Displaying publications 81 - 100 of 198 in total

Abstract:
Sort:
  1. Amin B, Ismail A, Arshad A, Yap CK, Kamarudin MS
    Environ Monit Assess, 2009 Jan;148(1-4):291-305.
    PMID: 18274874 DOI: 10.1007/s10661-008-0159-z
    Concentrations of Cd, Cu, Pb, Zn, Ni and Fe were determined in the surface sediments to investigate the distributions, concentrations and the pollution status of heavy metals in Dumai coastal waters. Sediment samples from 23 stations, representing 5 different site groups of eastern, central and western Dumai and southern and northern Rupat Island, were collected in May 2005. The results showed that heavy metal concentrations (in microg/g dry weight; Fe in %) were 0.88 (0.46-1.89); 6.08 (1.61-13.84); 32.34 (14.63-84.90); 53.89 (31.49-87.11); 11.48 (7.26-19.97) and 3.01 (2.10-3.92) for Cd, Cu, Pb, Zn, Ni and Fe, respectively. Generally, metal concentrations in the coastal sediments near Dumai city center (eastern and central Dumai) which have more anthropogenic activities were higher than those at other stations. Average concentration of Cd in the eastern Dumai was slightly higher than effective range low (ERL) but still below effective range medium (ERM) value established by Long et al. (Environmental Management 19(1):81-97, 1995; Environmental Toxicology Chemistry 17(4):714-727, 1997). All other metals were still below ERL and ERM. Calculated enrichment factor (EF), especially for Cd and Pb, and the Pollution load index (PLI) value in the eastern Dumai were also higher than other sites. Cd showed higher EF when compared to other metals. Geo-accumulation indices (I(geo)) in most of the stations (all site groups) were categorized as class 1 (unpolluted to moderately polluted environment) and only Cd in Cargo Port was in class 2 (moderately polluted). Heavy metal concentrations found in the present study were comparable to other regions of the world and based on the calculated indices it can be classified as unpolluted to moderately polluted coastal environment.
    Matched MeSH terms: Seawater/chemistry*
  2. Jalal KC, Faizul HN, Naim MA, John BA, Kamaruzzaman BY
    J Environ Biol, 2012 Jul;33(4):831-5.
    PMID: 23360015
    A study on physico-chemical parameters and pathogenic bacterial community was carried out at the coastal waters of Pulau Tuba island, Langkawi. The physico-chemical parameters such as temperature (27.43-28.88 degrees C), dissolved oxygen (3.79-6.49 mg l(-1)), pH (7.72-8.20), salinity (33.10-33.96 ppt), total dissolved solids (32.27-32.77 g l(-1)) and specific conductivity (49.83-51.63 mS cm(-1)) were observed. Station 3 and station 4 showed highest amount of nitrates (26.93 and 14.61 microg at N l(-1)) than station 1 (2.04 microg at N l(-1)) and station 2 (4.18 microg at N l(-1)). The highest concentration (12.4 +/- microg l(-1)) of chlorophyll a was observed in station 4 in October 2005. High phosphorus content (561 microg P l(-1)) was found in the station 2. Thirteen bacterial isolates were successfully identified using API 20E system. The highest amount of bacteria was observed at Station 4 (3400 CFU ml(-1)) and the lowest numberwas at Station 2 (890 CFU ml(-1)). Out of identified 13 Gram-negative bacterial isolates dominant species were Aeromonas hydrophila, Klebsiella oxytoca, Pseudomonas baumannii, Vibrio vulnificus, Proteus mirabilis, Providencia alcalifaciens and Serratia liquefaciens. Apart from this, oil biodegrading Pseudomonas putida were also identified. The study reveals the existing status of water quality is still conducive and the reasonably diverse with Gram-negative bacteria along the Pulau Tuba Langkawi.
    Matched MeSH terms: Seawater/microbiology*
  3. Kim M, Jung JH, Jin Y, Han GM, Lee T, Hong SH, et al.
    Mar Pollut Bull, 2016 Jul 15;108(1-2):281-8.
    PMID: 27167134 DOI: 10.1016/j.marpolbul.2016.04.049
    The molecular composition and distribution of sterols were investigated in the East China Sea to identify the origins of suspended particulate matter (SPM) in offshore waters influenced by Changjiang River Diluted Water (CRDW). Total sterol concentrations ranged from 3200 to 31,900pgL(-1) and 663 to 5690pgL(-1) in the particulate and dissolved phases, respectively. Marine sterols dominated representing 71% and 66% in the particulate and dissolved phases, respectively. Typical sewage markers, such as coprostanol, were usually absent at ~250km offshore. However, sterols from allochthonous terrestrial plants were still detected at these sites. A negative relationship was observed between salinity and concentrations of terrestrial sterols in SPM, suggesting that significant amounts of terrestrial particulate matter traveled long distance offshore in the East China Sea, and the Changjiang River Diluted Water (CRDW) was an effective carrier of land-derived particulate organic matter to the offshore East China Sea.
    Matched MeSH terms: Seawater/chemistry*
  4. Peyman N, Tavakoly Sany SB, Tajfard M, Hashim R, Rezayi M, Karlen DJ
    Environ Sci Process Impacts, 2017 Aug 16;19(8):1086-1103.
    PMID: 28776620 DOI: 10.1039/c7em00200a
    A set of methodological tools was tested to assess the sensitivity of several ecological and biological indices to eutrophication while at the same time attempting to explore a linkage among pressures, classification assessment and drivers. Industrial discharges, harbor activities, natural interactions and river discharges are the pressures most related to the eutrophication process in tropical coastal water bodies. Among the eutrophication indices used, TRIX and operational indicators overestimated the eutrophication status in the study area, but EI and chl-a seems to be a rather responsive index to reflect the first stage of eutrophication. It is noteworthy that EI and chl-a showed better overall agreement with the ecological quality status (EcoQ) showing that probably it reflects the indirect relation of macrobenthic with water eutrophication in a better way. An ecological boundary of EI and chl-a from moderate to poor may be needed in order to explain the poor status of relatively eutrophic Klang Strait coastal sites.
    Matched MeSH terms: Seawater/chemistry*
  5. Syafiqa Hayati Mohd Ali, Norazlina Ahmad, Khairul Adzfa Radzun
    MyJurnal
    This study describes the adaptations of diatoms, Cylindrotheca fusiformis and other marine diatoms, in a new formulated enriched medium Tris-phosphate seawater (TP-SW). The medium was designed to maintain long-term cultures of wide-range marine diatoms in laboratory that produces high biomass of cultures. The diatoms were adapted and cultivated in the medium for 15 days and the number of cells was recorded daily. It was found that the number of cells declined after two weeks indicating death phase of the cells. This indicates that the TP-SW medium has supported the growth of diatoms during the period and can be used to cultivate diatoms in vitro. Studies on the TP-SW medium must be done to obtain optimal medium that can provide not only a conducive environment for the survival of diatoms but also high biomass production.
    Matched MeSH terms: Seawater
  6. Bristy MS, Sarker KK, Baki MA, Quraishi SB, Hossain MM, Islam A, et al.
    Environ Toxicol Pharmacol, 2021 Aug;86:103666.
    PMID: 33895355 DOI: 10.1016/j.etap.2021.103666
    Metal contaminations in commercial fish have become a great public health concern worldwide including Bangladesh. The current study was conducted to provide preliminary evidence of nine metals in three commercially significant fish namely Pampus argenteus, Sardinella longiceps and Tenualosa ilisha collected from four coastal stations- Kuakata, Pathorghata, Cox's Bazar, and Pirojpur, and eight stations of five rivers- Padma, Meghna, Jamuna, Katcha, and Nobogonga in Bangladesh. High magnitudes of Pb (0.74-4.59 mg/kg ww), Cd (0.07-0.24 mg/kg ww), and Mn (0.45-2.03 mg/kg ww) were recorded in the sampling stations that exceeded the maximum permissible limits (MPL) proposed by different recognized organizations. Significant mean differences of metal concentrations were observed (p 
    Matched MeSH terms: Seawater
  7. Low KL, Khoo HW, Koh LL
    Environ Monit Assess, 1991 Oct;19(1-3):319-33.
    PMID: 24233949 DOI: 10.1007/BF00401321
    Marine biofouling causes problems to marine structure and obstructs condenser tubes in cooling systems which use sea water as the coolant. The main purpose of this study is to investigate the seasonal ecology of biofouling organisms such as the green mussel, Perna viridis, the dominant fouling species in the Eastern Johore Straits at the Senoko Power Station. The spawning time and its relationship with environmental conditions were studied. The physical, chemical and biological conditions of the sea at Senoko were monitored for a year. Settling slides were used to study the fouling succession in different monsoon seasons. The study showed that there were two main spawning peaks for the green mussel and that these peaks occurred during the intermonsoon months of November and April. These peaks were also correlated with the bimodal patterns for salinity, dissolved oxyen, bivalve veliger larval density and total plankton biomass of the Eastern Johore Strait water. Succession patterns were similar during the two monsoon seasons, however, the rate of fouling was probably greater during the southwest monsoon months. It is therefore advisable that the control or reduction of biofouling in Eastern Johore Strait should take into account the seasonal fluctuations and spawning of the fouling organisms.
    Matched MeSH terms: Seawater
  8. Lim JH, Lee CW, Bong CW, Affendi YA, Hii YS, Kudo I
    Mar Pollut Bull, 2018 Mar;128:415-427.
    PMID: 29571392 DOI: 10.1016/j.marpolbul.2018.01.037
    Particulate phosphorus was the dominant phosphorus species and accounted for 72 ± 5% of total phosphorus in coastal habitats, 63 ± 4% in estuaries, 58 ± 6% in lakes and 80 ± 7% in aquaculture farms whereas dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus (DOP) were minor components. Correlation analyses (DIP vs Chl a; R2 = 0.407, df = 31, p 
    Matched MeSH terms: Seawater/chemistry*
  9. Tong SL, Pang FY, Phang SM, Lai HC
    Environ Pollut, 1996;91(2):209-16.
    PMID: 15091442
    The occurrence of tributyltin (TBT) is reported in the coastal waters of a few selected sites in Peninsular Malaysia. Water, bivalves and sediment samples collected were analysed specifically for TBT using sensitive analytical methods which involved a solvent extraction procedure with appropriate clean-up followed by graphite furnace atomic absorption spectrometric measurements. The levels of TBT in the seawater in unexposed areas were found in the range from <3.4 to 20 ng litre(-1) as compared to coastal areas with high boat and ship activities where TBT levels in seawater were generally above 30 ng litre(-1), with the highest level found at 281.8 ng litre(-1). TBT levels in the tissues of random cockle and soft-shell clam samples from local markets were found in the range from <0.5 to 3.7 ng g(-1) wet weight. The levels of TBT found in green mussel samples both from the market (23.5 ng g(-1) wet weight) and those from a mussel farm (14.2 ng g(-1) wet weight) indicate slight accumulation of TBT. In sediments, TBT levels were found ranging from <0.7 ng g(-1) dry weight in unexposed coastal sites to as high as 216.5 ng g(-1) dry weight for a site within a port area.
    Matched MeSH terms: Seawater
  10. Roslan RN, Hanif NM, Othman MR, Azmi WN, Yan XX, Ali MM, et al.
    Mar Pollut Bull, 2010 Sep;60(9):1584-90.
    PMID: 20451220 DOI: 10.1016/j.marpolbul.2010.04.004
    A study was done to determine the concentrations of surfactants on the sea-surface microlayer and in atmospheric aerosols in several coastal areas around the Malaysian peninsula. The concentrations of surfactants from the sea-surface microlayer (collected using rotation drum) and from aerosols (collected using HVS) were analyzed as methylene blue active substances and disulphine blue active substances through the colorimetric method using a UV-vis spectrophotometer. The results of this study showed that the average concentrations of surfactants in the sea-surface microlayer ranged between undetected and 0.36+/-0.34 micromol L(-1) for MBAS and between 0.11+/-0.02 and 0.21+/-0.13 micromol L(-1) for DBAS. The contribution of surfactants from the sea-surface microlayer to the composition of surfactants in atmospheric aerosols appears to be very minimal and more dominant in fine mode aerosols.
    Matched MeSH terms: Seawater/chemistry*
  11. Huang YJ, Brimblecombe P, Lee CL, Latif MT
    Mar Pollut Bull, 2015 Aug 15;97(1-2):78-84.
    PMID: 26093815 DOI: 10.1016/j.marpolbul.2015.06.031
    Samples of sea-surface microlayer (SML) and sub-surface water (SSW) were collected from two areas-Kaohsiung City (Taiwan) and the southwest coast of Peninsular Malaysia to study the influence of SML on enrichment and distribution and to compare SML with the SSW. Anionic surfactants (MBAS) predominated in this study and were significantly higher in Kaohsiung than in Malaysia. Industrial areas in Kaohsiung were enriched with high loads of anthropogenic sources, accounted for higher surfactant amounts, and pose higher environmental disadvantages than in Malaysia, where pollutants were associated with agricultural activities. The dissolved organic carbon (DOC), MBAS, and cationic surfactant (DBAS) concentrations in the SML correlated to the SSW, reflecting exchanges between the SML and SSW in Kaohsiung. The relationships between surfactants and the physiochemical parameters indicated that DOC and saltwater dilution might affect the distributions of MBAS and DBAS in Kaohsiung. In Malaysia, DOC might be the important factor controlling DBAS.
    Matched MeSH terms: Seawater
  12. Chong VC, Lee PK, Lau CM
    J Fish Biol, 2010 Jun;76(9):2009-66.
    PMID: 20557654 DOI: 10.1111/j.1095-8649.2010.02685.x
    A total of 1951 species of freshwater and marine fishes belonging to 704 genera and 186 families are recorded in Malaysia. Almost half (48%) are currently threatened to some degree, while nearly one third (27%) mostly from the marine and coral habitats require urgent scientific studies to evaluate their status. Freshwater habitats encompass the highest percentage of threatened fish species (87%) followed by estuarine habitats (66%). Of the 32 species of highly threatened (HT) species, 16 are freshwater and 16 are largely marine-euryhaline species. Fish extinctions in Malaysia are confined to two freshwater species, but both freshwater and marine species are being increasingly threatened by largely habitat loss or modification (76%), overfishing (27%) and by-catch (23%). The most important threat to freshwater fishes is habitat modification and overfishing, while 35 species are threatened due to their endemism. Brackish-water, euryhaline and marine fishes are threatened mainly by overfishing, by-catch and habitat modification. Sedimentation (pollution) additionally threatens coral-reef fishes. The study provides recommendations to governments, fish managers, scientists and stakeholders to address the increasing and unabated extinction risks faced by the Malaysian fish fauna.
    Matched MeSH terms: Seawater
  13. Chénard C, Wijaya W, Vaulot D, Lopes Dos Santos A, Martin P, Kaur A, et al.
    Sci Rep, 2019 Nov 08;9(1):16390.
    PMID: 31704973 DOI: 10.1038/s41598-019-52648-x
    Singapore, an equatorial island in South East Asia, is influenced by a bi-annual reversal of wind directions which defines two monsoon seasons. We characterized the dynamics of the microbial communities of Singapore coastal waters by collecting monthly samples between February 2017 and July 2018 at four sites located across two straits with different trophic status, and sequencing the V6-V8 region of the small sub-unit ribosomal RNA gene (rRNA gene) of Bacteria, Archaea, and Eukaryota. Johor Strait, which is subjected to wider environmental fluctuations from anthropogenic activities, presented a higher abundance of copiotrophic microbes, including Cellvibrionales and Rhodobacterales. The mesotrophic Singapore Strait, where the seasonal variability is caused by changes in the oceanographic conditions, harboured a higher proportion of typically marine microbe groups such as Synechococcales, Nitrosupumilales, SAR11, SAR86, Marine Group II Archaea and Radiolaria. In addition, we observed seasonal variability of the microbial communities in the Singapore Strait, which was possibly influenced by the alternating monsoon regime, while no seasonal pattern was detected in the Johor Strait.
    Matched MeSH terms: Seawater/microbiology*
  14. You KG, Bong CW, Lee CW
    Environ Monit Assess, 2016 Mar;188(3):171.
    PMID: 26884358 DOI: 10.1007/s10661-016-5163-0
    Vibrio species isolated from four different sampling stations in the west coast of Peninsular Malaysia were screened for their antimicrobial resistance and plasmid profiles. A total of 138 isolates belonging to 15 different species were identified. Vibrio campbellii, V. parahaemolyticus, V. harveyi, and V. tubiashii were found to predominance species at all stations. High incidence of erythromycin, ampicillin, and mecillinam resistance was observed among the Vibrio isolates. In contrast, resistance against aztreonam, cefepime, streptomycin, sulfamethoxazole, and sulfonamides was low. All the Vibrio isolates in this study were found to be susceptible to imipenem, norfloxacin, ofloxacin, chloramphenicol, trimethoprim/sulfamethoxazole, and oxytetracycline. Ninety-five percent of the Vibrio isolates were resistant to one or more different classes of antibiotic, and 20 different resistance antibiograms were identified. Thirty-two distinct plasmid profiles with molecular weight ranging from 2.2 to 24.8 kb were detected among the resistance isolates. This study showed that multidrug-resistant Vibrio spp. were common in the aquatic environments of west coast of Peninsular Malaysia.
    Matched MeSH terms: Seawater/microbiology*
  15. Heng PL, Lim JH, Lee CW
    Environ Monit Assess, 2017 Mar;189(3):117.
    PMID: 28220442 DOI: 10.1007/s10661-017-5838-1
    Temporal variation of Synechococcus, its production (μ) and grazing loss (g) rates were studied for 2 years at nearshore stations, i.e. Port Dickson and Port Klang along the Straits of Malacca. Synechococcus abundance at Port Dickson (0.3-2.3 × 10(5) cell ml(-1)) was always higher than at Port Klang (0.3-7.1 × 10(4) cell ml(-1)) (p  0.25), but nutrient and light availability were important factors for their distribution. The relationship was modelled as log Synechococcus = 0.37Secchi - 0.01DIN + 4.52 where light availability (as Secchi disc depth) was a more important determinant. From a two-factorial experiment, nutrients were not significant for Synechococcus growth as in situ nutrient concentrations exceeded the threshold for saturated growth. However, light availability was important and elevated Synechococcus growth rates especially at Port Dickson (F = 5.94, p  0.30). In nearshore tropical waters, an estimated 69 % of Synechococcus production could be grazed.
    Matched MeSH terms: Seawater
  16. Yee MS, Khiew PS, Chiu WS, Tan YF, Kok YY, Leong CO
    Colloids Surf B Biointerfaces, 2016 Dec 01;148:392-401.
    PMID: 27639489 DOI: 10.1016/j.colsurfb.2016.09.011
    Fouling of marine surfaces has been a perpetual problem ever since the days of the early sailors. The tenacious attachment of seaweed and invertebrates to man-made surfaces, notably on ship hulls, has incurred undesirable economic losses. Graphene receives great attention in the materials world for its unique combination of physical and chemical properties. Herein, we present a novel 2-step synthesis method of graphene-silver nanocomposites which bypasses the formation of graphene oxide (GO), and produces silver nanoparticles supported on graphene sheets through a mild hydrothermal reduction process. The graphene-Ag (GAg) nanocomposite combines the antimicrobial property of silver nanoparticles and the unique structure of graphene as a support material, with potent marine antifouling properties. The GAg nanocomposite was composed of micron-scaled graphene flakes with clusters of silver nanoparticles. The silver nanoparticles were estimated to be between 72 and 86nm (SEM observations) while the crystallite size of the silver nanoparticles (AgNPs) was estimated between 1 and 5nm. The nanocomposite also exhibited the SERS effect. GAg was able to inhibit Halomonas pacifica, a model biofilm-causing microbe, from forming biofilms with as little as 1.3wt.% loading of Ag. All GAg samples displayed significant biofilm inhibition property, with the sample recording the highest Ag loading (4.9wt.% Ag) associated with a biofilm inhibition of 99.6%. Moreover, GAg displayed antiproliferative effects on marine microalgae, Dunaliella tertiolecta and Isochrysis sp. and inhibited the growth of the organisms by more than 80% after 96h. The marine antifouling properties of GAg were a synergy of the biocidal AgNPs anchored on the stable yet flexible graphene sheets, providing maximum active contact surface areas to the target organisms.
    Matched MeSH terms: Seawater/microbiology
  17. Mu D, Yuan D, Feng H, Xing F, Teo FY, Li S
    Mar Pollut Bull, 2017 Jan 30;114(2):705-714.
    PMID: 27802871 DOI: 10.1016/j.marpolbul.2016.10.056
    Sediment cores and overlying water samples were collected at four sites in Tianjin Coastal Zone, Bohai Bay, to investigate nutrient (N, P and Si) exchanges across the sediment-water interface. The exchange fluxes of each nutrient species were estimated based on the porewater profiles and laboratory incubation experiments. The results showed significant differences between the two methods, which implied that molecular diffusion alone was not the dominant process controlling nutrient exchanges at these sites. The impacts of redox conditions and bioturbation on the nutrient fluxes were confirmed by the laboratory incubation experiments. The results from this study showed that the nutrient fluxes measured directly from the incubation experiment were more reliable than that predicted from the porewater profiles. The possible impacts causing variations in the nutrient fluxes include sewage discharge and land reclamation.
    Matched MeSH terms: Seawater/chemistry*
  18. Chen WL, Ling YS, Lee DJH, Lin XQ, Chen ZY, Liao HT
    Chemosphere, 2020 Mar;242:125268.
    PMID: 31896175 DOI: 10.1016/j.chemosphere.2019.125268
    This study investigated chlorinated transformation products (TPs) and their parent micropollutants, aromatic pharmaceuticals and personal care products (PPCPs) in the urban water bodies of two metropolitan cities. Nine PPCPs and 16 TPs were quantitatively or semi-quantitatively determined using isotope dilution techniques and liquid chromatography-tandem mass spectrometry. TPs and most PPCPs were effectively removed by conventional wastewater treatments in a wastewater treatment plant (WWTP). Chlorinated parabens and all PPCPs (at concentrations below 1000 ng/L) were present in the waters receiving treated wastewater. By contrast, the waters receiving untreated wastewater contained higher levels of PPCPs (up to 9400 ng/L) and more species of chlorinated TPs including chlorinated parabens, triclosan, diclofenac, and bisphenol A. The very different chemical profiles between the water bodies of the two cities of similar geographical and climatic properties may be attributed to their respective uses of chemicals and policies of wastewater management. No apparent increase in the number of species or abundances of TPs was observed in either the chlorinated wastewater or the seawater rich in halogens. This is the first study to elucidate and compare the profiles of multiple TPs and their parent PPCPs in the water bodies of coastal cities from tropical islands. Our findings suggest that chlorinated derivatives of bisphenol A, diclofenac, triclosan, and parabens in the surface water originate from sources other than wastewater disinfection or marine chlorination. Although further studies are needed to identify the origins, conventional wastewater treatments may protect natural water bodies against contamination by those chlorinated substances.
    Matched MeSH terms: Seawater/chemistry*
  19. Mokhtar MB, Praveena SM, Aris AZ, Yong OC, Lim AP
    Mar Pollut Bull, 2012 Nov;64(11):2556-63.
    PMID: 22901962 DOI: 10.1016/j.marpolbul.2012.07.030
    This study was designed as the first to assess the trace metal (Cd, Cu, Fe, Mn, Ni and Zn) in coral skeleton in relation to metal availabilities and sampling locations in Sabah. The study also aims to determine the differential abilities of Scleractinian coral species as a bioindicator of environmental conditions. Skeletons of Scleractinian coral (Hydnophora microconos, Favia speciosa and Porites lobata) showed concentrations of Fe, Mn and Ni relatively higher than Cd and Zn in the skeletons. Statistical analyses outputs showed significant relationships between trace metal concentrations in coral species and those in seawater and sediment. The highest bioaccumulation factors among three Scleractinian coral species investigated was for Zn followed by Mn, Ni, Fe, Cd and Cu can provide a sign about pollution levels. However, metal tolerance, coral structure and morphology as well as multispecies monitoring are factors that need to be a focus in future studies.
    Matched MeSH terms: Seawater/chemistry
  20. Toh PY, Ng BW, Ahmad AL, Chieh DC, Lim J
    Nanoscale, 2014 Nov 7;6(21):12838-48.
    PMID: 25227473 DOI: 10.1039/c4nr03121k
    Successful application of a magnetophoretic separation technique for harvesting biological cells often relies on the need to tag the cells with magnetic nanoparticles. This study investigates the underlying principle behind the attachment of iron oxide nanoparticles (IONPs) onto microalgal cells, Chlorella sp. and Nannochloropsis sp., in both freshwater and seawater, by taking into account the contributions of various colloidal forces involved. The complex interplay between van der Waals (vdW), electrostatic (ES) and Lewis acid-base interactions (AB) in dictating IONP attachment was studied under the framework of extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis. Our results showed that ES interaction plays an important role in determining the net interaction between the Chlorella sp. cells and IONPs in freshwater, while the AB and vdW interactions play a more dominant role in dictating the net particle-to-cell interaction in high ionic strength media (≥100 mM NaCl), such as seawater. XDLVO predicted effective attachment between cells and surface functionalized IONPs (SF-IONPs) with an estimated secondary minimum of -3.12 kT in freshwater. This prediction is in accordance with the experimental observation in which 98.89% of cells can be magnetophoretically separated from freshwater with SF-IONPs. We have observed successful magnetophoretic separation of microalgal cells from freshwater and/or seawater for all the cases as long as XDLVO analysis predicts particle attachment. For both the conditions, no pH adjustment is required for particle-to-cell attachment.
    Matched MeSH terms: Seawater
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links