Displaying publications 81 - 100 of 225 in total

Abstract:
Sort:
  1. Sologashvili T, Saat SA, Tille JC, De Valence S, Mugnai D, Giliberto JP, et al.
    Eur J Pharm Biopharm, 2019 Jun;139:272-278.
    PMID: 31004790 DOI: 10.1016/j.ejpb.2019.04.012
    OBJECTIVE: Vascular prostheses for small caliber bypass grafts in cardiac and vascular diseases or for access surgery are still missing. Poly (Ɛ-caprolactone) (PCL) has been previously investigated by our group and showed good biocompatibility and mechanical properties in vitro and rapid endothelialisation, cellular infiltration and vascularisation in vivo yielding optimal patency in the abdominal aortic position. The aim of the present study is to evaluate our PCL graft in the carotid position and to compare its outcome to the grafts implanted in the abdominal aortic position.

    METHODS: PCL grafts (1 mm ID/10 mm long) were implanted into the left common carotid artery in 20 Sprague-Dawley rats and compared to our previously published series of abdominal aortic implants. The animals were followed up to 3, 6, 12 and 24 weeks. At each time point, in vivo compliance, angiography and histological examination with morphology were performed.

    RESULTS: PCL grafts showed good mechanical properties and ease of handling. The average graft compliance was 14.5 ± 1.7%/ mmHg compared to 7.8 ± 0.9% for the abdominal position and 45.1 ± 3.2%/ mmHg for the native carotid artery. The overall patency for the carotid position was 65% as compared to 100% in the abdominal position. Complete endothelialisation was achieved at 3 weeks and cell invasion was more rapid than in the aortic position. In contrast, intimal hyperplasia (IH) and vascular density were less pronounced than in the aortic position.

    CONCLUSION: Our PCL grafts in the carotid position were well endothelialised with early cellular infiltration, higher compliance, lower IH and calcification compared to the similar grafts implanted in the aortic position. However, there was a higher occlusion rate compared to our abdominal aorta series. Anatomical position, compliance mismatch, flow conditions may answer the difference in patency seen.

    Matched MeSH terms: Polyesters/chemistry
  2. Rosli NA, Ahmad I, Anuar FH, Abdullah I
    Carbohydr Polym, 2019 Jun 01;213:50-58.
    PMID: 30879689 DOI: 10.1016/j.carbpol.2019.02.074
    In this study, modified agave cellulose fibre combined by graft copolymerisation with methylmethacrylate was tested as a potential reinforcement for polylactic acid (PLA)-natural rubber/liquid natural rubber blends. Mechanical, morphological, thermal, wetting, and biodegradation characterisations were performed to assess the influence of cellulose-graft-polymethylmethacrylate (cell-g-PMMA) content on the properties of biocomposites. The addition of cell-g-PMMA improved the mechanical properties of the composites because of the chemical interaction between PLA and PMMA. Thermal stability decreased slightly upon cell-g-PMMA addition because of the low thermal stability of PMMA. A soil burial test revealed that the degradation of composites decreased with an increase in the cell-g-PMMA content. However, the weight loss after burial, which directly affected the water absorption capacity, was still higher for the cell-g-PMMA composites than for the polymer alone.
    Matched MeSH terms: Polyesters
  3. Pachiyappan S, Shanmuganatham Selvanantham D, Kuppa SS, Chandrasekaran S, Samrot AV
    IET Nanobiotechnol, 2019 Jun;13(4):416-427.
    PMID: 31171747 DOI: 10.1049/iet-nbt.2018.5053
    In this study, polyhydroxybutyrate (PHB) nanoparticles were synthesised following nanoprecipitation method having different solvents and surfactant (Tween 80) concentrations. In this study, PHB nanoparticles were encapsulated with curcumin and subjected for sustained curcumin delivery. Both the curcumin loaded and unloaded PHB nanoparticles were characterised using FTIR, SEM, and AFM. Sizes of the particles were found to be between 60 and 300 nm. The drug encapsulation efficiency and in vitro drug release of the nanoparticles were analysed. Antibacterial activity and anticancer activity were also evaluated. The LC50 values of most of the nanoparticles were found to be between 10 and 20 µg/100 µl, anticancer activity of curcumin loaded PHB nanoparticles were further confirmed by AO/PI staining and mitochondrial depolarisation assay.
    Matched MeSH terms: Polyesters/metabolism*; Polyesters/pharmacology; Polyesters/chemistry
  4. Mensah EE, Abbas Z, Azis RS, Ibrahim NA, Khamis AM
    Polymers (Basel), 2019 May 24;11(5).
    PMID: 31137695 DOI: 10.3390/polym11050918
    Recycled hematite (α-Fe2O3) nanoparticles with enhanced complex permittivity properties have been incorporated as a filler in a polycaprolactone (PCL) matrix reinforced with oil palm empty fruit bunch (OPEFB) fiber for microwave absorption applications. The complex permittivity values were improved by reducing the particle sizes to the nano scale via high-energy ball milling for 12 h. A total of 5-20 wt.% recycled α-Fe2O3/OPEFB/PCL nanocomposites were examined for their complex permittivity and microwave absorption properties via the open ended coaxial (OEC) technique and the transmission/reflection line measurement using a microstrip connected to a two-port vector network analyzer. The microstructural analysis of the samples included X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). At 1 GHz, the real (ε') and imaginary (ε″) parts of complex permittivity of recycled α-Fe2O3 particles, respectively, increased from 7.88 to 12.75 and 0.14 to 0.40 when the particle size was reduced from 1.73 μm to 16.2 nm. A minimum reflection loss of -24.2 dB was achieved by the 20 wt.% nanocomposite at 2.4 GHz. Recycled α-Fe2O3 nanoparticles are effective fillers for microwave absorbing polymer-based composites in 1-4 GHz range applications.
    Matched MeSH terms: Polyesters
  5. Nizamuddin S, Jadhav A, Qureshi SS, Baloch HA, Siddiqui MTH, Mubarak NM, et al.
    Sci Rep, 2019 Apr 01;9(1):5445.
    PMID: 30931991 DOI: 10.1038/s41598-019-41960-1
    Polymer composites are fabricated by incorporating fillers into a polymer matrix. The intent for addition of fillers is to improve the physical, mechanical, chemical and rheological properties of the composite. This study reports on a unique polymer composite using hydrochar, synthesised by microwave-assisted hydrothermal carbonization of rice husk, as filler in polylactide matrix. The polylactide/hydrochar composites were fabricated by incorporating hydrochar in polylactide at 5%, 10%, 15% and 20 wt% by melt processing in a Haake rheomix at 170 °C. Both the neat polylactide and polylactide/hydrochar composite were characterized for mechanical, structural, thermal and rheological properties. The tensile modulus of polylactide/hydrochar composites was improved from 2.63 GPa (neat polylactide) to 3.16 GPa, 3.33 GPa, 3.54 GPa, and 4.24 GPa after blending with hydrochar at 5%, 10%, 15%, and 20%, respectively. Further, the incorporation of hydrochar had little effect on storage modulus (G') and loss modulus (G″). The findings of this study reported that addition of hydrochar improves some characteristics of polylactide composites suggesting the potential of hydrochar as filler for polymer/hydrochar composites.
    Matched MeSH terms: Polyesters/chemistry*
  6. Norhafini H, Huong KH, Amirul AA
    Int J Biol Macromol, 2019 Mar 15;125:1024-1032.
    PMID: 30557643 DOI: 10.1016/j.ijbiomac.2018.12.121
    P(3HB-co-4HB) with a high 4HB monomer composition was previously successfully produced using the transformant Cupriavidus malaysiensis USMAA1020 containing an additional copy of the PHA synthase gene. In this study, high PHA density fed-batch cultivation strategies were developed for such 4HB-rich P(3HB-co-4HB). The pulse, constant and mixed feeding strategies resulted in high PHA accumulation, with a PHA content of 74-92 wt% and 4HB monomer composition of 92-99 mol%. The pulse-feed of carbon and nitrogen resulted in higher PHA concentration (30.7 g/L) than carbon alone (22.3 g/L), suggesting that a trace amount of nitrogen is essential to support cell density for PHA accumulation. Constant feeding was found to be a more feasible strategy than mixed feeding, since the latter caused a drastic fluctuation in the C/N ratio, as evidenced by higher biomass formation indicating more carbon flux towards the competitive TCA pathway. A two-times carbon and nitrogen pulse feeding was the most optimal strategy achieving 92 wt% accommodation of the total biomass, with the highest PHA concentration (46 g/L) and yield (Yp/x) of 11.5 g/g. The strategy has kept the C/N at optimal ratio during the active PHA-producing phase. This is the first report of the production of high PHA density for 4HB-rich P(3HB-co-4HB).
    Matched MeSH terms: Polyesters/metabolism*
  7. Challabi AJH, Chieng BW, Ibrahim NA, Ariffin H, Zainuddin N
    Polymers (Basel), 2019 Mar 13;11(3).
    PMID: 30960466 DOI: 10.3390/polym11030482
    The effectiveness of superheated steam (SHS) as an alternative, eco-friendly treatment method to modify the surface of pineapple leaf fiber (PALF) for biocomposite applications was investigated. The aim of this treatment was to improve the interfacial adhesion between the fiber and the polymer. The treatment was carried out in an SHS oven for different temperatures (190⁻230 °C) and times (30⁻120 min). Biocomposites fabricated from SHS-treated PALFs and polylactic acid (PLA) at a weight ratio of 30:70 were prepared via melt-blending techniques. The mechanical properties, dimensional stability, scanning electron microscopy (SEM), and X-ray diffraction (XRD) for the biocomposites were evaluated. Results showed that treatment at temperature of 220 °C for 60 min gave the optimum tensile properties compared to other treatment temperatures. The tensile, flexural, and impact properties as well as the dimensional stability of the biocomposites were enhanced by the presence of SHS-treated PALF. The SEM analysis showed improvement in the interfacial adhesion between PLA and SHS-treated PALF. XRD analysis showed an increase in the crystallinity with the addition of SHS-PALF. The results suggest that SHS can be used as an environmentally friendly treatment method for the modification of PALF in biocomposite production.
    Matched MeSH terms: Polyesters
  8. Pakalapati H, Tariq MA, Arumugasamy SK
    Enzyme Microb Technol, 2019 Mar;122:7-18.
    PMID: 30638510 DOI: 10.1016/j.enzmictec.2018.12.001
    Recently enzymatic catalysts have replaced organic and organometallic catalysts in the synthesis of bio-resorbable polymers. Enzymatic polymerization is considered as an alternative to conventional polymerization as they are less toxic, environmental friendly and can operate under mild conditions. In this research, the enzymatic ring-opening polymerization (e-ROP) of e-caprolactone (e-CL) using Candida Antartica Lipase B (CALB) as catalyst to produce the Polycaprolactone. Two modelling techniques namely response surface methodology (RSM) and artificial neural network (ANN) have been used in this work. RSM is used to optimize the parameters and to develop a model of the process. ANN is used to develop the model to predict the results obtained from the experiment. The parameters involved are time, reaction temperature, mixing speed and enzyme-solvent ratio. The experimental result is Polydispersity index (PDI) of the polymer. The experimental data obtained was adequately fitted into second-order polynomial models. Simulation was done using artificial neural network model developed with Mean absolute error (MAD) value of 1.65 in comparison with MAD value of 7.4 for RSM. The Regression value (R2) values of RSM and ANN were found to be 0.96 and 0.93 respectively. The predictive models were validated experimentally and were found to be in agreement with the experimental values.
    Matched MeSH terms: Polyesters
  9. Azura Azami N, Ira Aryani W, Aik-Hong T, Amirul AA
    Protein Expr Purif, 2019 03;155:35-42.
    PMID: 30352276 DOI: 10.1016/j.pep.2018.10.008
    Depolymerase is an enzyme that plays an important role in the hydrolysis of polyhydroxyalkanoates [PHAs]. In the current study, Burkholderia cepacia DP1 was obtained from Penang, Malaysia in which the enzyme was purified using ion exchange and gel filtration (Superdex-75) column chromatography. The molecular mass of the enzyme was estimated to be 53.3 kDa using SDS-PAGE. The enzyme activity was increased to 36.8 folds with the recovery of 16.3% after purification. The enzyme activity was detected between pH 6.0-10 and at 35-55 °C with pH 6.0 and 45 °C facilitating the maximum activity. Depolymerase was inactivated by Tween-20, Tween-80, SDS and PMSF, but insensitive to metal ions (Mg2+, Ca2+, K+, Na2+, Fe3+) and organic solvents (methanol, ethanol, and acetone). The apparent Km values of the purified P(3HB) depolymerase enzyme for P(3HB) and P(3HB-co-14%3HV) were 0.7 mg/ml and 0.8 mg/ml, respectively. The Vmax values of the purified enzyme were 10 mg/min and 8.89 mg/min for P(3HB) and P(3HB-co-14%3HV), respectively. The current study discovered a new extracellular poly(3-hydroxybutyrate) [P(3HB)] depolymerase enzyme from Burkholderia cepacia DP1 isolated and purified to homogeneity from the culture supernatant. To the best of our knowledge, this is the first report demonstrating the purification and biochemical characterization of P(3HB) depolymerase enzyme from genus Burkholderia.
    Matched MeSH terms: Polyesters/metabolism*
  10. Yuan X, Amarnath Praphakar R, Munusamy MA, Alarfaj AA, Suresh Kumar S, Rajan M
    Carbohydr Polym, 2019 Feb 15;206:1-10.
    PMID: 30553301 DOI: 10.1016/j.carbpol.2018.10.098
    Natural polymer guar gum has one of the highest viscosities in water solution and hence, these are significantly used in pharmaceutical applications. Guar gum inter-connected micelles as a new carrier has been developed for poor water soluble rifampicin drug. The hydrogel inter-connected micelle core was formulated as a hydrophilic inner and hydrophobic outer core by using guar gum/chitosan/polycaprolactone and the carrier interaction with rifampicin was confirmed by FT-IR. The morphological observations were carried out through TEM, SEM and AFM analysis. The encapsulation efficiency and in-vitro drug release behavior of prepared hydrogel based micelle system was analyzed by UV-vis spectrometry. The anti-bacterial activity against K. pneumoniae and S. aureus was studied by observing their ruptured surface by SEM. The cytotoxicity study reveals that the pure polymeric system has no toxic effect whereas drug loaded ones showed superior activity against THP-1 cells. From the cell apoptosis analyses, the apoptosis was carried out in a time dependent manner. The cell uptake behavior was also observed in THP-1 cells which indicate that the hydrogel based micelle system is an excellent material for the mucoadhesive on intracellular alveolar macrophage treatment.
    Matched MeSH terms: Polyesters/chemical synthesis; Polyesters/toxicity; Polyesters/chemistry
  11. Ezhilarasu H, Sadiq A, Ratheesh G, Sridhar S, Ramakrishna S, Ab Rahim MH, et al.
    Nanomedicine (Lond), 2019 01;14(2):201-214.
    PMID: 30526272 DOI: 10.2217/nnm-2018-0271
    AIM: Atherosclerosis is a common cardiovascular disease causing medical problems globally leading to coronary artery bypass surgery. The present study is to fabricate core/shell nanofibers to encapsulate VEGF for the differentiation of mesenchymal stem cells (MSCs) into smooth muscle cells to develop vascular grafts.

    MATERIALS & METHODS: The fabricated core/shell nanofibers contained polycaprolactone/gelatin as the shell, and silk fibroin/VEGF as the core materials.

    RESULTS: The results observed that the core/shell nanofibers interact to differentiate MSCs into smooth muscle cells by the expression of vascular smooth muscle cell (VSMC) contractile proteins α-actinin, myosin and F-actin.

    CONCLUSION: The functionalized polycaprolactone/gelatin/silk fibroin/VEGF (250 ng) core/shell nanofibers were fabricated for the controlled release of VEGF in a persistent manner for the differentiation of MSCs into smooth muscle cells for vascular tissue engineering.

    Matched MeSH terms: Polyesters/chemistry
  12. Kian LK, Saba N, Jawaid M, Sultan MTH
    Int J Biol Macromol, 2019 Jan;121:1314-1328.
    PMID: 30208300 DOI: 10.1016/j.ijbiomac.2018.09.040
    The utilization of nanocellulose has increasingly gained attentions from various research fields, especially the field of polymer nanocomposites owing to the growing environmental hazardous of petroleum based fiber products. Meanwhile, the searching of alternative cellulose sources from different plants has become the interests for producing nanocellulose with varying characterizations that expectedly suit in specific field of applications. In this content the long and strong bast fibers from plant species was gradually getting its remarkable position in the field of nanocellulose extraction and nanocomposites fabrications. This review article intended to present an overview of the chemical structure of cellulose, different types of nanocellulose, bast fibers compositions, structure, polylactic acid (PLA) and the most probable processing techniques on the developments of nanocellulose from different bast fibers especially jute, kenaf, hemp, flax, ramie and roselle and its nanocomposites. This article however more focused on the fabrication of PLA based nanocomposites due to its high firmness, biodegradability and sustainability properties in developed products towards the environment. Along with this it also explored a couple of issues to improve the processing techniques of bast fibers nanocellulose and its reinforcement in the PLA biopolymer as final products.
    Matched MeSH terms: Polyesters/chemistry*
  13. Shigeharu Sato, Tomonori Hoshi, Bumpei Tojo, Samson Yodot, Joni Jain
    MyJurnal
    Introduction: Collecting mosquitoes is essential for research in mosquito-borne diseases, but the light traps used for that purpose are expensive and often difficult to obtain around research fields. We designed a new 3D-printable mosquito light trap that can be made inexpensively anywhere where electricity is available (Hoshi et al, Scientific Reports, in press). In this study, we produced that trap in Sabah and demonstrated its usefulness in the field. Meth-ods: With a 3D printer, the main parts of the trap - body, lid, lamp stand and collection box - were printed in Kota Kinabalu using black polylactic acid (PLA) filaments purchased online. All other parts such as the computer fan and batteries were commercially available at local shops in Sabah. The parts were assembled into the complete units at Universiti Malaysia Sabah’s Rural Medical Education Centre (RMEC) in Sikuati, Kudat. Demonstration was performed at two sites in the Kudat district: RMEC campus and the premises of a local farm in Kampung Paradason. Results: The 3D traps collected 6 and 7 different species of mosquitoes at RMEC and Paradason sites, respectively. The numbers of mosquito species collected by the commercially-available CDC model-512 traps in parallel experiments were 2 (RMEC) and 10 (Paradason). The species collected by the 3D traps included Aedes albopictus (vector transmitting Dengue virus), Anopheles barbumbrosus (malaria), Culex quinquefasciatus (Wuchereria bancrofti, avian malaria, and arboviruses including Japanese encephalitis and Zika viruses) and Mansonia indiana (Brugia malayi). Conclu-sion: The 3D light trap which was produced in Sabah demonstrated its usefulness in the field tests performed in the Kudat district. This model can be used as an alternative to the rather expensive commercial light traps to collect the vector insects transmitting mosquito-borne diseases such as malaria, dengue, Japanese encephalitis, Zika fever and filariasis.
    Matched MeSH terms: Polyesters
  14. Pakalapati H, Arumugasamy SK, Jewaratnam J, Wong YJ, Khalid M
    Biopolymers, 2018 Dec;109(12):e23240.
    PMID: 30489632 DOI: 10.1002/bip.23240
    A statistical approach with D-optimal design was used to optimize the process parameters for polycaprolactone (PCL) synthesis. The variables selected were temperature (50°C-110°C), time (1-7 h), mixing speed (50-500 rpm) and monomer/solvent ratio (1:1-1:6). Molecular weight was chosen as response and was determined using matrix-assisted laser desorption/ionization time of flight (MALDI TOF). Using the D-optimal method in design of experiments, the interactions between parameters and responses were analysed and validated. The results show a good agreement with a minimum error between the actual and predicted values.
    Matched MeSH terms: Polyesters/metabolism*; Polyesters/chemistry
  15. Martla M, Umsakul K, Sudesh K
    J Basic Microbiol, 2018 Nov;58(11):977-986.
    PMID: 30095175 DOI: 10.1002/jobm.201800279
    Polyhydroxyalkanoates (PHAs) has been paid great attention because of its useful thermoplastic properties and complete degradation in various natural environments. But, at industrial level, the successful commercialization of PHAs is limited by the high production cost due to the expensive carbon source and recovery processes. Pseudomonas mendocina PSU cultured for 72 h in mineral salts medium (MSM) containing 2% (v/v) biodiesel liquid waste (BLW) produced 79.7 wt% poly(3-hydroxybutyrate) (PHB) at 72 h. In addition, this strain produced 43.6 wt% poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with 8.6 HV mol% at 60 h when added with 0.3% sodium propionate. The synthesized intracellular PHA granules were recovered and purified by the recently reported biological method using mealworms. The weight average molecular weight (Mw ) and number average molecular weight (Mn ) of the biologically extracted PHA were higher than that from the chloroform extraction with comparable melting temperature (Tm ) and high purity. This study has successfully established a low-cost process to synthesize PHAs from BLW and subsequently confirmed the ability of mealworms to extract PHAs from various kinds of bacterial cells.
    Matched MeSH terms: Polyesters/isolation & purification*; Polyesters/metabolism*; Polyesters/chemistry
  16. Khalik WMAWM, Ibrahim YS, Tuan Anuar S, Govindasamy S, Baharuddin NF
    Mar Pollut Bull, 2018 Oct;135:451-457.
    PMID: 30301058 DOI: 10.1016/j.marpolbul.2018.07.052
    The first report on the emergence of microplastic in Malaysian marine waters was documented in this study. Water samples were collected from two regions, namely Kuala Nerus and Kuantan port, as the representatives of different anthropogenic activities. Identification of microplastic was performed based on physical characteristics (colour, shape, density) and chemical characterisation (ATR-FTIR analysis) for a functional group of polymers. Fragment type, black or grey colour and high density (>1.02 g cm-3) of microplastic were the most prevalent characteristics found in both areas. Two principal components (density and colour) rendered explained about 95.3% (Kuantan) and 95.6% (Kuala Nerus) of the total variance. Six possible polymer materials were identified, namely polyester, polystyrene, polyamide, polyvinyl chloride, polypropylene, and polyethylene. The findings of the study provided good baseline information on marine debris issue in Malaysia.
    Matched MeSH terms: Polyesters/analysis
  17. Badran MM, Alomrani AH, Harisa GI, Ashour AE, Kumar A, Yassin AE
    Biomed Pharmacother, 2018 Oct;106:1461-1468.
    PMID: 30119220 DOI: 10.1016/j.biopha.2018.07.102
    In the present study, docetaxel (DTX)-loaded poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) nanoparticles were successfully prepared and coated with chitosan (CS). The prepared nanoparticles (NPs) were evaluated for their particle size, zeta potential, particle morphology, drug entrapment efficiency (EE%), and in vitro drug release profile. The anticancer activity of DTX-loaded NPs was assessed in human HT29 colon cancer cell line utilizing MTT assay. The pharmacokinetics of DTX-loaded NPs was monitored in Wistar rats in comparison to DTX solution. The prepared NPs exhibited particle sizes in the range 177.1 ± 8.2-287.6 ± 14.3 nm. CS decorated NPs exhibited a significant increase in particle size and a switch of zeta potential from negative to positive. In addition, high EE% values were obtained for CS coated PCL NPs and PLGA NPs as 67.1 and 76.2%, respectively. Moreover, lowering the rate of DTX in vitro release was achieved within 48 h by using CS coated NPs. Furthermore, a tremendous increase in DTX cytotoxicity was observed by CS-decorated PLGA NPs compared to all other NPs including DTX-free-NPs and pure DTX. The in vivo study revealed significant enhancement in DTX bioavailability from CS-decorated PLGA NPs with more than 4-fold increase in AUC compared to DTX solution. In conclusion, CS-decorated PLGA NPs are a considerable DTX-delivery carrier with magnificent antitumor efficacy.
    Matched MeSH terms: Polyesters/chemistry*
  18. Nirmal U
    Polymers (Basel), 2018 Sep 25;10(10).
    PMID: 30960991 DOI: 10.3390/polym10101066
    The current work is an attempt to reduce friction coefficient of the treated betelnut fibre reinforced polyester (T-BFRP) composites by aging them in twelve different solutions with different kinematic viscosities. The test will be performed on a pin on disc (POD) wear test rig using different applied loads (5⁻30 N), different sliding distances (0⁻6.72 km) at sliding speed of 2.8 m/s subjected to a smooth stainless steel counterface (AISI-304). Different orientations of the fibre mats such as anti-parallel (AP) and parallel (P) orientations subjected to the rotating counterface will be considered. The worn surfaces were examined through optical microscopy imaging and it was found that the aged specimens had significantly lower damages as compared to neat polyester (NP) and the unaged samples. Besides, P-O samples revealed lower friction coefficients as compared to AP-O, i.e., reduction was about 24.71%. Interestingly, aging solutions with lower kinematic viscosities revealed lower friction coefficients of the aged T-BFRP composites when compared to the ones aged in higher kinematic viscosities.
    Matched MeSH terms: Polyesters
  19. Huong KH, Elina KAR, Amirul AA
    Int J Biol Macromol, 2018 Sep;116:217-223.
    PMID: 29723627 DOI: 10.1016/j.ijbiomac.2018.04.148
    Long carbon chain alkanediols are used in the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], however these substrates possess high toxicity towards bacterial cells. This study demonstrated the effective utilisation of a long carbon chain alkanediol, namely 1,8-octanediol, to enhance the yield and production of a copolymer with a high molecular weight of over 1000 kDa, which is desirable for novel applications in medical and biopharmaceuticals. The increased PHA content (47-61 wt%) and concentration (1.7-4.5 g/L) was achieved by additional feeding of a combination of C4 substrates at C/N 10, with 1,8-octanediol + γ-butyrolactone producing P(3HB-co-22 mol% 4HB) with a high molecular weight (1060 kDa) and elongation at break of 970%. The DO-stat feeding strategy of C/N 10 has shown an increment of PHA concentration for both carbon combination, 0.45-4.27 g/L and 0.32-3.36 g/L for 1,8-octanediol + sodium 4-hydroxybutyrate (4HB-Na) and 1,8-octanediol + γ-butyrolactone, but with a slight reduction on molecular weight and mechanical strength. Nonetheless, further study revealed that a nitrogen-absence feeding strategy could retain the high molecular weight and elongation at break of the copolymer, and simultaneously improving the overall P(3HB-co-4HB) production.
    Matched MeSH terms: Polyesters/chemistry*
  20. Aziz HA, Puat NNA, Alazaiza MYD, Hung YT
    PMID: 30104522 DOI: 10.3390/ijerph15081734
    In this study, a sequential batch reactor (SBR) with different types of fibers was employed for the treatment of poultry slaughterhouse wastewater. Three types of fibers, namely, juite fiber (JF), bio-fringe fiber (BF), and siliconised conjugated polyester fiber (SCPF), were used. Four SBR experiments were conducted, using the fibers in different reactors, while the fourth reactor used a combination of these fibers. The treatment efficiency of the different reactors with and without fibers on biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia-nitrogen (NH₃-N), phosphorus (P), nitrite (NO₂), nitrate (NO₃), total suspended solids (TSS), and oil-grease were evaluated. The removal efficiency for the reactors with fibers was higher than that of the reactor without fibers for all pollutants. The treated effluent had 40 mg/L BOD₅ and 45 mg/L COD with an average removal efficiency of 96% and 93%, respectively, which meet the discharge limits stated in the Environmental Quality Act in Malaysia.
    Matched MeSH terms: Polyesters
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links