Displaying publications 81 - 89 of 89 in total

Abstract:
Sort:
  1. Benacer D, Woh PY, Mohd Zain SN, Amran F, Thong KL
    Microbes Environ, 2013;28(1):135-40.
    PMID: 23363618
    Leptospira species were studied in water and soils from selected urban sites in Malaysia. A total of 151 water (n=121) and soil (n=30) samples were collected from 12 recreational lakes and wet markets. All samples were filtered and inoculated into semi-solid Ellinghausen and McCullough modified by Johnson and Harris (EMJH) media supplemented with additional 5-fluorouracil. The cultures were then incubated at 30°C and observed under a dark field microscope with intervals of 10 days. A PCR assay targeting the rrs gene was used to confirm the genus Leptospira among the isolates. Subsequently, the pathogenic status of the isolates was determined using primer sets G1/G2 and Sapro1/Sapro2, which target the secY and rrs genes, respectively. The isolates were identified at serogroup level using the microscopic agglutination test (MAT) while their genetic diversity was assessed by pulsed field gel electrophoresis (PFGE). Based on dark field microscopy, 23.1% (28/121) water and 23.3% (7/30) soil cultures were positive for Leptospira spp. Of the 35 positive cultures, only 8 were pure and confirmed as Leptospira genus by PCR assay. Two out of 8 isolates were confirmed as pathogenic, 5 were saprophytic and one was intermediate. These 8 isolates were negative for the 25 reference hyperimmune rabbit sera tested in the MAT. PFGE showed that all 8 of these environmental Leptospira spp. were genetically diverse. In conclusion, the presence of pathogenic Leptospira spp. in the urban Malaysian environment may indicate and highlight the importance of water screening, especially in recreational lakes, in order to minimize any chance of Leptospira infection.
    Matched MeSH terms: Lakes/microbiology*
  2. Rashidi Nodeh H, Wan Ibrahim WA, Kamboh MA, Sanagi MM
    Chemosphere, 2017 Jan;166:21-30.
    PMID: 27681257 DOI: 10.1016/j.chemosphere.2016.09.054
    A new graphene-based tetraethoxysilane-methyltrimethoxysilane sol-gel hybrid magnetic nanocomposite (Fe3O4@G-TEOS-MTMOS) was synthesised, characterized and successfully applied in magnetic solid-phase extraction (MSPE) for simultaneous analysis of polar and non-polar organophosphorus pesticides from several water samples. The Fe3O4@G-TEOS-MTMOS nanocomposite was characterized using Fourier transform-infrared spectroscopy, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy and X-ray diffraction. Separation, determination and quantification were achieved using gas chromatography coupled with micro electron capture detector. Adsorption capacity of the sorbent was calculated using Langmuir equation. MSPE was linear in the range 100-1000 pg mL(-1) for phosphamidon and dimethoate, and 10-100 pg mL(-1) for chlorpyrifos and diazinon, with limit of detection (S/N = 3) of 19.8, 23.7, 1.4 and 2.9 pg mL(-1) for phosphamidon, dimethoate, diazinon and chlorpyrifos, respectively. The LODs obtained is well below the maximum residual level (100 pg mL(-1)) as set by European Union for pesticides in drinking water. Acceptable precision (%RSD) was achieved for intra-day (1.3-8.7%, n = 3) and inter-day (7.6-17.8%, n = 15) analyses. Fe3O4@G-TEOS-MTMOS showed high adsorption capacity (54.4-76.3 mg g(-1)) for the selected OPPs. No pesticide residues were detected in the water samples analysed. Excellent extraction recoveries (83-105%) were obtained for the spiked OPPs from tap, river, lake and sea water samples. The newly synthesised Fe3O4@G-TEOS-MTMOS showed high potential as adsorbent for OPPs analysis.
    Matched MeSH terms: Lakes/analysis
  3. Alshishani A, Salhimi SM, Saad B
    PMID: 29241085 DOI: 10.1016/j.jchromb.2017.12.013
    A new salting-out assisted liquid-liquid extraction (SALLE) sample preparation method for the determination of the polar anti-diabetic biguanide drugs (metformin, buformin and phenformin) in blood plasma, urine and lake water samples were developed. The SALLE was performed by mixing samples (plasma (0.2mL), urine or lake water (1.0mL)) with acetonitrile (0.4mL for plasma, 0.5mL for urine or lake water), sodium hydroxide powder was then added for the phase separation. The effects of type of salting-out reagent, type of extraction solvent, volumes of acetonitrile and sample, amount of sodium hydroxide, vortexing and centrifugation times on the extraction efficiency were investigated. The upper layer, containing the biguanides, was directly injected into a HPLC unit using ZIC-HILIC column (150mm×2.1mm×3.5μm) and was detected at 236nm. The method was validated and calibration curves were linear with r2>0.99 over the range of 20-2000μgL-1for plasma and 5-2000μgL-1for urine and lake water samples. The limits of detection were in the range (3.8-5.6)μgL-1, (0.8-1.5)μgL-1and (0.3-0.8)μgL-1for plasma, urine and lake water, respectively. The accuracies in the three matrices were within 87.3-103%, 87.4-109%, 82.2-109% of the nominal concentration for metformin, buformin and phenformin, respectively. The relative standard deviation for inter- and intra -day precision were in the range of 1.0-17% for all analytes in the three matrices.
    Matched MeSH terms: Lakes/chemistry
  4. Syaripuddin K, Kumar A, Sing KW, Halim MR, Nursyereen MN, Wilson JJ
    Ecotoxicology, 2014 Sep;23(7):1164-71.
    PMID: 24840106 DOI: 10.1007/s10646-014-1258-y
    In large man-made reservoirs such as those resulting from hydroelectric dam construction, bacteria transform the relatively harmless inorganic mercury naturally present in soil and the submerged plant matter into toxic methylmercury. Methylmercury then enters food webs and can accumulate in organisms at higher trophic levels. Bats feeding on insects emerging from aquatic systems can show accumulation of mercury consumed through their insect prey. In this study, we investigated whether the concentration of mercury in the fur of insectivorous bat species was significantly higher than that in the fur of frugivorous bat species, sampled near hydroelectric reservoirs in Peninsular Malaysia. Bats were sampled at Temenggor Lake and Kenyir Lake and fur samples from the most abundant genera of the two feeding guilds-insectivorous (Hipposideros and Rhinolophus) and frugivorous (Cynopterus and Megaerops) were collected for mercury analysis. We found significantly higher concentrations of total mercury in the fur of insectivorous bats. Mercury concentrations also differed significantly between insectivorous bats sampled at the two sites, with bats from Kenyir Lake, the younger reservoir, showing higher mercury concentrations, and between the insectivorous genera, with Hipposideros bats showing higher mercury concentrations. Ten bats (H. cf. larvatus) sampled at Kenyir Lake had mercury concentrations approaching or exceeding 10 mg/kg, which is the threshold at which detrimental effects occur in humans, bats and mice.
    Matched MeSH terms: Lakes
  5. Rozaini MNH, Yahaya N, Saad B, Kamaruzaman S, Hanapi NSM
    Talanta, 2017 Aug 15;171:242-249.
    PMID: 28551135 DOI: 10.1016/j.talanta.2017.05.006
    Molecularly imprinted polymer (MIP) was employed as sorbent in ultrasound assisted emulsification molecularly imprinted polymer micro-solid phase extraction (USAE-MIP-µ-SPE) of bisphenol A (BPA) in water, beverages and the aqueous liquid in canned foods prior to high performance liquid chromatography-diode array detector (HPLC-DAD) analysis. Several effective variables, such as types of emulsification solvent and its volume, types of desorption solvent and its volume, salting out effect, pH of sample solution, mass of sorbent, extraction and desorption time, and sample volume, were optimized comprehensively. Under the optimized USAE-MIP-µ-SPE and HPLC-DAD conditions, the method demonstrated good linearity over the range of 0.5-700μgL-1with a coefficient determination of R2=0.9973, low limit of detection (0.07μgL-1), good analyte recoveries (82.2-118.9%) and acceptable RSDs (0.7-14.2%, n=3) with enrichment factor of 49. The method was applied to thirty samples of drinking water, mineral water, river water, lake water, as well as beverages and canned foods, the presence of BPA was identified in four samples. The proposed method showed good selectivity and reusability for extraction of BPA, and hence the USAE-MIP-µ-SPE is rapid, simple, cost effective and environmentally friendly.
    Matched MeSH terms: Lakes
  6. Razak IS, Latif MT, Jaafar SA, Khan MF, Mushrifah I
    Environ Sci Pollut Res Int, 2015 Apr;22(8):6024-33.
    PMID: 25382497 DOI: 10.1007/s11356-014-3781-z
    This study was conducted to determine the composition of surfactants in atmospheric aerosols and rainwater in the vicinity of Lake Chini, Malaysia. Samples of atmospheric aerosol and rainwater were collected between March and September 2011 using a high volume air sampler (HVAS) and glass bottles equipped with funnel. Colorimetric analysis was undertaken to determine the concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The water-soluble ionic compositions were determined using inductively coupled plasma mass spectrometry for cations (Na, K, Mg and Ca) and ion chromatography equipped with a conductivity detector for anions (F(-), Cl(-), NO3(-), and SO4(2-)) and the Nessler Method was used to obtain the NH4(+) concentrations. The source apportionment of MBAS and DBAS in atmospheric aerosols was identified using a combination of principal component analysis (PCA) and multiple linear regression (MLR). The results revealed that the concentrations of surfactants in atmospheric aerosols and rainwater were dominated by anionic surfactants as MBAS. The concentration of surfactants as MBAS and DBAS was dominated in fine mode compared to coarse mode aerosols. Using PCA/MLR analysis, two major sources of atmospheric surfactants to Lake Chini were identified as soil dust (75 to 93%) and biomass burning (2 to 22%).
    Matched MeSH terms: Lakes
  7. Said KS, Shuhaimi-Othman M, Ahmad AK
    Pak J Biol Sci, 2012 May 15;15(10):459-68.
    PMID: 24187900
    A study of water quality parameters (temperature, conductivity, total dissolved solid, dissolved oxygen, pH and water hardness) in Titiwangsa Lake was conducted in January, April, July and October 2010. The water quality parameters were tested and recorded at different sampling stations chosen randomly using hydrolab data sonde 4 and surveyor 4 a water quality multi probe (USA). Six metals i.e., cadmium, chromium, lead, nickel, zinc and copper were determined in five different compartments of the lake namely water, total suspended solids, plankton, sediment and fish. The metals concentration were determined by Inductively Coupled Plasma Mass Spectrometer (ICP-MS), perkin elmer elan, model 9000. The water quality parameters were compared with National Water Quality Standard (NWQS Malaysia) while metal concentrations were compared with Malaysian and international standards. The study shows that water quality parameters are of class 2. This condition is suitable for recreational activities where body contact is allowed and suitable for sensitive fishing activities. Furthermore, metal concentrations were found to be lower than the international standards, therefore toxic effects for these metals would be rarely observed and the adverse effects to aquatic organisms would not frequently occur.
    Matched MeSH terms: Lakes
  8. Pramanik BK, Kajol A, Suja F, Md Zain S
    Environ Technol, 2017 Mar;38(5):579-587.
    PMID: 27315513 DOI: 10.1080/09593330.2016.1202330
    Biological aerated filter (BAF), sand filtration (SF), alum and Moringa oleifera coagulation were investigated as a pre-treatment for reducing the organic and biofouling potential component of an ultrafiltration (UF) membrane in the treatment of lake water. The carbohydrate content was mainly responsible for reversible fouling of the UF membrane compared to protein or dissolved organic carbon (DOC) content. All pre-treatment could effectively reduce these contents and led to improve the UF filterability. Both BAF and SF markedly led to improvement in flux than coagulation processes, and alum gave greater flux than M. oleifera. This was attributed to the effective removal and/or breakdown of high molecular weight (MW) organics by biofilters. BAF led to greater improvement in flux than SF, due to greater breakdown of high MW organics, and this was also confirmed by the attenuated total reflection-Fourier transform infrared spectroscopy analysis. Coagulation processes were ineffective in removing biofouling potential components, whereas both biofilters were very effective as shown by the reduction of low MW organics, biodegradable dissolved organic carbon and assimilable organic carbon contents. This study demonstrated the potential of biological pre-treatments for reducing organic and biofouling potential component and thus improving flux for the UF of lake water treatment.
    Matched MeSH terms: Lakes
  9. Idris ZM, Chan CW, Kongere J, Hall T, Logedi J, Gitaka J, et al.
    Sci Rep, 2017 08 22;7(1):9123.
    PMID: 28831122 DOI: 10.1038/s41598-017-09585-4
    As markers of exposure anti-malaria antibody responses can help characterise heterogeneity in malaria transmission. In the present study antibody responses to Plasmodium falciparum AMA-1, MSP-119 and CSP were measured with the aim to describe transmission patterns in meso-endemic settings in Lake Victoria. Two cross-sectional surveys were conducted in Lake Victoria in January and August 2012. The study area comprised of three settings: mainland (Ungoye), large island (Mfangano) and small islands (Takawiri, Kibuogi, Ngodhe). Individuals provided a finger-blood sample to assess malaria infection by microscopy and PCR. Antibody response to P. falciparum was determined in 4,112 individuals by ELISA using eluted dried blood from filter paper. The overall seroprevalence was 64.0% for AMA-1, 39.5% for MSP-119, and 12.9% for CSP. Between settings, seroprevalences for merozoite antigens were similar between Ungoye and Mfangano, but higher when compared to the small islands. For AMA-1, the seroconversion rates (SCRs) ranged from 0.121 (Ngodhe) to 0.202 (Ungoye), and were strongly correlated to parasite prevalence. We observed heterogeneity in serological indices across study sites in Lake Victoria. These data suggest that AMA-1 and MSP-119 sero-epidemiological analysis may provide further evidence in assessing variation in malaria exposure and evaluating malaria control efforts in high endemic area.
    Matched MeSH terms: Lakes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links