Displaying publications 81 - 100 of 282 in total

Abstract:
Sort:
  1. Jamei M, Ahmadianfar I, Karbasi M, Jawad AH, Farooque AA, Yaseen ZM
    J Environ Manage, 2021 Dec 15;300:113774.
    PMID: 34560461 DOI: 10.1016/j.jenvman.2021.113774
    The concentration of soluble salts in surface water and rivers such as sodium, sulfate, chloride, magnesium ions, etc., plays an important role in the water salinity. Therefore, accurate determination of the distribution pattern of these ions can improve better management of drinking water resources and human health. The main goal of this research is to establish two novel wavelet-complementary intelligence paradigms so-called wavelet least square support vector machine coupled with improved simulated annealing (W-LSSVM-ISA) and the wavelet extended Kalman filter integrated with artificial neural network (W-EKF- ANN) for accurate forecasting of the monthly), magnesium (Mg+2), and sulfate (SO4-2) indices at Maroon River, in Southwest of Iran. The monthly River flow (Q), electrical conductivity (EC), Mg+2, and SO4-2 data recorded at Tange-Takab station for the period 1980-2016. Some preprocessing procedures consisting of specifying the number of lag times and decomposition of the existing original signals into multi-resolution sub-series using three mother wavelets were performed to develop predictive models. In addition, the best subset regression analysis was designed to separately assess the best selective combinations for Mg+2 and SO4-2. The statistical metrics and authoritative validation approaches showed that both complementary paradigms yielded promising accuracy compared with standalone artificial intelligence (AI) models. Furthermore, the results demonstrated that W-LSSVM-ISA-C1 (correlation coefficient (R) = 0.9521, root mean square error (RMSE) = 0.2637 mg/l, and Kling-Gupta efficiency (KGE) = 0.9361) and W-LSSVM-ISA-C4 (R = 0.9673, RMSE = 0.5534 mg/l and KGE = 0.9437), using Dmey mother that outperformed the W-EKF-ANN for predicting Mg+2 and SO4-2, respectively.
    Matched MeSH terms: Artificial Intelligence*
  2. Diakiw SM, Hall JMM, VerMilyea M, Lim AYX, Quangkananurug W, Chanchamroen S, et al.
    Reprod Biomed Online, 2022 Dec;45(6):1105-1117.
    PMID: 36117079 DOI: 10.1016/j.rbmo.2022.07.018
    RESEARCH QUESTION: Can better methods be developed to evaluate the performance and characteristics of an artificial intelligence model for evaluating the likelihood of clinical pregnancy based on analysis of day-5 blastocyst-stage embryos, such that performance evaluation more closely reflects clinical use in IVF procedures, and correlations with known features of embryo quality are identified?

    DESIGN: De-identified images were provided retrospectively or collected prospectively by IVF clinics using the artificial intelligence model in clinical practice. A total of 9359 images were provided by 18 IVF clinics across six countries, from 4709 women who underwent IVF between 2011 and 2021. Main outcome measures included clinical pregnancy outcome (fetal heartbeat at first ultrasound scan), embryo morphology score, and/or pre-implantation genetic testing for aneuploidy (PGT-A) results.

    RESULTS: A positive linear correlation of artificial intelligence scores with pregnancy outcomes was found, and up to a 12.2% reduction in time to pregnancy (TTP) was observed when comparing the artificial intelligence model with standard morphological grading methods using a novel simulated cohort ranking method. Artificial intelligence scores were significantly correlated with known morphological features of embryo quality based on the Gardner score, and with previously unknown morphological features associated with embryo ploidy status, including chromosomal abnormalities indicative of severity when considering embryos for transfer during IVF.

    CONCLUSION: Improved methods for evaluating artificial intelligence for embryo selection were developed, and advantages of the artificial intelligence model over current grading approaches were highlighted, strongly supporting the use of the artificial intelligence model in a clinical setting.

    Matched MeSH terms: Artificial Intelligence*
  3. Jumin E, Basaruddin FB, Yusoff YBM, Latif SD, Ahmed AN
    Environ Sci Pollut Res Int, 2021 Jun;28(21):26571-26583.
    PMID: 33484461 DOI: 10.1007/s11356-021-12435-6
    Reliable and accurate prediction model capturing the changes in solar radiation is essential in the power generation and renewable carbon-free energy industry. Malaysia has immense potential to develop such an industry due to its location in the equatorial zone and its climatic characteristics with high solar energy resources. However, solar energy accounts for only 2-4.6% of total energy utilization. Recently, in developed countries, various prediction models based on artificial intelligence (AI) techniques have been applied to predict solar radiation. In this study, one of the most recent AI algorithms, namely, boosted decision tree regression (BDTR) model, was applied to predict the changes in solar radiation based on collected data in Malaysia. The proposed model then compared with other conventional regression algorithms, such as linear regression and neural network. Two different normalization techniques (Gaussian normalizer binning normalizer), splitting size, and different input parameters were investigated to enhance the accuracy of the models. Sensitivity analysis and uncertainty analysis were introduced to validate the accuracy of the proposed model. The results revealed that BDTR outperformed other algorithms with a high level of accuracy. The funding of this study could be used as a reliable tool by engineers to improve the renewable energy sector in Malaysia and provide alternative sustainable energy resources.
    Matched MeSH terms: Artificial Intelligence*
  4. Lin GSS, Ng YS, Ghani NRNA, Chua KH
    BMC Oral Health, 2023 Sep 25;23(1):690.
    PMID: 37749537 DOI: 10.1186/s12903-023-03389-x
    BACKGROUND: The integration of artificial intelligence (AI) in dentistry has the potential to revolutionise the field of dental technologies. However, dental technicians' views on the use of AI in dental technology are still sparse in the literature. This qualitative study aimed to explore the perceptions of dental technicians regarding the use of AI in their dental laboratory practice.

    METHODS: Twelve dental technicians with at least five years of professional experience and currently working in Malaysia agreed to participate in the one-to-one in-depth online interviews. Interviews were recorded, transcribed verbatim and translated. Thematic analysis was conducted to identify patterns, themes, and categories within the interview transcripts.

    RESULTS: The analysis revealed two key themes: "Perceived Benefits of AI" and "Concerns and Challenges". Dental technicians recognised the enhanced efficiency, productivity, accuracy, and precision that AI can bring to dental laboratories. They also acknowledged the streamlined workflow and improved communication facilitated by AI systems. However, concerns were raised regarding job security, professional identity, ethical considerations, and the need for adequate training and support.

    CONCLUSION: This research sheds light on the potential benefits and challenges associated with the integration of AI in dental laboratory practices. Understanding these perceptions and addressing the challenges can support the effective integration of AI in dental laboratories and contribute to the growing body of literature on AI in healthcare.

    Matched MeSH terms: Artificial Intelligence*
  5. Shiammala PN, Duraimutharasan NKB, Vaseeharan B, Alothaim AS, Al-Malki ES, Snekaa B, et al.
    Methods, 2023 Nov;219:82-94.
    PMID: 37778659 DOI: 10.1016/j.ymeth.2023.09.010
    Artificial intelligence (AI), particularly deep learning as a subcategory of AI, provides opportunities to accelerate and improve the process of discovering and developing new drugs. The use of AI in drug discovery is still in its early stages, but it has the potential to revolutionize the way new drugs are discovered and developed. As AI technology continues to evolve, it is likely that AI will play an even greater role in the future of drug discovery. AI is used to identify new drug targets, design new molecules, and predict the efficacy and safety of potential drugs. The inclusion of AI in drug discovery can screen millions of compounds in a matter of hours, identifying potential drug candidates that would have taken years to find using traditional methods. AI is highly utilized in the pharmaceutical industry by optimizing processes, reducing waste, and ensuring quality control. This review covers much-needed topics, including the different types of machine-learning techniques, their applications in drug discovery, and the challenges and limitations of using machine learning in this field. The state-of-the-art of AI-assisted pharmaceutical discovery is described, covering applications in structure and ligand-based virtual screening, de novo drug creation, prediction of physicochemical and pharmacokinetic properties, drug repurposing, and related topics. Finally, many obstacles and limits of present approaches are outlined, with an eye on potential future avenues for AI-assisted drug discovery and design.
    Matched MeSH terms: Artificial Intelligence*
  6. Spinelli A, Carrano FM, Laino ME, Andreozzi M, Koleth G, Hassan C, et al.
    Tech Coloproctol, 2023 Aug;27(8):615-629.
    PMID: 36805890 DOI: 10.1007/s10151-023-02772-8
    Artificial intelligence (AI) has the potential to revolutionize surgery in the coming years. Still, it is essential to clarify what the meaningful current applications are and what can be reasonably expected. This AI-powered review assessed the role of AI in colorectal surgery. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-compliant systematic search of PubMed, Embase, Scopus, Cochrane Library databases, and gray literature was conducted on all available articles on AI in colorectal surgery (from January 1 1997 to March 1 2021), aiming to define the perioperative applications of AI. Potentially eligible studies were identified using novel software powered by natural language processing (NLP) and machine learning (ML) technologies dedicated to systematic reviews. Out of 1238 articles identified, 115 were included in the final analysis. Available articles addressed the role of AI in several areas of interest. In the preoperative phase, AI can be used to define tailored treatment algorithms, support clinical decision-making, assess the risk of complications, and predict surgical outcomes and survival. Intraoperatively, AI-enhanced surgery and integration of AI in robotic platforms have been suggested. After surgery, AI can be implemented in the Enhanced Recovery after Surgery (ERAS) pathway. Additional areas of applications included the assessment of patient-reported outcomes, automated pathology assessment, and research. Available data on these aspects are limited, and AI in colorectal surgery is still in its infancy. However, the rapid evolution of technologies makes it likely that it will increasingly be incorporated into everyday practice.
    Matched MeSH terms: Artificial Intelligence*
  7. Qazi A, Raj RG, Tahir M, Cambria E, Syed KB
    ScientificWorldJournal, 2014;2014:879323.
    PMID: 25054188 DOI: 10.1155/2014/879323
    Appropriate identification and classification of online reviews to satisfy the needs of current and potential users pose a critical challenge for the business environment. This paper focuses on a specific kind of reviews: the suggestive type. Suggestions have a significant influence on both consumers' choices and designers' understanding and, hence, they are key for tasks such as brand positioning and social media marketing. The proposed approach consists of three main steps: (1) classify comparative and suggestive sentences; (2) categorize suggestive sentences into different types, either explicit or implicit locutions; (3) perform sentiment analysis on the classified reviews. A range of supervised machine learning approaches and feature sets are evaluated to tackle the problem of suggestive opinion mining. Experimental results for all three tasks are obtained on a dataset of mobile phone reviews and demonstrate that extending a bag-of-words representation with suggestive and comparative patterns is ideal for distinguishing suggestive sentences. In particular, it is observed that classifying suggestive sentences into implicit and explicit locutions works best when using a mixed sequential rule feature representation. Sentiment analysis achieves maximum performance when employing additional preprocessing in the form of negation handling and target masking, combined with sentiment lexicons.
    Matched MeSH terms: Artificial Intelligence*
  8. Al-Rawi HA, Yau KL, Mohamad H, Ramli N, Hashim W
    ScientificWorldJournal, 2014;2014:960584.
    PMID: 25140350 DOI: 10.1155/2014/960584
    Cognitive radio (CR) enables unlicensed users (or secondary users, SUs) to sense for and exploit underutilized licensed spectrum owned by the licensed users (or primary users, PUs). Reinforcement learning (RL) is an artificial intelligence approach that enables a node to observe, learn, and make appropriate decisions on action selection in order to maximize network performance. Routing enables a source node to search for a least-cost route to its destination node. While there have been increasing efforts to enhance the traditional RL approach for routing in wireless networks, this research area remains largely unexplored in the domain of routing in CR networks. This paper applies RL in routing and investigates the effects of various features of RL (i.e., reward function, exploitation, and exploration, as well as learning rate) through simulation. New approaches and recommendations are proposed to enhance the features in order to improve the network performance brought about by RL to routing. Simulation results show that the RL parameters of the reward function, exploitation, and exploration, as well as learning rate, must be well regulated, and the new approaches proposed in this paper improves SUs' network performance without significantly jeopardizing PUs' network performance, specifically SUs' interference to PUs.
    Matched MeSH terms: Artificial Intelligence*
  9. Abd Rahman NH, Ibrahim AK, Hasikin K, Abd Razak NA
    J Healthc Eng, 2023;2023:3136511.
    PMID: 36860328 DOI: 10.1155/2023/3136511
    Medical device reliability is the ability of medical devices to endure functioning and is indispensable to ensure service delivery to patients. Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) technique was employed in May 2021 to evaluate existing reporting guidelines on medical device reliability. The systematic searching is conducted in eight different databases, including Web of Science, Science Direct, Scopus, IEEE Explorer, Emerald, MEDLINE Complete, Dimensions, and Springer Link, with 36 articles shortlisted from the year 2010 to May 2021. This study aims to epitomize existing literature on medical device reliability, scrutinize existing literature outcomes, investigate parameters affecting medical device reliability, and determine the scientific research gaps. The result of the systematic review listed three main topics on medical device reliability: risk management, performance prediction using Artificial Intelligence or machine learning, and management system. The medical device reliability assessment challenges are inadequate maintenance cost data, determining significant input parameter selection, difficulties accessing healthcare facilities, and limited age in service. Medical device systems are interconnected and interoperating, which increases complexity in assessing their reliability. To the best of our knowledge, although machine learning has become popular in predicting medical device performance, the existing models are only applicable to selected devices such as infant incubators, syringe pumps, and defibrillators. Despite the importance of medical device reliability assessment, there is no explicit protocol and predictive model to anticipate the situation. The problem worsens with the unavailability of a comprehensive assessment strategy for critical medical devices. Therefore, this study reviews the current state of critical device reliability in healthcare facilities. The present knowledge can be improved by adding new scientific data emphasis on critical medical devices used in healthcare services.
    Matched MeSH terms: Artificial Intelligence*
  10. Aggarwal A, Court LE, Hoskin P, Jacques I, Kroiss M, Laskar S, et al.
    BMJ Open, 2023 Dec 07;13(12):e077253.
    PMID: 38149419 DOI: 10.1136/bmjopen-2023-077253
    INTRODUCTION: Fifty per cent of patients with cancer require radiotherapy during their disease course, however, only 10%-40% of patients in low-income and middle-income countries (LMICs) have access to it. A shortfall in specialised workforce has been identified as the most significant barrier to expanding radiotherapy capacity. Artificial intelligence (AI)-based software has been developed to automate both the delineation of anatomical target structures and the definition of the position, size and shape of the radiation beams. Proposed advantages include improved treatment accuracy, as well as a reduction in the time (from weeks to minutes) and human resources needed to deliver radiotherapy.

    METHODS: ARCHERY is a non-randomised prospective study to evaluate the quality and economic impact of AI-based automated radiotherapy treatment planning for cervical, head and neck, and prostate cancers, which are endemic in LMICs, and for which radiotherapy is the primary curative treatment modality. The sample size of 990 patients (330 for each cancer type) has been calculated based on an estimated 95% treatment plan acceptability rate. Time and cost savings will be analysed as secondary outcome measures using the time-driven activity-based costing model. The 48-month study will take place in six public sector cancer hospitals in India (n=2), Jordan (n=1), Malaysia (n=1) and South Africa (n=2) to support implementation of the software in LMICs.

    ETHICS AND DISSEMINATION: The study has received ethical approval from University College London (UCL) and each of the six study sites. If the study objectives are met, the AI-based software will be offered as a not-for-profit web service to public sector state hospitals in LMICs to support expansion of high quality radiotherapy capacity, improving access to and affordability of this key modality of cancer cure and control. Public and policy engagement plans will involve patients as key partners.

    Matched MeSH terms: Artificial Intelligence*
  11. Teoh YX, Alwan JK, Shah DS, Teh YW, Goh SL
    Clin Biomech (Bristol, Avon), 2024 Mar;113:106188.
    PMID: 38350282 DOI: 10.1016/j.clinbiomech.2024.106188
    BACKGROUND: Despite the existence of evidence-based rehabilitation strategies that address biomechanical deficits, the persistence of recurrent ankle problems in 70% of patients with acute ankle sprains highlights the unresolved nature of this issue. Artificial intelligence (AI) emerges as a promising tool to identify definitive predictors for ankle sprains. This paper aims to summarize the use of AI in investigating the ankle biomechanics of healthy and subjects with ankle sprains.

    METHODS: Articles published between 2010 and 2023 were searched from five electronic databases. 59 papers were included for analysis with regards to: i). types of motion tested (functional vs. purposeful ankle movement); ii) types of biomechanical parameters measured (kinetic vs kinematic); iii) types of sensor systems used (lab-based vs field-based); and, iv) AI techniques used.

    FINDINGS: Most studies (83.1%) examined biomechanics during functional motion. Single kinematic parameter, specifically ankle range of motion, could obtain accuracy up to 100% in identifying injury status. Wearable sensor exhibited high reliability for use in both laboratory and on-field/clinical settings. AI algorithms primarily utilized electromyography and joint angle information as input data. Support vector machine was the most used supervised learning algorithm (18.64%), while artificial neural network demonstrated the highest accuracy in eight studies.

    INTERPRETATIONS: The potential for remote patient monitoring is evident with the adoption of field-based devices. Nevertheless, AI-based sensors are underutilized in detecting ankle motions at risk of sprain. We identify three key challenges: sensor designs, the controllability of AI models, and the integration of AI-sensor models, providing valuable insights for future research.

    Matched MeSH terms: Artificial Intelligence*
  12. Al Mashhadany Y, Alsanad HR, Al-Askari MA, Algburi S, Taha BA
    Environ Monit Assess, 2024 Apr 09;196(5):438.
    PMID: 38592580 DOI: 10.1007/s10661-024-12606-1
    Advanced sensor technology, especially those that incorporate artificial intelligence (AI), has been recognized as increasingly important in various contemporary applications, including navigation, automation, water under imaging, environmental monitoring, and robotics. Data-driven decision-making and higher efficiency have enabled more excellent infrastructure thanks to integrating AI with sensors. The agricultural sector is one such area that has seen significant promise from this technology using the Internet of Things (IoT) capabilities. This paper describes an intelligent system for monitoring and analyzing agricultural environmental conditions, including weather, soil, and crop health, that uses internet-connected sensors and equipment. This work makes two significant contributions. It first makes it possible to use sensors linked to the IoT to accurately monitor the environment remotely. Gathering and analyzing data over time may give us valuable insights into daily fluctuations and long-term patterns. The second benefit of AI integration is the remote control; it provides for essential activities like irrigation, pest management, and disease detection. The technology can optimize water usage by tracking plant development and health and adjusting watering schedules accordingly. Intelligent Control Systems (Matlab/Simulink Ver. 2022b) use a hybrid controller that combines fuzzy logic with standard PID control to get high-efficiency performance from water pumps. In addition to monitoring crops, smart cameras allow farmers to make real-time adjustments based on soil moisture and plant needs. Potentially revolutionizing contemporary agriculture, this revolutionary approach might boost production, sustainability, and efficiency.
    Matched MeSH terms: Artificial Intelligence*
  13. Gholap AD, Uddin MJ, Faiyazuddin M, Omri A, Gowri S, Khalid M
    Comput Biol Med, 2024 Aug;178:108702.
    PMID: 38878397 DOI: 10.1016/j.compbiomed.2024.108702
    Artificial intelligence (AI) has emerged as a powerful tool to revolutionize the healthcare sector, including drug delivery and development. This review explores the current and future applications of AI in the pharmaceutical industry, focusing on drug delivery and development. It covers various aspects such as smart drug delivery networks, sensors, drug repurposing, statistical modeling, and simulation of biotechnological and biological systems. The integration of AI with nanotechnologies and nanomedicines is also examined. AI offers significant advancements in drug discovery by efficiently identifying compounds, validating drug targets, streamlining drug structures, and prioritizing response templates. Techniques like data mining, multitask learning, and high-throughput screening contribute to better drug discovery and development innovations. The review discusses AI applications in drug formulation and delivery, clinical trials, drug safety, and pharmacovigilance. It addresses regulatory considerations and challenges associated with AI in pharmaceuticals, including privacy, data security, and interpretability of AI models. The review concludes with future perspectives, highlighting emerging trends, addressing limitations and biases in AI models, and emphasizing the importance of collaboration and knowledge sharing. It provides a comprehensive overview of AI's potential to transform the pharmaceutical industry and improve patient care while identifying further research and development areas.
    Matched MeSH terms: Artificial Intelligence*
  14. Heidema S, Stoepker IV, Flaherty G, Angelo KM, Post RAJ, Miller C, et al.
    J Travel Med, 2024 Jun 03;31(4).
    PMID: 38236181 DOI: 10.1093/jtm/taae013
    Matched MeSH terms: Artificial Intelligence*
  15. Razali HYH, Yusof ANM
    J Med Ethics, 2024 Aug 21;50(9):598-599.
    PMID: 38802139 DOI: 10.1136/jme-2024-110086
    Matched MeSH terms: Artificial Intelligence*
  16. Sirimewan D, Kunananthaseelan N, Raman S, Garcia R, Arashpour M
    Waste Manag, 2024 Dec 15;190:149-160.
    PMID: 39321600 DOI: 10.1016/j.wasman.2024.09.018
    Optimized and automated methods for handling construction and demolition waste (CDW) are crucial for improving the resource recovery process in waste management. Automated waste recognition is a critical step in this process, and it relies on robust image segmentation techniques. Prompt-guided segmentation methods provide promising results for specific user needs in image recognition. However, the current state-of-the-art segmentation methods trained for generic images perform unsatisfactorily on CDW recognition tasks, indicating a domain gap. To address this gap, a user-guided segmentation pipeline is developed in this study that leverages prompts such as bounding boxes, points, and text to segment CDW in cluttered environments. The adopted approach achieves a class-wise performance of around 70 % in several waste categories, surpassing the state-of-the-art algorithms by 9 % on average. This method allows users to create accurate segmentations by drawing a bounding box, clicking, or providing a text prompt, minimizing the time spent on detailed annotations. Integrating this human-machine system as a user-friendly interface into material recovery facilities enhances the monitoring and processing of waste, leading to better resource recovery outcomes in waste management.
    Matched MeSH terms: Artificial Intelligence*
  17. Ahmad FA, Ramli AR, Samsudin K, Hashim SJ
    ScientificWorldJournal, 2014;2014:153162.
    PMID: 24949491 DOI: 10.1155/2014/153162
    Deploying large numbers of mobile robots which can interact with each other produces swarm intelligent behavior. However, mobile robots are normally running with finite energy resource, supplied from finite battery. The limitation of energy resource required human intervention for recharging the batteries. The sharing information among the mobile robots would be one of the potentials to overcome the limitation on previously recharging system. A new approach is proposed based on integrated intelligent system inspired by foraging of honeybees applied to multimobile robot scenario. This integrated approach caters for both working and foraging stages for known/unknown power station locations. Swarm mobile robot inspired by honeybee is simulated to explore and identify the power station for battery recharging. The mobile robots will share the location information of the power station with each other. The result showed that mobile robots consume less energy and less time when they are cooperating with each other for foraging process. The optimizing of foraging behavior would result in the mobile robots spending more time to do real work.
    Matched MeSH terms: Artificial Intelligence
  18. Teng SY, Yew GY, Sukačová K, Show PL, Máša V, Chang JS
    Biotechnol Adv, 2020 11 15;44:107631.
    PMID: 32931875 DOI: 10.1016/j.biotechadv.2020.107631
    With recent advances in novel gene-editing tools such as RNAi, ZFNs, TALENs, and CRISPR-Cas9, the possibility of altering microalgae toward designed properties for various application is becoming a reality. Alteration of microalgae genomes can modify metabolic pathways to give elevated yields in lipids, biomass, and other components. The potential of such genetically optimized microalgae can give a "domino effect" in further providing optimization leverages down the supply chain, in aspects such as cultivation, processing, system design, process integration, and revolutionary products. However, the current level of understanding the functional information of various microalgae gene sequences is still primitive and insufficient as microalgae genome sequences are long and complex. From this perspective, this work proposes to link up this knowledge gap between microalgae genetic information and optimized bioproducts using Artificial Intelligence (AI). With the recent acceleration of AI research, large and complex data from microalgae research can be properly analyzed by combining the cutting-edge of both fields. In this work, the most suitable class of AI algorithms (such as active learning, semi-supervised learning, and meta-learning) are discussed for different cases of microalgae applications. This work concisely reviews the current state of the research milestones and highlight some of the state-of-art that has been carried out, providing insightful future pathways. The utilization of AI algorithms in microalgae cultivation, system optimization, and other aspects of the supply chain is also discussed. This work opens the pathway to a digitalized future for microalgae research and applications.
    Matched MeSH terms: Artificial Intelligence
  19. Ismail Musirin, Titik Khawa Abdul Rahman
    Scientific Research Journal, 2006;3(1):11-25.
    MyJurnal
    Several incidents that occurred around the world involving power failure
    caused by unscheduled line outages were identified as one of the main
    contributors to power failure and cascading blackout in electric power
    environment. With the advancement of computer technologies, artificial
    intelligence (AI) has been widely accepted as one method that can be applied
    to predict the occurrence of unscheduled disturbance. This paper presents
    the development of automatic contingency analysis and ranking algorithm
    for the application in the Artificial Neural Network (ANN). The ANN is
    developed in order to predict the post-outage severity index from a set of preoutage
    data set. Data were generated using the newly developed automatic
    contingency analysis and ranking (ACAR) algorithm. Tests were conducted
    on the 24-bus IEEE Reliability Test Systems. Results showed that the developed
    technique is feasible to be implemented practically and an agreement was
    achieved in the results obtained from the tests. The developed ACAR can be
    utilised for further testing and implementation in other IEEE RTS test systems
    particularly in the system, which required fast computation time. On the other
    hand, the developed ANN can be used for predicting the post-outage severity
    index and hence system stability can be evaluated.
    Matched MeSH terms: Artificial Intelligence
  20. Lee S, Abdullah A, Jhanjhi N, Kok S
    PeerJ Comput Sci, 2021;7:e350.
    PMID: 33817000 DOI: 10.7717/peerj-cs.350
    The Industrial Revolution 4.0 began with the breakthrough technological advances in 5G, and artificial intelligence has innovatively transformed the manufacturing industry from digitalization and automation to the new era of smart factories. A smart factory can do not only more than just produce products in a digital and automatic system, but also is able to optimize the production on its own by integrating production with process management, service distribution, and customized product requirement. A big challenge to the smart factory is to ensure that its network security can counteract with any cyber attacks such as botnet and Distributed Denial of Service, They are recognized to cause serious interruption in production, and consequently economic losses for company producers. Among many security solutions, botnet detection using honeypot has shown to be effective in some investigation studies. It is a method of detecting botnet attackers by intentionally creating a resource within the network with the purpose of closely monitoring and acquiring botnet attacking behaviors. For the first time, a proposed model of botnet detection was experimented by combing honeypot with machine learning to classify botnet attacks. A mimicking smart factory environment was created on IoT device hardware configuration. Experimental results showed that the model performance gave a high accuracy of above 96%, with very fast time taken of just 0.1 ms and false positive rate at 0.24127 using random forest algorithm with Weka machine learning program. Hence, the honeypot combined machine learning model in this study was proved to be highly feasible to apply in the security network of smart factory to detect botnet attacks.
    Matched MeSH terms: Artificial Intelligence
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links