Displaying publications 81 - 100 of 330 in total

Abstract:
Sort:
  1. Najib MZM, Salmiati, Ujang Z, Salim MR, Ibrahim Z, Muda K
    Bioresour Technol, 2016 Dec;221:157-164.
    PMID: 27639234 DOI: 10.1016/j.biortech.2016.08.119
    The developed microbial granules containing photosynthetic pigments had successfully achieved approximately 18-21% of carbon dioxide (CO2) removal in POME for one complete SBR cycle. Also, the granules had reached CO2 removal at 15-29% within 24h and removal of 25% after 5 days. Both results were inconsistent possibly due to the slow mass transfer rate of CO2 from gas to liquid as well as the simultaneous effect of CO2 production and respiration among the microbes. Furthermore, results showed the removal of CO2 from air increases proportionally with the CO2 removed in liquid. The CO2 biofixation of granules attained was approximately 0.23g/L/day for a week. Using the regression model, the removal of CO2 between liquid and gas, CO2 biofixation rate were highly correlated with the treatment time. A statistically significant relationship was obtained between CO2 concentration in liquid, biomass productivity and treatment time for the CO2 biofixation rate of the granules.
    Matched MeSH terms: Plant Oils/chemistry*
  2. Lam MK, Lee KT, Mohamed AR
    Biotechnol Adv, 2010 Jul-Aug;28(4):500-18.
    PMID: 20362044 DOI: 10.1016/j.biotechadv.2010.03.002
    In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.
    Matched MeSH terms: Plant Oils/chemistry*
  3. Lam MK, Lee KT
    Biotechnol Adv, 2010 Jan-Feb;29(1):124-41.
    PMID: 20940036 DOI: 10.1016/j.biotechadv.2010.10.001
    Palm oil industry is one of the leading agricultural industries in Malaysia with average crude palm oil production of more than 13 million tonne per year. However, production of such huge amount of crude palm oil has consequently resulted to even larger amount of palm oil mill effluent (POME). POME is a highly polluting wastewater with high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in which can caused severe pollution to the environment, typically pollution to water resources. On the other hand, POME was identified as a potential source to generate renewable bioenergies such as biomethane and biohydrogen through anaerobic digestion. In other words, a combination of wastewater treatment and renewable bioenergies production would be an added advantage to the palm oil industry. In line with the world's focus on sustainability concept, such strategy should be implemented immediately to ensure palm oil is produced in an environmental friendly and sustainable manner. This review aims to discuss various technologies to convert POME to biomethane and biohydrogen in a commercial scale. Furthermore, discussion on using POME to culture microalgae for biodiesel and bioethanol production was included in the present paper as a new remedy to utilize POME with a greater beneficial return.
    Matched MeSH terms: Plant Oils/chemistry*
  4. Wu TY, Mohammad AW, Jahim JM, Anuar N
    Biotechnol Adv, 2009 Jan-Feb;27(1):40-52.
    PMID: 18804158 DOI: 10.1016/j.biotechadv.2008.08.005
    During the last century, a great deal of research and development as well as applications has been devoted to waste. These include waste minimization and treatment, the environmental assessment of waste, minimization of environmental impact, life cycle assessment and others. The major reason for such huge efforts is that waste generation constitutes one of the major environmental problems where production industries are concerned. Until now, an increasing pressure has been put on finding methods of reusing waste, for instance through cleaner production, thus mirroring rapid changes in environmental policies. The palm oil industry is one of the leading industries in Malaysia with a yearly production of more than 13 million tons of crude palm oil and plantations covering 11% of the Malaysian land area. However, the production of such amounts of crude palm oil result in even larger amounts of palm oil mill effluent (POME), estimated at nearly three times the quantity of crude palm oil. Normally, POME is treated using end-of-pipe processes, but it is worth considering the potential value of POME prior to its treatment through introduction of a cleaner production. It is envisaged that POME can be sustainably reused as a fermentation substrate in the production of various metabolites, fertilizers and animal feeds through biotechnological advances. The present paper thus discusses various technically feasible and economically beneficial means of transforming the POME into low or preferably high value added products.
    Matched MeSH terms: Plant Oils/chemistry*
  5. Loo CY, Lee WH, Tsuge T, Doi Y, Sudesh K
    Biotechnol Lett, 2005 Sep;27(18):1405-10.
    PMID: 16215858
    Palm kernel oil, palm olein, crude palm oil and palm acid oil were used for the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] by a mutant strain of Wautersia eutropha (formerly Ralstonia eutropha) harboring the Aeromonas caviae polyhydroxyalkanoate (PHA) synthase gene. Palm kernel oil was an excellent carbon source for the production of cell biomass and P(3HB-co-3HHx). About 87% (w/w) of the cell dry weight as P(3HB-co-3HHx) was obtained using 5 g palm kernel oil/l. Gravimetric and microscopic analyses further confirmed the high PHA content in the recombinant cells. The molar fraction of 3HHx remained constant at 5 mol % regardless of the type and concentration of palm oil products used. The small amount of 3HHx units was confirmed by 13C NMR analysis. The number average molecular weight (M(n)) of the PHA copolymer produced from the various palm oil products ranged from 27 0000 to 46 0000 Da. The polydispersity was in the range of 2.6-3.9.
    Matched MeSH terms: Plant Oils/chemistry
  6. Awang R, Basri M, Ahmad S, Salleh AB
    Biotechnol Lett, 2004 Jan;26(1):11-4.
    PMID: 15005144
    The esterification of palm-based 9,10-dihydroxystearic acid (DHSA) and 1-octanol in hexane as catalyzed by lipase from Rhizomucor meihei (Lipozyme IM) followed Michaelis-Menten kinetics. The esterification reaction follows a Ping-Pong, Bi-Bi mechanism. The maximum rate was estimated to be 1 micromol min(-1) mg(-1) catalyst in hexane at 50 degrees C, and the Michaelis-Menten constants for DHSA and 1-octanol were 1.3 M and 0.7 M, respectively.
    Matched MeSH terms: Plant Oils/chemistry*
  7. Al-Zuhair S
    Biotechnol Prog, 2005 Sep-Oct;21(5):1442-8.
    PMID: 16209548
    Kinetics of production of biodiesel by enzymatic methanolysis of vegetable oils using lipase has been investigated. A mathematical model taking into account the mechanism of the methanolysis reaction starting from the vegetable oil as substrate, rather than the free fatty acids, has been developed. The kinetic parameters were estimated by fitting the experimental data of the enzymatic reaction of sunflower oil by two types of lipases, namely, Rhizomucor miehei lipase (RM) immobilized on ion-exchange resins and Thermomyces lanuginosa lipase (TL) immobilized on silica gel. There was a good agreement between the experimental results of the initial rate of reaction and those predicted by the proposed model equations, for both enzymes. From the proposed model equations, the regions where the effect of alcohol inhibition fades, at different substrate concentrations, were identified. The proposed model equation can be used to predict the rate of methanolysis of vegetable oils in a batch or a continuous reactor and to determine the optimal conditions for biodiesel production.
    Matched MeSH terms: Plant Oils/chemistry*
  8. Haafiz MK, Hassan A, Zakaria Z, Inuwa IM
    Carbohydr Polym, 2014 Mar 15;103:119-25.
    PMID: 24528708 DOI: 10.1016/j.carbpol.2013.11.055
    The objective of this study is to compare the effect of two different isolation techniques on the physico-chemical and thermal properties of cellulose nanowhiskers (CNW) from oil palm biomass obtained microcrystalline cellulose (MCC). Fourier transform infrared analysis showed that there are no significant changes in the peak positions, suggesting that the treatments did not affect the chemical structure of the cellulose fragment. Scanning electron microscopy showed that the aggregated structure of MCC is broken down after treatment. Transmission electron microscopy revealed that the produced CNW displayed a nanoscale structure. X-ray diffraction analysis indicated that chemical swelling improves the crystallinity of MCC while maintaining the cellulose I structure. Acid hydrolysis however reduced the crystallinity of MCC and displayed the coexistence of cellulose I and II allomorphs. The produced CNW is shown to have a good thermal stability and hence is suitable for a range of applications such as green biodegradable nanocomposites reinforced with CNW.
    Matched MeSH terms: Plant Oils/chemistry*
  9. Mohamad Haafiz MK, Eichhorn SJ, Hassan A, Jawaid M
    Carbohydr Polym, 2013 Apr 2;93(2):628-34.
    PMID: 23499105 DOI: 10.1016/j.carbpol.2013.01.035
    In this work, we successfully isolated microcrystalline cellulose (MCC) from oil palm empty fruit bunch (OPEFB) fiber-total chlorine free (TCF) pulp using acid hydrolysis method. TCF pulp bleaching carried out using an oxygen-ozone-hydrogen peroxide bleaching sequence. Fourier transform infrared (FT-IR) spectroscopy indicates that acid hydrolysis does not affect the chemical structure of the cellulosic fragments. The morphology of the hydrolyzed MCC was investigated using scanning electron microscopy (SEM), showing a compact structure and a rough surface. Furthermore, atomic force microscopy (AFM) image of the surface indicates the presence of spherical features. X-ray diffraction (XRD) shows that the MCC produced is a cellulose-I polymorph, with 87% crystallinity. The MCC obtained from OPEFB-pulp is shown to have a good thermal stability. The potential for a range of applications such as green nano biocomposites reinforced with this form of MCC and pharmaceutical tableting material is discussed.
    Matched MeSH terms: Plant Oils/chemistry*
  10. Wan Daud WR, Djuned FM
    Carbohydr Polym, 2015 Nov 5;132:252-60.
    PMID: 26256348 DOI: 10.1016/j.carbpol.2015.06.011
    Acetone soluble oil palm empty fruit bunch cellulose acetate (OPEFB-CA) of DS 2.52 has been successfully synthesized in a one-step heterogeneous acetylation of OPEFB cellulose without necessitating the hydrolysis stage. This has only been made possible by the mathematical modeling of the acetylation process by manipulating the variables of reaction time and acetic anhydride/cellulose ratio (RR). The obtained model was verified by experimental data with an error of less than 2.5%. NMR analysis showed that the distribution of the acetyl moiety among the three OH groups of cellulose indicates a preference at the C6 position, followed by C3 and C2. XRD revealed that OPEFB-CA is highly amorphous with a degree of crystallinity estimated to be ca. 6.41% as determined from DSC. The OPEFB-CA films exhibited good mechanical properties being their tensile strength and Young's modulus higher than those of the commercial CA.
    Matched MeSH terms: Plant Oils/chemistry*
  11. Lamaming J, Hashim R, Sulaiman O, Leh CP, Sugimoto T, Nordin NA
    Carbohydr Polym, 2015;127:202-8.
    PMID: 25965475 DOI: 10.1016/j.carbpol.2015.03.043
    In this study cellulose nanocrystals were isolated from oil palm trunk (Elaeis guineensis) using acid hydrolysis method. The morphology and size of the nanocrystals were characterized using scanning electron microscopy and transmission electron microscopy. The results showed that the nanocrystals isolated from raw oil palm trunk (OPT) fibers and hot water treated OPT fibers had an average diameter of 7.67 nm and 7.97 nm and length of 397.03 nm and 361.70 nm, respectively. Fourier Transform Infrared spectroscopy indicated that lignin and hemicellulose contents decreased. It seems that lignin was completely removed from the samples during chemical treatment. Thermogravimetric analysis demonstrated that cellulose nanocrystals after acid hydrolysis had higher thermal stability compared to the raw and hot water treated OPT fibers. The X-ray diffraction analysis increased crystallinity of the samples due to chemical treatment. The crystalline nature of the isolated nanocrystals from raw and hot water treated OPT ranged from 68 to 70%.
    Matched MeSH terms: Plant Oils/chemistry*
  12. R NFN, Nur Hanani ZA
    Carbohydr Polym, 2017 Feb 10;157:1479-1487.
    PMID: 27987859 DOI: 10.1016/j.carbpol.2016.11.026
    This study investigated the effects of different types of plant oil (olive oil, corn oil, soybean oil and sunflower oil) on the physical and mechanical properties of kappa-carrageenan films from Euchema cottoni species. The incorporation of plant oils increased the film thickness significantly (P<0.05). However, the moisture content, solubility and tensile strength of films decreased significantly (P<0.05) as plant oils were added. The incorporation of plant oils also contributed to a plasticizing effect, whereby the values for elongation at break increased significantly (P<0.05), from 22.3% to 108.8%. Higher oil content also led to carrageenan films with lower opacity, which contradicted with previous studies. In conclusion, the plant oils used in this research significantly improved film properties, thus demonstrating the potential of these materials to be used as food packaging films and coatings.
    Matched MeSH terms: Plant Oils/chemistry*
  13. Loganathan R, Selvaduray KR, Nesaretnam K, Radhakrishnan AK
    Cell Prolif, 2013 Apr;46(2):203-13.
    PMID: 23510475 DOI: 10.1111/cpr.12014
    OBJECTIVES: Tocotrienols and tocopherols are members of the vitamin E family, with similar structures; however, only tocotrienols have been reported to achieve potent anti-cancer effects. The study described here has evaluated anti-cancer activity of vitamin E to elucidate mechanisms of cell death, using human breast cancer cells.

    MATERIALS AND METHODS: Anti-cancer activity of a tocotrienol-rich fraction (TRF) and a tocotrienol-enriched fraction (TEF) isolated from palm oil, as well as pure vitamin E analogues (α-tocopherol, α-, δ- and γ-tocotrienols) were studied using highly aggressive triple negative MDA-MB-231 cells and oestrogen-dependent MCF-7 cells, both of human breast cancer cell lines. Cell population growth was evaluated using a Coulter particle counter. Cell death mechanism, poly(ADP-ribose) polymerase cleavage and levels of NF-κB were determined using commercial ELISA kits.

    RESULTS: Tocotrienols exerted potent anti-proliferative effects on both types of cell by inducing apoptosis, the underlying mechanism of cell death being ascertained using respective IC50 concentrations of all test compounds. There was marked induction of apoptosis in both cell lines by tocotrienols compared to treatment with Paclitaxel, which was used as positive control. This activity was found to be associated with cleavage of poly(ADP-ribose) polymerase (a DNA repair protein), demonstrating involvement of the apoptotic cell death signalling pathway. Tocotrienols also inhibited expression of nuclear factor kappa-B (NF-κB), which in turn can increase sensitivity of cancer cells to apoptosis.

    CONCLUSION: Tocotrienols induced anti-proliferative and apoptotic effects in association with DNA fragmentation, poly(ADP-ribose) polymerase cleavage and NF-κB inhibition in the two human breast cancer cell lines.

    Matched MeSH terms: Plant Oils/chemistry
  14. Tan SW, Ramasamy R, Abdullah M, Vidyadaran S
    Cell Immunol, 2011;271(2):205-9.
    PMID: 21839427 DOI: 10.1016/j.cellimm.2011.07.012
    Anti-inflammatory actions of the vitamin E fragment tocotrienol have not been described for microglia. Here, we screened palm α-, γ- and δ-tocotrienol isoforms and Tocomin® 50% (contains spectrum of tocotrienols and tocopherols) for their ability to limit nitric oxide (NO) production by BV2 microglia. Microglia were treated with varying doses of tocotrienols for 24h and stimulated with 1 μg/ml lipopolysaccharide (LPS). All tocotrienol isoforms reduced NO release by LPS-stimulated microglia, with 50 μM being the most potent tocotrienol dose. Of the isoforms tested, δ-tocotrienol lowered NO levels the most, reducing NO by approximately 50% at 48 h post-LPS treatment (p
    Matched MeSH terms: Plant Oils/chemistry
  15. Awang M, Seng GM
    ChemSusChem, 2008;1(3):210-4.
    PMID: 18605208 DOI: 10.1002/cssc.200700083
    The cost of chemicals prohibits many technically feasible enhanced oil recovery methods to be applied in oil fields. It is shown that by-products from oil palm processing can be a source of valuable chemicals. Analysis of the pyrolysis oil from oil palm shells, a by-product of the palm oil industry, reveals a complex mixture of mainly phenolic compounds, carboxylic acids, and aldehydes. The phenolic compounds were extracted from the pyrolysis oil by liquid-liquid extraction using alkali and an organic solvent and analyzed, indicating the presence of over 93% phenols and phenolic compounds. Simultaneous sulfonation and alkylation of the pyrolysis oil was carried out to produce surfactants for application in oil fields. The lowest measured surface tension and critical micelle concentration was 30.2 mNm(-1) and 0.22 wt%, respectively. Displacement tests showed that 7-14% of the original oil in place was recovered by using a combination of surfactants and xanthan (polymer) as additives.
    Matched MeSH terms: Plant Oils/chemistry*
  16. Yusoff MM, Ibrahim H, Hamid NA
    Chem Biodivers, 2011 May;8(5):916-23.
    PMID: 21560240 DOI: 10.1002/cbdv.201000270
    Two poorly studied, morphologically allied Alpinia species endemic to Borneo, viz., A. ligulata and A. nieuwenhuizii, were investigated here for their rhizome essential oil. The oil compositions and antimicrobial activities were compared with those of A. galanga, a better known plant. A fair number of compounds were identified in the oils by GC-FID and GC/MS analyses, with large differences in the oil composition between the three species. The rhizome oil of A. galanga was rich in 1,8-cineole (29.8%), while those of A. ligulata and A. nieuwenhuizii were both found to be extremely rich in (E)-methyl cinnamate (36.4 and 67.8%, resp.). The three oils were screened for their antimicrobial activity against three Gram-positive and three Gram-negative bacteria and two fungal species. The efficiency of growth inhibition of Staphylococcus aureus var. aureus was found to decline in the order of A. nieuwenhuizii>A. ligulata ∼ A. galanga, while that of Escherichia coli decreased in the order of A. galanga>A. nieuwenhuzii ∼ A. ligulata. Only the A. galanga oil inhibited the other bacteria and the fungi tested.
    Matched MeSH terms: Plant Oils/chemistry
  17. Mhd Haniffa MAC, Munawar K, Ching YC, Illias HA, Chuah CH
    Chem Asian J, 2021 Jun 01;16(11):1281-1297.
    PMID: 33871151 DOI: 10.1002/asia.202100226
    New and emerging demand for polyurethane (PU) continues to rise over the years. The harmful isocyanate binding agents and their integrated PU products are at the height of environmental concerns, in particular PU (macro and micro) pollution and their degradation problems. Non-isocyanate poly(hydroxy urethane)s (NIPUs) are sustainable and green alternatives to conventional PUs. Since the introduction of NIPU in 1957, the market value of NIPU and its hybridized materials has increased exponentially in 2019 and is expected to continue to rise in the coming years. The secondary hydroxyl groups of these NIPU's urethane moiety have revolutionized them by allowing for adequate pre/post functionalization. This minireview highlights different strategies and advances in pre/post-functionalization used in biobased NIPU. We have performed a comprehensive evaluation of the development of new ideas in this field to achieve more efficient synthetic biobased hybridized NIPU processes through selective and kinetic understanding.
    Matched MeSH terms: Plant Oils/chemistry
  18. Adeleke AO, Latiff AAA, Al-Gheethi AA, Daud Z
    Chemosphere, 2017 May;174:232-242.
    PMID: 28171839 DOI: 10.1016/j.chemosphere.2017.01.110
    The present work aimed to develop a novel composite material made up of activated cow bone powder (CBP) as a starting material for reducing chemical oxygen demand (COD) and ammonia-nitrogen (NH3N) from palm oil mill effluent (POME). The optimization of the reduction efficiency was investigated using response surface methodology (RSM). Six independent variables used in the optimization experiments include pH (4-10), speed (0.27-9.66 rcf), contact time (2-24 h), particle size (1-4.35 mm), dilution factor (100-500) and adsorbent dosage (65-125 g/L). The chemical functional groups were determined using Fourier transform irradiation (FTIR). The elemental composition were detected using SEM-EDX, while thermal decomposition was investigated using thermo gravimetric analysis (TGA) in order to determine the effects of carbonization temperature on the adsorbent. The results revealed that the optimal reduction of COD and NH3N from raw POME was observed at pH 10, 50 rpm, within 2 h and 3 mm of particle size as well as at dilution factor of 500 and 125 g L-1 of adsorbent dosage, the observed and predicted reduction were 89.60 vs. 85.01 and 75.61 vs. 74.04%, respectively for COD and NH3N. The main functional groups in the adsorbent were OH, NH, CO, CC, COC, COH, and CH. The SEM-EDX analysis revealed that the CBP-composite has a smooth surface with high contents of carbon. The activated CBP has very stable temperature profile with no significant weight loss (9.85%). In conclusion, the CBP-composite investigated here has characteristics high potential for the remediation of COD and NH3N from raw POME.
    Matched MeSH terms: Plant Oils/chemistry*
  19. Musa SH, Basri M, Masoumi HR, Karjiban RA, Malek EA, Basri H, et al.
    Colloids Surf B Biointerfaces, 2013 Dec 1;112:113-9.
    PMID: 23974000 DOI: 10.1016/j.colsurfb.2013.07.043
    Palm kernel oil esters nanoemulsion-loaded with chloramphenicol was optimized using response surface methodology (RSM), a multivariate statistical technique. Effect of independent variables (oil amount, lecithin amount and glycerol amount) toward response variables (particle size, polydispersity index, zeta potential and osmolality) were studied using central composite design (CCD). RSM analysis showed that the experimental data could be fitted into a second-order polynomial model. Chloramphenicol-loaded nanoemulsion was formulated by using high pressure homogenizer. The optimized chloramphenicol-loaded nanoemulsion response values for particle size, PDI, zeta potential and osmolality were 95.33nm, 0.238, -36.91mV, and 200mOsm/kg, respectively. The actual values of the formulated nanoemulsion were in good agreement with the predicted values obtained from RSM. The results showed that the optimized compositions have the potential to be used as a parenteral emulsion to cross blood-brain barrier (BBB) for meningitis treatment.
    Matched MeSH terms: Plant Oils/chemistry
  20. Abdulla R, Chan ES, Ravindra P
    Crit Rev Biotechnol, 2011 Mar;31(1):53-64.
    PMID: 20572796 DOI: 10.3109/07388551.2010.487185
    The fuel crisis and environmental concerns, mainly due to global warming, have led researchers to consider the importance of biofuels such as biodiesel. Vegetable oils, which are too viscous to be used directly in engines, are converted into their corresponding methyl or ethyl esters by a process called transesterification. With the recent debates on "food versus fuel," non-edible oils, such as Jatropha curcas, are emerging as one of the main contenders for biodiesel production. Much research is still needed to explore and realize the full potential of a green fuel from J. curcas. Upcoming projects and plantations of Jatropha in countries such as India, Malaysia, and Indonesia suggest a promising future for this plant as a potential biodiesel feedstock. Many of the drawbacks associated with chemical catalysts can be overcome by using lipases for enzymatic transesterification. The high cost of lipases can be overcome, to a certain extent, by immobilization techniques. This article reviews the importance of the J. curcas plant and describes existing research conducted on Jatropha biodiesel production. The article highlights areas where further research is required and relevance of designing an immobilized lipase for biodiesel production is discussed.
    Matched MeSH terms: Plant Oils/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links