12 months. This study demonstrated that warming can alter soil bacteria in tropical soils from Kota Kinabalu.
    Matched MeSH terms: Hot Temperature/adverse effects
  6. Herrera M, Klein SG, Campana S, Chen JE, Prasanna A, Duarte CM, et al.
    ISME J, 2021 01;15(1):141-153.
    PMID: 32934356 DOI: 10.1038/s41396-020-00768-y
    Coral reef research has predominantly focused on the effect of temperature on the breakdown of coral-dinoflagellate symbioses. However, less is known about how increasing temperature affects the establishment of new coral-dinoflagellate associations. Inter-partner specificity and environment-dependent colonization are two constraints proposed to limit the acquisition of more heat tolerant symbionts. Here, we investigated the symbiotic dynamics of various photosymbionts in different host genotypes under "optimal" and elevated temperature conditions. To do this, we inoculated symbiont-free polyps of the sea anemone Exaiptasia pallida originating from Hawaii (H2), North Carolina (CC7), and the Red Sea (RS) with the same mixture of native symbiont strains (Breviolum minutum, Symbiodinium linucheae, S. microadriaticum, and a Breviolum type from the Red Sea) at 25 and 32 °C, and assessed their ITS2 composition, colonization rates, and PSII photochemical efficiency (Fv/Fm). Symbiont communities across thermal conditions differed significantly for all hosts, suggesting that temperature rather than partner specificity had a stronger effect on symbiosis establishment. Overall, we detected higher abundances of more heat resistant Symbiodiniaceae types in the 32 °C treatments. Our data further showed that PSII photophysiology under elevated temperature improved with thermal pre-exposure (i.e., higher Fv/Fm), yet, this effect depended on host genotype and was influenced by active feeding as photochemical efficiency dropped in response to food deprivation. These findings highlight the role of temperature and partner fidelity in the establishment and performance of symbiosis and demonstrate the importance of heterotrophy for symbiotic cnidarians to endure and recover from stress.
    Matched MeSH terms: Hot Temperature
  7. Akhbar MFA, Sulong AW
    Ann Biomed Eng, 2021 Jan;49(1):29-56.
    PMID: 32860111 DOI: 10.1007/s10439-020-02600-2
    As drilling generates substantial bone thermomechanical damage due to inappropriate cutting tool selection, researchers have proposed various approaches to mitigate this problem. Among these, improving the drill bit design is one of the most feasible and economical solutions. The theory and applications in drill design have been progressing, and research has been published in various fields. However, pieces of information on drill design are dispersed, and no comprehensive review paper focusing on this topic. Systemizing this information is crucial and, therefore, the impetus of this review. Here, we review not only the state-of-the-art in drill bit designs-advances in surgical drill bit design-but also the influences of each drill bit geometries on bone damage. Also, this work provides future directions for this topic and guidelines for designing an improved surgical drill bit. The information in this paper would be useful as a one-stop document for clinicians, engineers, and researchers who require information related to the tool design in bone drilling surgery.
    Matched MeSH terms: Hot Temperature/adverse effects*
  8. Muhammad Aniq Qayyum Mohamad Sukry, Norazlina Subani, Muhammad Arif Hannan, Faizzuddin Jamaluddin, Ahmad Danial Hidayatullah Badrolhisam
    MyJurnal
    Partial differential equations involve results of unknown functions when there are multiple independent variables. There is a need for analytical solutions to ensure partial differential equations could be solved accurately. Thus, these partial differential equations could be solved using the right initial and boundaries conditions. In this light, boundary conditions depend on the general solution; the partial differential equations should present particular solutions when paired with varied boundary conditions. This study analysed the use of variable separation to provide an analytical solution of the homogeneous, one-dimensional heat equation. This study is applied to varied boundary conditions to examine the flow attributes of the heat equation. The solution is verified through different boundary conditions: Dirichlet, Neumann, and mixed-insulated boundary conditions. the initial value was kept constant despite the varied boundary conditions. There are two significant findings in this study. First, the temperature profile changes are influenced by the boundary conditions, and that the boundary conditions are dependent on the heat equation’s flow attributes.

    Matched MeSH terms: Hot Temperature
  9. Salmiah Jamal Mat Rosid, Susilawati Toemen, Wan Azelee Wan Abu Bakar, Sarina Mat Rosid, Wan Nazwanie Wan Abdullah, Siti Maisarah Aziz
    MyJurnal
    Lanthanide element in the methanation reaction gives an excellent catalytic performance at low reaction temperature. Praseodymium is one of lanthanide element and was chosen due to its properties which are thermally stable and provide excess of oxygen in the oxide lattice. Therefore, a catalyst of Ru/Mn/Pr (5:30:65)/Al2O3 (RMP, 5:30:65/Al2O3) was prepared via wetness impregnation method and the effect of calcination temperature on the catalyst performance was investigated using FTIR analysis. The RMP/Al2O3 catalyst calcined at 800 o C was chosen as an excel catalyst with CO2 conversion of 96.9% and CH4 formation of 45.1% at 350 o C reaction temperature. From the EDX mapping, it can be observed that the distribution of all element is homogeneous at 800 o C and 900 o C except Ru, O and Al at 1000 o C calcination temperature. The image from FESEM also shows the presence of some crystal shape on the catalyst surface. From the FTIR analysis, the peak stretching and bending mode of O-H bond decreased when the calcination temperature increased.
    Matched MeSH terms: Hot Temperature
  10. Mat Noor NA, Shafie S, Admon MA
    PLoS One, 2021;16(5):e0250402.
    PMID: 33956793 DOI: 10.1371/journal.pone.0250402
    The heat and mass transfer on time dependent hydrodynamic squeeze flow of Jeffrey nanofluid across two plates over permeable medium in the slip condition with heat generation/absorption, thermal radiation and chemical reaction are investigated. The impacts of Brownian motion and thermophoresis is examined in the Buongiorno's nanofluid model. Conversion of the governing partial differential equations to the ordinary differential equations is conducted via similarity transformation. The dimensionless equations are solved by imposing numerical method of Keller-box. The outputs are compared with previous reported works in the journals for the validation of the present outputs and found in proper agreement. The behavior of velocity, temperature, and nanoparticles concentration profiles by varying the pertinent parameters are examined. Findings portray that the acceleration of the velocity profile and the wall shear stress is due to the squeezing of plates. Furthermore, the velocity, temperature and concentration profile decline with boost in Hartmann number and ratio of relaxation to retardation times. It is discovered that the rate of heat transfer and temperature profile increase when viscous dissipation, thermophoresis and heat source/sink rises. In contrast, the increment of thermal radiation reduces the temperature and enhances the heat transfer rate. Besides, the mass transfer rate decelerates for increasing Brownian motion in nanofluid, while it elevates when chemical reaction and thermophoresis increases.
    Matched MeSH terms: Hot Temperature*
  11. Fatima N, Karimov KS, Qasuria TA, Ibrahim MA
    J Alloys Compd, 2020 Dec 30;849:156702.
    PMID: 32834521 DOI: 10.1016/j.jallcom.2020.156702
    In this research, due to the present pandemic of COVID-19, we are proposing a stable and fixed semitransparent photo-thermoelectric cell (PTEC) module for green energy harvesting. This module is based on the alloy of Bismuth Telluride Selenide (Bi2Te3Se), designed in a press tablet form and characterized under solar energy. Here, both aspects of solar energy i.e., light and heat are utilized for both energy production and water heating. The semitransparent PTEC converts heat energy directly to electrical energy due to the gradient of temperature between two electrodes (top and bottom) of thermoelectric cells. The PTEC is 25% transparent, which can be varied according to the necessity of the utilizer. The X-ray diffraction of material and electric characterization of module i.e., open-circuited voltage (VOC) and Seebeck coefficient were performed. The experimental observations disclose that in the proposed PTEC module with an increment in the average temperature (TAvg) from 34 to 60 °C, results in the rise of VOC ∼ 2.4 times. However, by modifying the size of heat-absorbing top electrode and by increasing the temperature gradient through the addition of water coolant under the bottom electrode, an uplift in the champion device results in as increment of VOC ∼5.5 times and Seebeck coefficient obtained was -250 μV/0C, respectively. Results show that not only the selection of material but also the external modifications in the device highly effective the power efficiency of the devices. The proposed modules can generate electric power from light and utilize the penetrating sunlight inside the room and for the heating of the water which also acts as a coolant. These semitransparent thermoelectric cells can be built-in within windows and roofs of buildings and can potentially contribute to green energy harvesting, in situations where movement is restricted locally or globally.
    Matched MeSH terms: Hot Temperature
  12. Pakalapati H, Show PL, Chang JH, Liu BL, Chang YK
    Int J Biol Macromol, 2020 Dec 15;165(Pt B):2494-2507.
    PMID: 33736272 DOI: 10.1016/j.ijbiomac.2020.10.099
    In this research, a protein nanofiber membrane (P-COOH-CEW) was developed to treat the dye waste. Initially, polyacrylonitrile nanofiber membrane (PAN) was prepared by electrospinning, followed by heat treatment, alkaline treatment, and neutralization to obtain weak cation exchange nanofiber membrane (P-COOH). The P-COOH membrane was chemically coated with chicken egg white (CEW) proteins to obtain a 3D structure of complex protein nanofiber membrane (P-COOH-CEW). The composite prepared was characterized with Fourier Transform Infrared analysis (FTIR), Scanning Electron Microscopy (SEM), and thermogravimetric analysis (TGA). Further, the composite was evaluated by investigating the removal of Toluidine Blue O (TBO) from aqueous solutions in batch conditions. Different operating parameters - coupling of CEW, shaking rate, initial pH, contact time, temperature, and dye concentration were studied. From the results, maximum removal capacity and equilibrium association constant was determined to be 546.24 mg/g and 10.18 mg/mg, respectively at pH 10 and 298 K. The experimental data were well fitted to pseudo-second order model. Furthermore, desorption studies revealed that the adsorbed TBO can be completely eluted by using 50% ethanol or 50% glycerol in 1 M NaCl solution. Additionally, the reuse of P-COOH-CEW membrane reported to have 97.32% of removal efficiency after five consecutive adsorption/desorption cycles.
    Matched MeSH terms: Hot Temperature
  13. Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM
    Int J Biol Macromol, 2020 Dec 01;164:3155-3162.
    PMID: 32841666 DOI: 10.1016/j.ijbiomac.2020.08.162
    The conversion of aldehydes to valuable alkanes via cyanobacterial aldehyde deformylating oxygenase is of great interest. The availability of fossil reserves that keep on decreasing due to human exploitation is worrying, and even more troubling is the combustion emission from the fuel, which contributes to the environmental crisis and health issues. Hence, it is crucial to use a renewable and eco-friendly alternative that yields compound with the closest features as conventional petroleum-based fuel, and that can be used in biofuels production. Cyanobacterial aldehyde deformylating oxygenase (ADO) is a metal-dependent enzyme with an α-helical structure that contains di‑iron at the active site. The substrate enters the active site of every ADO through a hydrophobic channel. This enzyme exhibits catalytic activity toward converting Cn aldehyde to Cn-1 alkane and formate as a co-product. These cyanobacterial enzymes are small and easy to manipulate. Currently, ADOs are broadly studied and engineered for improving their enzymatic activity and substrate specificity for better alkane production. This review provides a summary of recent progress in the study of the structure and function of ADO, structural-based engineering of the enzyme, and highlight its potential in producing biofuels.
    Matched MeSH terms: Hot Temperature
  14. Pramanik A, Basak AK, Littlefair G, Debnath S, Prakash C, Singh MA, et al.
    Heliyon, 2020 Dec;6(12):e05554.
    PMID: 33344787 DOI: 10.1016/j.heliyon.2020.e05554
    Titanium alloys are difficult to machine using conventional methods, therefore, nonconventional processes are often chosen in many applications. Electrical discharge machining (EDM) is one of those nonconventional processes that is used frequently for shaping titanium alloys with their respective pros and cons. However, a good understanding of this process is very difficult to achieve as research results are not properly connected and presented. Therefore, this study investigates different types of EDM processes such as, wire EDM, die-sink EDM, EDM drill and hybrid EDM used to machine titanium alloys. Machining mechanism, tool electrode, dielectric, materials removal rate (MRR), and surface integrity of all these processes are critically analysed and correlated based on the evidence accessible in literature. Machining process suffer from lower material removal rate and high tool wear while applied on titanium alloys. Formation of recast layer, heat affected zone and tool wear is common in all types of EDM processes. Additional challenge in wire EDM of titanium alloys is wire breakage under severe machining conditions. The formation of TiC and TiO2 are noticed in recast layer depending on the type of dielectrics. Removal of debris from small holes during EDM drilling is a challenge. All these restricts the applications EDMed titanium alloys in high-tech applications such as, aerospace and biomedical areas. Most of these challenges come up due to extraordinary properties such as, low thermal conductivity, high melting point and high hardness, of titanium alloys. Though hybrid EDM has been introduced and there is some work on simulation of EDM process, further developments in EDM of this alloy is required for widening the application of this methods.
    Matched MeSH terms: Hot Temperature
  15. Umar S, Sulaiman F, Abdullah N, Mohamad SN
    J Nanosci Nanotechnol, 2020 12 01;20(12):7569-7576.
    PMID: 32711628 DOI: 10.1166/jnn.2020.18616
    Conventional thermal fluids with suspended nanoparticles, known as nanofluids, have been developed for heat transfer applications. Heat transfer loss could be reduced significantly if the thermophysical properties of the heat transfer fluid are improved, which to some extent, could reduce the present global environmental challenges associated with energy utilization, such as climate change and global warming. In this work, the role of the concentration of sodium dodecyl-benzene sulfonate (SDBS) in the stability of Al₂O₃/bio-oil nanofluid is investigated the zeta potential value, and its implications to the viscosity and thermal conductivity of the nanofluid are explored. The bio-oil based nanofluid is fixed using a two-step method in which the prepared base fluid is added with 13-nm alumina nanoparticles powder. Various weight fractions of SDBS (0.1, 0.2, 0.4, 0.6, and 1.0 wt%) are used for both 0.1 and 0.2 wt% Al₂O₃ to investigate the significance of the stability of a nanofluid on its thermal conductivity and viscosity. Results indicate that a stable nanofluid has reduced viscosity and increased thermal conductivity.
    Matched MeSH terms: Hot Temperature
  16. Seow EK, Tan TC, Lee LK, Easa AM
    J Texture Stud, 2020 12;51(6):909-916.
    PMID: 32537814 DOI: 10.1111/jtxs.12544
    Hardening issue in starch-based products that arises during storage, is ascribed to the long-term starch retrogradation which involves the recrystallisation of amylopectin. Present study aimed to delay storage hardening with the addition of high diastase honey bee honey (HBH) and low diastase kelulut bee honey (KBH) into glutinous rice flour (GRF) gels. As compared to KBH, retardation of texture deterioration by HBH was more prominent as evidenced by the significantly (p 
    Matched MeSH terms: Hot Temperature
  17. Arris FA, Thai VTS, Manan WN, Sajab MS
    Foods, 2020 Nov 29;9(12).
    PMID: 33260330 DOI: 10.3390/foods9121769
    Process-based contaminants in food-particularly in vegetable oils-have been a topic of interest due to their potential health risk on humans. Oral consumption above the tolerable daily intake might result in health risks. Therefore, it is critical to correctly address the food contaminant issues with a proper mitigation plan, in order to reduce and subsequently remove the occurrence of the contaminant. 3-monochloropropane-1,3-diol (3-MCPD), an organic chemical compound, is one of the heat- and process-induced food contaminants, belonging to a group called chloropropanols. This review paper discusses the occurrence of the 3-MCPD food contaminant in different types of vegetable oils, possible 3-MCPD formation routes, and also methods of reduction or removal of 3-MCPD in its free and bound esterified forms in vegetable oils, mostly in palm oil due to its highest 3-MCPD content.
    Matched MeSH terms: Hot Temperature
  18. Mehmood A, Mubarak NM, Khalid M, Jagadish P, Walvekar R, Abdullah EC
    Sci Rep, 2020 11 18;10(1):20106.
    PMID: 33208815 DOI: 10.1038/s41598-020-77139-2
    Strain sensors in the form of buckypaper (BP) infiltrated with various polymers are considered a viable option for strain sensor applications such as structural health monitoring and human motion detection. Graphene has outstanding properties in terms of strength, heat and current conduction, optics, and many more. However, graphene in the form of BP has not been considered earlier for strain sensing applications. In this work, graphene-based BP infiltrated with polyvinyl alcohol (PVA) was synthesized by vacuum filtration technique and polymer intercalation. First, Graphene oxide (GO) was prepared via treatment with sulphuric acid and nitric acid. Whereas, to obtain high-quality BP, GO was sonicated in ethanol for 20 min with sonication intensity of 60%. FTIR studies confirmed the oxygenated groups on the surface of GO while the dispersion characteristics were validated using zeta potential analysis. The nanocomposite was synthesized by varying BP and PVA concentrations. Mechanical and electrical properties were measured using a computerized tensile testing machine, two probe method, and hall effect, respectively. The electrical conducting properties of the nanocomposites decreased with increasing PVA content; likewise, electron mobility also decreased while electrical resistance increased. The optimization study reports the highest mechanical properties such as tensile strength, Young's Modulus, and elongation at break of 200.55 MPa, 6.59 GPa, and 6.79%, respectively. Finally, electrochemical testing in a strain range of ε ~ 4% also testifies superior strain sensing properties of 60 wt% graphene BP/PVA with a demonstration of repeatability, accuracy, and preciseness for five loading and unloading cycles with a gauge factor of 1.33. Thus, results prove the usefulness of the nanocomposite for commercial and industrial applications.
    Matched MeSH terms: Hot Temperature
  19. Liang Z, Shi J, Wang C, Li J, Liang D, Yong EL, et al.
    Appl Environ Microbiol, 2020 11 10;86(23).
    PMID: 32948522 DOI: 10.1128/AEM.01920-20
    Pretreatment of waste-activated sludge (WAS) is an effective way to destabilize sludge floc structure and release organic matter for improving sludge digestion efficiency. Nonetheless, information on the impact of WAS pretreatment on digestion sludge microbiomes, as well as mechanistic insights into how sludge pretreatment improves digestion performance, remains elusive. In this study, a genome-centric metagenomic approach was employed to investigate the digestion sludge microbiome in four sludge digesters with different types of feeding sludge: WAS pretreated with 0.25 mol/liter alkaline/acid (APAD), WAS pretreated with 0.8 mol/liter alkaline/acid (HS-APAD), thermally pretreated WAS (thermal-AD), and fresh WAS (control-AD). We retrieved 254 metagenome-assembled genomes (MAGs) to identify the key functional populations involved in the methanogenic digestion process. These MAGs span 28 phyla, including 69 yet-to-be-cultivated lineages, and 30 novel lineages were characterized with metabolic potential associated with hydrolysis and fermentation. Interestingly, functional populations involving carbohydrate digestion were enriched in APAD and HS-APAD, while lineages related to protein and lipid fermentation were enriched in thermal-AD, corroborating the idea that different substrates are released from alkaline/acid and thermal pretreatments. Among the major functional populations (i.e., fermenters, syntrophic acetogens, and methanogens), significant correlations between genome sizes and abundance of the fermenters were observed, particularly in APAD and HS-APAD, which had improved digestion performance.IMPORTANCE Wastewater treatment generates large amounts of waste-activated sludge (WAS), which consists mainly of recalcitrant microbial cells and particulate organic matter. Though WAS pretreatment is an effective way to release sludge organic matter for subsequent digestion, detailed information on the impact of the sludge pretreatment on the digestion sludge microbiome remains scarce. Our study provides unprecedented genome-centric metagenomic insights into how WAS pretreatments change the digestion sludge microbiomes, as well as their metabolic networks. Moreover, digestion sludge microbiomes could be a unique source for exploring microbial dark matter. These results may inform future optimization of methanogenic sludge digestion and resource recovery.
    Matched MeSH terms: Hot Temperature
  20. Ahmadian A, Bilal M, Khan MA, Asjad MI
    Sci Rep, 2020 Nov 02;10(1):18776.
    PMID: 33139760 DOI: 10.1038/s41598-020-75905-w
    A three dimensional (3D) numerical solution of unsteady, Ag-MgO hybrid nanoliquid flow with heat and mass transmission caused by upward/downward moving of wavy spinning disk has been scrutinized. The magnetic field has been also considered. The hybrid nanoliquid has been synthesized in the presence of Ag-MgO nanoparticles. The purpose of the study is to improve the rate of thermal energy transmission for several industrial purposes. The wavy rotating surface increases the heat transmission rate up to 15%, comparatively to the flat surface. The subsequent arrangement of modeled equations is diminished into dimensionless differential equation. The obtained system of equations is further analytically expounded via Homotopy analysis method HAM and the numerical Parametric continuation method (PCM) method has been used for the comparison of the outcomes. The results are graphically presented and discussed. It has been presumed that the geometry of spinning disk positively affects the velocity and thermal energy transmission. The addition of hybrid nanoparticles (silver and magnesium-oxide) significantly improved thermal property of carrier fluid. It uses is more efficacious to overcome low energy transmission. Such as, it provides improvement in thermal performance of carrier fluid, which play important role in power generation, hyperthermia, micro fabrication, air conditioning and metallurgical field.
    Matched MeSH terms: Hot Temperature
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links