Displaying publications 81 - 100 of 214 in total

Abstract:
Sort:
  1. Heng GC, Isa MH, Lim JW, Ho YC, Zinatizadeh AAL
    Environ Sci Pollut Res Int, 2017 Dec;24(35):27113-27124.
    PMID: 28963706 DOI: 10.1007/s11356-017-0287-5
    Biological treatments, such as activated sludge process, are common methods to treat municipal and industrial wastewaters. However, they produce huge amounts of waste activated sludge (WAS). The excess sludge treatment and disposal are a challenge for wastewater treatment plants due to economic, environmental, and regulatory factors. In this study, photo-Fenton pretreatment (oxidation using hydrogen peroxide and iron catalyst aided with UV light) was optimized using response surface methodology (RSM) and central composite design (CCD) to determine the effects of three operating parameters (H2O2 dosage, H2O2/Fe2+ molar ratio, and irradiation time) on disintegration and dewaterability of WAS. MLVSS removal, capillary suction time (CST) reduction, sCOD, and EPS were obtained as 70%, 25%, 12,000 mg/L, and 500 mg/L, respectively, at the optimal conditions, i.e., 725 g H2O2/kg TS, H2O2/Fe2+ molar ratio 80, and irradiation time 40 min. Two batch-fed completely mixed mesophilic anaerobic digesters were then operated at 15-day solid retention time (SRT) and 37 ± 0.5 °C to compare the digestibility of untreated and photo-Fenton pretreated sludge in terms of volatile solids (VS) reduction, COD removal, and biogas production at steady-state operations. Photo-Fenton pretreatment followed by anaerobic digestion of WAS was very effective and yielded 75.7% total VS reduction, 81.5% COD removal, and 0.29-0.31 m3/kg VSfed·d biogas production rate, compared to 40.7% total VS solid reduction, 54.7% COD removal, and 0.12-0.17 m3/kg VSfed·d biogas production rate for control. Thus, photo-Fenton can be a useful pretreatment step in sludge management.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  2. Khalik WF, Ho LN, Ong SA, Voon CH, Wong YS, Yusuf SY, et al.
    Environ Sci Pollut Res Int, 2018 Dec;25(35):35164-35175.
    PMID: 30328543 DOI: 10.1007/s11356-018-3414-z
    The objective of this study was to investigate several operating parameters, such as open circuit, different external resistance, pH, supporting electrolyte, and presence of aeration that might enhance the degradation rate as well as electricity generation of batik wastewater in solar photocatalytic fuel cell (PFC). The optimum degradation of batik wastewater was at pH 9 with external resistor 250 Ω. It was observed that open circuit of PFC showed only 17.2 ± 7.5% of removal efficiency, meanwhile the degradation rate of batik wastewater was enhanced to 31.9 ± 15.0% for closed circuit with external resistor 250 Ω. The decolorization of batik wastewater in the absence of photocatalyst due to the absorption of light irradiation by dye molecules and this process was known as photolysis. The degradation of batik wastewater increased as the external resistor value decreased. In addition, the degradation rate of batik wastewater also increased at pH 9 which was 74.4 ± 34.9% and at pH 3, its degradation rate was reduced to 19.4 ± 8.7%. The presence of aeration and sodium chloride as supporting electrolyte in batik wastewater also affected its degradation and electricity generation. The maximum absorbance of wavelength (λmax) of batik wastewater at 535 nm and chemical oxygen demand gradually decreased as increased in irradiation time; however, batik wastewater required prolonged irradiation time to fully degrade and mineralize in PFC system.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  3. Hameed BH
    J Hazard Mater, 2008 Jun 15;154(1-3):204-12.
    PMID: 18023971
    In this work, sunflower (Helianthus annuus L.) seed hull (SSH), an agricultural waste, was evaluated for its ability to remove methyl violet (MV) from aqueous solutions. Sorption isotherm of MV onto the SSH was determined at 30 degrees C with the initial concentrations of MV in the range of 25-300 mg/L. The equilibrium data were analyzed using the Langmuir, Freundlich and Temkin isotherm models. The equilibrium process was described well by the Freundlich isotherm model. The maximum SSH sorption capacity was found to be 92.59 mg/L at 30 degrees C. The kinetic data were studied in terms of the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The pseudo-second-order model best described the sorption process. A single-stage batch-adsorber design of the adsorption of MV onto SSH was studied based on the Freundlich isotherm equation. The results indicated that sunflower seed hull was an attractive candidate for removing methyl violet from aqueous solution.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  4. Hameed BH, Mahmoud DK, Ahmad AL
    J Hazard Mater, 2008 Oct 1;158(1):65-72.
    PMID: 18308467 DOI: 10.1016/j.jhazmat.2008.01.034
    In this paper, the ability of coconut bunch waste (CBW), an agricultural waste available in large quantity in Malaysia, to remove basic dye (methylene blue) from aqueous solution by adsorption was studied. Batch mode experiments were conducted at 30 degrees C to study the effects of pH and initial concentration of methylene blue (MB). Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The adsorption isotherm data were fitted well to Langmuir isotherm and the monolayer adsorption capacity was found to be 70.92 mg/g at 30 degrees C. The kinetic data obtained at different concentrations have been analyzed using a pseudo-first-order, pseudo-second-order equation and intraparticle diffusion equation. The experimental data fitted very well the pseudo-second-order kinetic model.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  5. Hameed BH, El-Khaiary MI
    J Hazard Mater, 2008 Sep 15;157(2-3):344-51.
    PMID: 18280648 DOI: 10.1016/j.jhazmat.2007.12.105
    In this work, the adsorption of malachite green (MG) was studied on activated carbon prepared from bamboo by chemical activation with K(2)CO(3) and physical activation with CO(2) (BAC). Adsorption studies were conducted in the range of 25-300 mg/L initial MG concentration and at temperature of 30 degrees C. The experimental data were analyzed by the Freundlich isotherm, the Langmuir isotherm, and the multilayer adsorption isotherm. Equilibrium data fitted well with the Langmuir model with maximum adsorption capacity of 263.58 mg/g. The rates of adsorption were found to confirm to pseudo-second-order kinetics with good correlation and the overall rate of dye uptake was found to be controlled by pore diffusion throughout the entire adsorption period. The results indicate that the BAC could be used to effectively adsorb MG from aqueous solutions.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  6. Alam MZ, Fakhru'l-Razi A, Molla AH
    J Environ Sci (China), 2004;16(1):132-7.
    PMID: 14971468
    This study was undertaken to screen the filamentous fungi isolated from its relevant habitats(wastewater, sewage sludge and sludge cake) for the bioconversion of domestic wastewater sludge. A total of 35 fungal strains were tested against wastewater sludge (total suspended solids, TSS 1%-5% w/w) to evaluate its potentiality for enhancing the biodegradability and dewaterability using liquid state bioconversion(LSB) process. The strains were divided into five groups i.e. Penicillium, Aspergillus, Trichoderma, Basidiomycete and Miscellaneous, respectively. The strains WWZP1003, SCahmA103, SCahmT105 and PC-9 among their respective groups of Penicillium, Aspergillus, Trichoderma and Basidiomycete played potential roles in terms of separation (formation of pellets/flocs/filaments), biodegradation(removal of COD) and filtration (filterability) of treated domestic wastewater sludge. The Miscellaneous group was not considered due to its unsatisfactory results as compared to the other groups. The pH value was also influenced by the microbial treatment during fermentation process. The filterability of treated sludge was improved by fungal treatment, and lowest filtration time was recorded for the strain WWZP1003 and SCahmA103 of Penicillium and Aspergillus groups respectively compared with other strains.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  7. Chan CH, Lim PE
    Bioresour Technol, 2007 May;98(7):1333-8.
    PMID: 16822665
    Performance of the sequencing batch reactor (SBR) treating synthetic phenolic wastewater at influent phenol concentrations from 100 to 1000 mg/L was evaluated. Two identical SBRs were built and operated with FILL, REACT, SETTLE and DRAW periods in the ratio of 4:6:1:1 for a cycle time of 12h. One of the reactors was operated with aerated FILL (R1) and the other with unaerated FILL (R2). The treated effluent quality and the rate of degradation during REACT were the criteria for evaluating performance of the two reactors. The results showed that the FILL mode had no significant influence on the treatment efficiency of phenol and COD for the entire range of influent phenol concentrations investigated. However, reactor R1 required a relatively shorter REACT time for phenol removal as compared to R2. This meant that R1 had the advantage of providing treatment at a higher organic loading rate.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  8. Hossain Molla A, Fakhru'l-Razi A, Zahangir Alam M
    Water Res, 2004 Nov;38(19):4143-52.
    PMID: 15491662
    Natural and environmental-friendly disposal of wastewater sludge is a great concern. Recently, biological treatment has played prominent roles in bioremediation of complex hydrocarbon- rich contaminants. Composting is quite an old biological-based process that is being practiced but it could not create a great impact in the minds of concerned researchers. The present study was conducted to evaluate the feasibility of the solid-state bioconversion (SSB) processes in the biodegradation of wastewater sludge by exploiting this promising technique to rejuvenate the conventional process. The Indah Water Konsortium (IWK) domestic wastewater treatment plant (DWTP) sludge was considered for evaluation of SSB by monitoring the microbial growth and its subsequent roles in biodegradation under two conditions: (i) flask (F) and (ii) composting bin (CB) cultures. Sterile and semi-sterile environments were allowed in the F and the CB, respectively, using two mixed fungal cultures, Trichoderma harzianum with Phanerochaete chrysosporium 2094 (T/P) and T. harzianum with Mucor hiemalis (T/M) and two bulking materials, sawdust (SD) and rice straw (RS). The significant growth and multiplication of both the mixed fungal cultures were reflected in soluble protein, glucosamine and color intensity measurement of the water extract. The color intensity and pH of the water extract significantly increased and supported the higher growth of microbes and bioconversion. The most encouraging results of microbial growth and subsequent bioconversion were exhibited in the RS than the SD. A comparatively higher decrease of organic matter (OM) % and C/N ratio were attained in the CB than the F, which implied a higher bioconversion. But the measurement of soluble protein, glucosamine and color intensity exhibited higher values in the F than the CB. The final pH drop was higher in the CB than the F, which implied that a higher nitrification occurred in the CB associated with a higher release of H+ ions. Both the mixed cultures performed almost equal roles in all cases except the changes in moisture content.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  9. Muthuraman G, Teng TT, Leh CP, Norli I
    J Hazard Mater, 2009 Apr 15;163(1):363-9.
    PMID: 18782652 DOI: 10.1016/j.jhazmat.2008.06.122
    Liquid-liquid extraction (LLE) of methylene blue (MB) from industrial wastewater using benzoic acid (extractant) in xylene has been studied at 27 degrees C. The extraction of the dye increased with increasing extractant concentration. The extraction abilities have been studied on benzoic acid concentration in the range of 0.36-5.8x10(-2) M. The distribution ratio of the dye is reasonably high (D=49.5) even in the presence of inorganic salts. Irrespective of the concentration of dye, extraction under optimal conditions was 90-99% after 15 min of phase separation. The extracted dye in the organic phase can be back extracted into sulphuric acid solution. The resultant recovered organic phase can be reused in succeeding extraction of dye with the yield ranging from 99 to 87% after 15 times reused, depending on the concentration of the initial feed solution. Experimental parameters examined were benzoic acid concentration, effect of diluent, effect of pH, effect of initial dye concentration, effect of equilibration time, various stripping agents, aqueous to organic phase ratio in extraction, organic to aqueous phase ratio in stripping and reusability of solvent.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  10. Al-Shididi S, Henze M, Ujang Z
    Water Sci Technol, 2003;48(11-12):327-35.
    PMID: 14753553
    The objective of this study was to assess the feasibility of the Sequencing Batch Reactor (SBR) system for implementation in Malaysia. Theoretical, field, laboratory investigations, and modelling simulations have been carried out. The results of the study indicated that the SBR system was robust, relatively cost-effective, and efficient under Malaysian conditions. However, the SBR system requires highly skilled operators and continuous monitoring. This paper also attempted to identify operating conditions for the SBR system, which optimise both the removal efficiencies and the removal rates. The removal efficiencies could reach 90-96% for COD, up to 92% for TN, and 95% for SS. An approach to estimate a full operational cycle time, to estimate the de-sludging rate, and to control the biomass in the sludge has also been developed. About 4 hours react time was obtained, as 2.25 hours of nitrification with aerated slow fill and 1.75 hour of denitrification with HAc addition as an additional carbon source. Inefficient settling was one of the problems that affect the SBR effluent quality. The settling time was one hour for achieving Standard B (effluent quality) and 2 hours for Standard A.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  11. Daud NK, Hameed BH
    J Hazard Mater, 2010 Apr 15;176(1-3):1118-21.
    PMID: 20042286 DOI: 10.1016/j.jhazmat.2009.11.134
    Decolorization of reactive azo dye, reactive black 5 (RB5), was conducted using Fe(III) immobilized on Montmorillonite K10 (MK10) as a catalyst in the presence of H(2)O(2) using Fenton-like oxidation process. The effect of different parameters such as iron ions loading on supported catalyst, catalyst dosage, initial pH of dye solution, initial concentration of H(2)O(2) and dye and reaction temperature on the decolorization efficiency of the process were studied. The results indicated that by using 12 mM of H(2)O(2) and 3.50 g L(-1) of the 0.11 wt.% Fe(III) oxide on MK10 catalyst at pH of 2.5, 99% of decolorization efficiency was achieved within 150 min in a batch process.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  12. Khan MB, Nisar H, Ng CA, Lo PK, Yap VV
    Environ Technol, 2018 Jan;39(1):24-34.
    PMID: 28278778 DOI: 10.1080/09593330.2017.1293166
    The state of activated sludge wastewater treatment process (AS WWTP) is conventionally identified by physico-chemical measurements which are costly, time-consuming and have associated environmental hazards. Image processing and analysis-based linear regression modeling has been used to monitor the AS WWTP. But it is plant- and state-specific in the sense that it cannot be generalized to multiple plants and states. Generalized classification modeling for state identification is the main objective of this work. By generalized classification, we mean that the identification model does not require any prior information about the state of the plant, and the resultant identification is valid for any plant in any state. In this paper, the generalized classification model for the AS process is proposed based on features extracted using morphological parameters of flocs. The images of the AS samples, collected from aeration tanks of nine plants, are acquired through bright-field microscopy. Feature-selection is performed in context of classification using sequential feature selection and least absolute shrinkage and selection operator. A support vector machine (SVM)-based state identification strategy was proposed with a new agreement solver module for imbalanced data of the states of AS plants. The classification results were compared with state-of-the-art multiclass SVMs (one-vs.-one and one-vs.-all), and ensemble classifiers using the performance metrics: accuracy, recall, specificity, precision, F measure and kappa coefficient (κ). The proposed strategy exhibits better results by identification of different states of different plants with accuracy 0.9423, and κ 0.6681 for the minority class data of bulking.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  13. Liang Z, Shi J, Wang C, Li J, Liang D, Yong EL, et al.
    Appl Environ Microbiol, 2020 11 10;86(23).
    PMID: 32948522 DOI: 10.1128/AEM.01920-20
    Pretreatment of waste-activated sludge (WAS) is an effective way to destabilize sludge floc structure and release organic matter for improving sludge digestion efficiency. Nonetheless, information on the impact of WAS pretreatment on digestion sludge microbiomes, as well as mechanistic insights into how sludge pretreatment improves digestion performance, remains elusive. In this study, a genome-centric metagenomic approach was employed to investigate the digestion sludge microbiome in four sludge digesters with different types of feeding sludge: WAS pretreated with 0.25 mol/liter alkaline/acid (APAD), WAS pretreated with 0.8 mol/liter alkaline/acid (HS-APAD), thermally pretreated WAS (thermal-AD), and fresh WAS (control-AD). We retrieved 254 metagenome-assembled genomes (MAGs) to identify the key functional populations involved in the methanogenic digestion process. These MAGs span 28 phyla, including 69 yet-to-be-cultivated lineages, and 30 novel lineages were characterized with metabolic potential associated with hydrolysis and fermentation. Interestingly, functional populations involving carbohydrate digestion were enriched in APAD and HS-APAD, while lineages related to protein and lipid fermentation were enriched in thermal-AD, corroborating the idea that different substrates are released from alkaline/acid and thermal pretreatments. Among the major functional populations (i.e., fermenters, syntrophic acetogens, and methanogens), significant correlations between genome sizes and abundance of the fermenters were observed, particularly in APAD and HS-APAD, which had improved digestion performance.IMPORTANCE Wastewater treatment generates large amounts of waste-activated sludge (WAS), which consists mainly of recalcitrant microbial cells and particulate organic matter. Though WAS pretreatment is an effective way to release sludge organic matter for subsequent digestion, detailed information on the impact of the sludge pretreatment on the digestion sludge microbiome remains scarce. Our study provides unprecedented genome-centric metagenomic insights into how WAS pretreatments change the digestion sludge microbiomes, as well as their metabolic networks. Moreover, digestion sludge microbiomes could be a unique source for exploring microbial dark matter. These results may inform future optimization of methanogenic sludge digestion and resource recovery.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  14. Aziz HA, Adlan MN, Ariffin KS
    Bioresour Technol, 2008 Apr;99(6):1578-83.
    PMID: 17540556
    This paper presents the results of research on heavy metals removal from water by filtration using low cost coarse media which could be used as an alternative approach to remove heavy metals from water or selected wastewater. A series of batch studies were conducted using different particle media (particle size 2.36-4.75 mm) shaken with different heavy metal solutions at various pH values to see the removal behaviour for each metal. Each solution of cadmium (Cd), lead (Pb), zinc (Zn), nickel (Ni), copper (Cu) and chromium (Cr(III)) with a concentration of 2 mg/L was shaken with the media. At a final pH of 8.5, limestone has significantly removed more than 90% of most metals followed by 80% and 65% removals using crushed bricks and gravel, respectively. The removal by aeration and settlement methods without solid media was less than 30%. Results indicated that the removal of heavy metals was influenced by the media and not directly by the pH. Investigations on the removal behaviour of these metals indicated that rough solid media with the presence of carbonate were beneficial for the removal process. Adsorption and precipitation as metals oxide and probably as metals carbonate were among the two mechanisms that contributed to the removal of metals from solution.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  15. Zakaria ZA, Zakaria Z, Surif S, Ahmad WA
    J Hazard Mater, 2007 Jul 19;146(1-2):30-8.
    PMID: 17188812
    Possible application of a locally isolated environmental isolate, Acinetobacter haemolyticus to remediate Cr(VI) contamination in water system was demonstrated. Cr(VI) reduction by A. haemolyticus seems to favour the lower concentrations (10-30 mg/L). However, incomplete Cr(VI) reduction occurred at 70-100 mg/L Cr(VI). Initial specific reduction rate increased with Cr(VI) concentrations. Cr(VI) reduction was not affected by 1 or 10 mM sodium azide (metabolic inhibitor), 10 mM of PO(4)3-, SO4(2-), SO(3)2-, NO3- or 30 mg/L of Pb(II), Zn(II), Cd(II) ions. However, heat treatment caused significant dropped in Cr(VI) reduction to less than 20% only. A. haemolyticus cells loses its shape and size after exposure to 10 and 50 mg Cr(VI)/L as revealed from TEM examination. The presence of electron-dense particles in the cytoplasmic region of the bacteria suggested deposition of chromium in the cells.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  16. Ong YH, Chua ASM, Fukushima T, Ngoh GC, Shoji T, Michinaka A
    Water Res, 2014 Nov 01;64:102-112.
    PMID: 25046374 DOI: 10.1016/j.watres.2014.06.038
    The applicability of the enhanced biological phosphorus removal (EBPR) process for the removal of phosphorus in warm climates is uncertain due to frequent reports of EBPR deterioration at temperature higher than 25 °C. Nevertheless, a recent report on a stable and efficient EBPR process at 28 °C has inspired the present study to examine the performance of EBPR at 24 °C-32 °C, as well as the PAOs and GAOs involved, in greater detail. Two sequencing batch reactors (SBRs) were operated for EBPR in parallel at different temperatures, i.e., SBR-1 at 28 °C and SBR-2 first at 24 °C and subsequently at 32 °C. Both SBRs exhibited high phosphorus removal efficiencies at all three temperatures and produced effluents with phosphorus concentrations less than 1.0 mg/L during the steady state of reactor operation. Real-time quantitative polymerase chain reaction (qPCR) revealed Accumulibacter-PAOs comprised 64% of the total bacterial population at 24 °C, 43% at 28 °C and 19% at 32 °C. Based on fluorescent in situ hybridisation (FISH), the abundance of Competibacter-GAOs at both 24 °C and 28 °C was rather low (<10%), while it accounted for 40% of the total bacterial population at 32 °C. However, the smaller Accumulibacter population and larger population of Competibacter at 32 °C did not deteriorate the phosphorus removal performance. A polyphosphate kinase 1 (ppk1)-based qPCR analysis on all studied EBPR processes detected only Accumulibacter clade IIF. The Accumulibacter population shown by 16S rRNA and ppk1 was not significantly different. This finding confirmed the existence of single clade IIF in the processes and the specificity of the clade IIF primer sets designed in this study. Habitat filtering related to temperature could have contributed to the presence of a unique clade. The clade IIF was hypothesised to be able to perform the EBPR activity at high temperatures. The clade's robustness most likely helps it to fit the high-temperature EBPR sludge best and allows it not only to outcompete other Accumulibacter clades but coexist with GAOs without compromising EBPR activity.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  17. Wurochekke AA, Mohamed RM, Al-Gheethi AA, Atiku H, Amir HM, Matias-Peralta HM
    J Water Health, 2016 Dec;14(6):914-928.
    PMID: 27959870
    Discharge of household greywater into water bodies can lead to an increase in contamination levels in terms of the reduction in dissolved oxygen resources and rapid bacterial growth. Therefore, the quality of greywater has to be improved before the disposal process. The present review aimed to present a hybrid treatment system for the greywater generated from households. The hybrid system comprised a primary stage (a natural filtration unit) with a bioreactor system as the secondary treatment combined with microalgae for greywater treatment, as well as the natural flocculation process. The review discussed the efficiency of each stage in the removal of elements and nutrients. The hybrid system reviewed here represented an effective solution for the remediation of household greywater.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  18. Abdullah N, Yusof N, Abu Shah MH, Wan Ikhsan SN, Ng ZC, Maji S, et al.
    Environ Sci Pollut Res Int, 2019 Jul;26(20):20386-20399.
    PMID: 31102226 DOI: 10.1007/s11356-019-05208-9
    In this present study, adsorptive membranes for Cr(VI) ion removal were prepared by blending polyethersulfone (PES) with hydrous ferric oxide (HFO) nanoparticles (NPs). The effects of HFO NPs to PES weight ratio (0-1.5) on the physicochemical properties of the resultant HFO/PES adsorptive membranes were investigated with respect to the surface chemistry and roughness as well as structural morphologies using different analytical instruments. The adsorptive performance of the HFO NPs/PES membranes was studied via batch adsorption experiments under various conditions by varying solution pH, initial concentration of Cr(VI), and contact time. The results showed that the membrane made of HFO/PES at a weight ratio of 1.0 exhibited the highest adsorption capacity which is 13.5 mg/g. Isotherm and kinetic studies revealed that the mechanism is best fitted to the Langmuir model and pseudo-second-order model. For filtration of Cr(VI), the best promising membranes showed improved water flux (629.3 L/m2 h) with Cr(VI) ion removal of 75%. More importantly, the newly developed membrane maintained the Cr(VI) concentration below the maximum contamination level (MCL) for up to 9 h.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  19. Kawai M, Nagao N, Kawasaki N, Imai A, Toda T
    J Environ Manage, 2016 Oct 01;181:838-846.
    PMID: 27449962 DOI: 10.1016/j.jenvman.2016.06.057
    The recalcitrant landfill leachate was anaerobically digested at various mixing ratios with labile synthetic wastewater to evaluate the degradation properties of recalcitrant wastewater. The proportion of leachate to the digestion system was increased in three equal steps, starting from 0% to 100%, and later decreased back to 0% with the same steps. The chemical oxygen demand (COD) for organic carbon and other components were calculated by analyzing the COD and dissolved organic carbon (DOC), and the removal efficiencies of COD carbon and COD others were evaluated separately. The degradation properties of COD carbon and COD others shifted owing to changing of substrate degradability, and the removal efficiencies of COD carbon and COD others were improved after supplying 100% recalcitrant wastewater. The UV absorptive property and total organic carbon (TOC) of each molecular size using high performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) with UVA and TOC detectors were also investigated, and the degradability of different molecular sizes was determined. Although the SEC system detected extracellular polymeric substances (EPS), which are produced by microbes in stressful environments, during early stages of the experiment, EPS were not detected after feeding 100% recalcitrant wastewater. These results suggest that the microbes had acclimatized to the recalcitrant wastewater degradation. The high removal rates of both COD carbon and COD others were sustained when the proportion of labile wastewater in the substrate was 33%, indicating that the effective removal of recalcitrant COD might be controlled by changing the substrate's degradability.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  20. Ujang Z, Wong CL, Manan ZA
    Water Sci Technol, 2002;46(11-12):77-84.
    PMID: 12523736
    Industrial wastewater minimization can be conducted using four main strategies: (i) reuse; (ii) regeneration-reuse; (iii) regeneration-recycling; and (iv) process changes. This study is concerned with (i) and (ii) to investigate the most suitable approach to wastewater minimization for an old textile industry plant. A systematic water networks design using water pinch analysis (WPA) was developed to minimize the water usage and wastewater generation for the textile plant. COD was chosen as the main parameter. An integrated design method has been applied, which brings the engineering insight using WPA that can determine the minimum flowrate of the water usage and then minimize the water consumption and wastewater generation as well. The overall result of this study shows that WPA has been effectively applied using both reuse and regeneration-reuse strategies for the old textile industry plant, and reduced the operating cost by 16% and 50% respectively.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links