Objective: To estimate changes in the prevalence of current tobacco use and socioeconomic inequalities among male and female participants from 22 sub-Saharan African countries from 2003 to 2019.
Design, Setting, and Participants: Secondary data analyses were conducted of sequential Demographic and Health Surveys in 22 sub-Saharan African countries including male and female participants aged 15 to 49 years. The baseline surveys (2003-2011) and the most recent surveys (2011-2019) were pooled.
Exposures: Household wealth index and highest educational level were the markers of inequality.
Main Outcomes and Measures: Sex-specific absolute and relative changes in age-standardized prevalence of current tobacco use in each country and absolute and relative measures of inequality using pooled data.
Results: The survey samples included 428 197 individuals (303 232 female participants [70.8%]; mean [SD] age, 28.6 [9.8] years) in the baseline surveys and 493 032 participants (348 490 female participants [70.7%]; mean [SD] age, 28.5 [9.4] years) in the most recent surveys. Both sexes were educated up to primary (35.7%) or secondary school (40.0%). The prevalence of current tobacco use among male participants ranged from 6.1% (95% CI, 5.2%-6.9%) in Ghana to 38.3% (95% CI, 35.8%-40.8%) in Lesotho in the baseline surveys and from 4.5% (95% CI, 3.7%-5.3%) in Ghana to 46.0% (95% CI, 43.2%-48.9%) in Lesotho during the most recent surveys. The decrease in prevalence ranged from 1.5% (Ghana) to 9.6% (Sierra Leone). The World Health Organization target of a 30% decrease in smoking was achieved among male participants in 8 countries: Rwanda, Nigeria, Ethiopia, Benin, Liberia, Tanzania, Burundi, and Cameroon. For female participants, the number of countries having a prevalence of smoking less than 1% increased from 9 in baseline surveys to 16 in the most recent surveys. The World Health Organization target of a 30% decrease in smoking was achieved among female participants in 15 countries: Cameroon, Namibia, Mozambique, Mali, Liberia, Nigeria, Burundi, Tanzania, Malawi, Kenya, Rwanda, Zimbabwe, Ethiopia, Burkina Faso, and Zambia. For both sexes, the prevalence of tobacco use and the decrease in prevalence of tobacco use were higher among less-educated individuals and individuals with low income. In both groups, the magnitude of inequalities consistently decreased, and its direction remained the same. Absolute inequalities were 3-fold higher among male participants, while relative inequalities were nearly 2-fold higher among female participants.
Conclusions and Relevance: Contrary to a projected increase, tobacco use decreased in most sub-Saharan African countries. Persisting socioeconomic inequalities warrant the stricter implementation of tobacco control measures to reach less-educated individuals and individuals with low income.
METHODS: A cross-section of 163,397 adults aged 35 to 70 years were recruited from 661 urban and rural communities in selected low-, middle- and high-income countries (complete data for this analysis from 151,619 participants). Using blood pressure measurements, self-reported health and household data, concentration indices adjusted for age, sex and urban-rural location, we estimate the magnitude of wealth-related inequalities in the levels of hypertension awareness, treatment, and control in each of the 21 country samples.
RESULTS: Overall, the magnitude of wealth-related inequalities in hypertension awareness, treatment, and control was observed to be higher in poorer than in richer countries. In poorer countries, levels of hypertension awareness and treatment tended to be higher among wealthier households; while a similar pro-rich distribution was observed for hypertension control in countries at all levels of economic development. In some countries, hypertension awareness was greater among the poor (Sweden, Argentina, Poland), as was treatment (Sweden, Poland) and control (Sweden).
CONCLUSION: Inequality in hypertension management outcomes decreased as countries became richer, but the considerable variation in patterns of wealth-related inequality - even among countries at similar levels of economic development - underscores the importance of health systems in improving hypertension management for all. These findings show that some, but not all, countries, including those with limited resources, have been able to achieve more equitable management of hypertension; and strategies must be tailored to national contexts to achieve optimal impact at population level.
METHODS: We assessed use of antiplatelet, cholesterol, and blood-pressure-lowering drugs in 8492 individuals with self-reported cardiovascular disease from 21 countries enrolled in the Prospective Urban Rural Epidemiology (PURE) study. Defining one or more drugs as a minimal level of secondary prevention, wealth-related inequality was measured using the Wagstaff concentration index, scaled from -1 (pro-poor) to 1 (pro-rich), standardised by age and sex. Correlations between inequalities and national health-related indicators were estimated.
FINDINGS: The proportion of patients with cardiovascular disease on three medications ranged from 0% in South Africa (95% CI 0-1·7), Tanzania (0-3·6), and Zimbabwe (0-5·1), to 49·3% in Canada (44·4-54·3). Proportions receiving at least one drug varied from 2·0% (95% CI 0·5-6·9) in Tanzania to 91·4% (86·6-94·6) in Sweden. There was significant (p<0·05) pro-rich inequality in Saudi Arabia, China, Colombia, India, Pakistan, and Zimbabwe. Pro-poor distributions were observed in Sweden, Brazil, Chile, Poland, and the occupied Palestinian territory. The strongest predictors of inequality were public expenditure on health and overall use of secondary prevention medicines.
INTERPRETATION: Use of medication for secondary prevention of cardiovascular disease is alarmingly low. In many countries with the lowest use, pro-rich inequality is greatest. Policies associated with an equal or pro-poor distribution include free medications and community health programmes to support adherence to medications.
FUNDING: Full funding sources listed at the end of the paper (see Acknowledgments).
METHODS: This was a cross sectional study of 1,312 respondents selected using a multistage design. Questionnaires relating to the demographic characteristics, socioeconomic profiles, social and physical environment, knowledge and perception of cancer screening were gathered. Multiple logistic regression models were used to examine the variables and their association with poor perceptions of cancer screening.
RESULTS: Overall, 871(66.4%) respondents had poor perceptions of cancer screenings; 68.4% among males and 64.4% among females. In the multivariable analysis in the category of income, the bottom 40% and lower middle 40%, had not subscribed to health insurance, had poor social support, absence of any family history of cancer or comorbid illnesses, no previous attendance for cancer screening and poor knowledge of cancer, all of which were associated with their poor cancer screening perceptions.
CONCLUSION: One way of developing cancer screening services to detect cancer in its early stage could include efforts to reach people with less awareness about cancer screening tests, lower socioeconomic status, and inadequate social support. Particular consideration should be taken to locate those who never had health insurance or attended cancer screening tests to provide the appropriate resources.
METHODS: An analysis was conducted among 2237 older adults who participated in a longitudinal study on aging (LRGS TUA). This study involved four states in Malaysia, with 49.4% from urban areas. Respondents were divided into three categories of SES based on percentile, stratified according to urban and rural settings. SES was measured using household income.
RESULTS: The prevalence of low SES was higher among older adults in the rural area (50.6%) as compared to the urban area (49.4%). Factors associated with low SES among older adults in an urban setting were low dietary fibre intake (Adj OR:0.91),longer time for the Timed up and Go Test (Adj OR:1.09), greater disability (Adj OR:1.02), less frequent practice of caloric restriction (Adj OR:1.65), lower cognitive processing speed score (Adj OR:0.94) and lower protein intake (Adj OR:0.94). Whilst, among respondents from rural area, the factors associated with low SES were lack of dietary fibre intake (Adj OR:0.79), lower calf circumference (Adj OR: 0.91), lesser fresh fruits intake (Adj OR:0.91), greater disability (Adj OR:1.02) and having lower score in instrumental activities of daily living (Adj OR: 0.92).
CONCLUSION: Lower SES ismore prevalent in rural areas. Poor dietary intake, lower fitness and disability were common factors associated with low in SES, regardless of settings. Factors associated with low SES identifiedin both the urban and rural areas in our study may be useful inplanning strategies to combat low SES and its related problems among older adults.
METHODS: A total of 2406 Malaysian children aged 5 to 12 years, who had participated in the South East Asian Nutrition Surveys (SEANUTS), were included in this study. Cognitive performance [non-verbal intelligence quotient (IQ)] was measured using Raven's Progressive Matrices, while socioeconomic characteristics were determined using parent-report questionnaires. Body mass index (BMI) was calculated using measured weight and height, while BMI-for-age Z-score (BAZ) and height-for-age Z-score (HAZ) were determined using WHO 2007 growth reference.
RESULTS: Overall, about a third (35.0%) of the children had above average non-verbal IQ (high average: 110-119; superior: ≥120 and above), while only 12.2% were categorized as having low/borderline IQ ( 3SD), children from very low household income families and children whose parents had only up to primary level education had the highest prevalence of low/borderline non-verbal IQ, compared to their non-obese and higher socioeconomic counterparts. Parental lack of education was associated with low/borderline/below average IQ [paternal, OR = 2.38 (95%CI 1.22, 4.62); maternal, OR = 2.64 (95%CI 1.32, 5.30)]. Children from the lowest income group were twice as likely to have low/borderline/below average IQ [OR = 2.01 (95%CI 1.16, 3.49)]. Children with severe obesity were twice as likely to have poor non-verbal IQ than children with normal BMI [OR = 2.28 (95%CI 1.23, 4.24)].
CONCLUSIONS: Children from disadvantaged backgrounds (that is those from very low income families and those whose parents had primary education or lower) and children with severe obesity are more likely to have poor non-verbal IQ. Further studies to investigate the social and environmental factors linked to cognitive performance will provide deeper insights into the measures that can be taken to improve the cognitive performance of Malaysian children.
METHODS: This was a cross-sectional population based study with data on occupational social class, educational level obtained using a detailed health and lifestyle questionnaire. A total of 10,147 men and 12,304 women aged 45-80 years living in Norfolk, United Kingdom, were recruited using general practice age-sex registers as part of the European Prospective Investigation into Cancer (EPIC-Norfolk). Plasma levels of cholesterol and triglycerides were measured in baseline samples. Social class was classified according to three classifications: occupation, educational level, and area deprivation score according to Townsend deprivation index. Differences in lipid levels by socio-economic status indices were quantified by analysis of variance (ANOVA) and multiple linear regression after adjusting for body mass index and alcohol consumption.
RESULTS: Total cholesterol levels were associated with occupational level among men, and with educational level among women. Triglyceride levels were associated with educational level and occupational level among women, but the latter association was lost after adjustment for age and body mass index. HDL-cholesterol levels were associated with both educational level and educational level among men and women. The relationships with educational level were substantially attenuated by adjustment for age, body mass index and alcohol use, whereas the association with educational class was retained upon adjustment. LDL-cholesterol levels were not associated with social class indices among men, but a positive association was observed with educational class among women. This association was not affected by adjustment for age, body mass index and alcohol use.
CONCLUSIONS: The findings of this study suggest that there are sex differences in the association between socio-economic status and serum lipid levels. The variations in lipid profile with socio-economic status may be largely attributed to potentially modifiable factors such as obesity, physical activity and dietary intake.