DESIGN: De-identified images were provided retrospectively or collected prospectively by IVF clinics using the artificial intelligence model in clinical practice. A total of 9359 images were provided by 18 IVF clinics across six countries, from 4709 women who underwent IVF between 2011 and 2021. Main outcome measures included clinical pregnancy outcome (fetal heartbeat at first ultrasound scan), embryo morphology score, and/or pre-implantation genetic testing for aneuploidy (PGT-A) results.
RESULTS: A positive linear correlation of artificial intelligence scores with pregnancy outcomes was found, and up to a 12.2% reduction in time to pregnancy (TTP) was observed when comparing the artificial intelligence model with standard morphological grading methods using a novel simulated cohort ranking method. Artificial intelligence scores were significantly correlated with known morphological features of embryo quality based on the Gardner score, and with previously unknown morphological features associated with embryo ploidy status, including chromosomal abnormalities indicative of severity when considering embryos for transfer during IVF.
CONCLUSION: Improved methods for evaluating artificial intelligence for embryo selection were developed, and advantages of the artificial intelligence model over current grading approaches were highlighted, strongly supporting the use of the artificial intelligence model in a clinical setting.
METHODS: Twelve dental technicians with at least five years of professional experience and currently working in Malaysia agreed to participate in the one-to-one in-depth online interviews. Interviews were recorded, transcribed verbatim and translated. Thematic analysis was conducted to identify patterns, themes, and categories within the interview transcripts.
RESULTS: The analysis revealed two key themes: "Perceived Benefits of AI" and "Concerns and Challenges". Dental technicians recognised the enhanced efficiency, productivity, accuracy, and precision that AI can bring to dental laboratories. They also acknowledged the streamlined workflow and improved communication facilitated by AI systems. However, concerns were raised regarding job security, professional identity, ethical considerations, and the need for adequate training and support.
CONCLUSION: This research sheds light on the potential benefits and challenges associated with the integration of AI in dental laboratory practices. Understanding these perceptions and addressing the challenges can support the effective integration of AI in dental laboratories and contribute to the growing body of literature on AI in healthcare.
METHODS: ARCHERY is a non-randomised prospective study to evaluate the quality and economic impact of AI-based automated radiotherapy treatment planning for cervical, head and neck, and prostate cancers, which are endemic in LMICs, and for which radiotherapy is the primary curative treatment modality. The sample size of 990 patients (330 for each cancer type) has been calculated based on an estimated 95% treatment plan acceptability rate. Time and cost savings will be analysed as secondary outcome measures using the time-driven activity-based costing model. The 48-month study will take place in six public sector cancer hospitals in India (n=2), Jordan (n=1), Malaysia (n=1) and South Africa (n=2) to support implementation of the software in LMICs.
ETHICS AND DISSEMINATION: The study has received ethical approval from University College London (UCL) and each of the six study sites. If the study objectives are met, the AI-based software will be offered as a not-for-profit web service to public sector state hospitals in LMICs to support expansion of high quality radiotherapy capacity, improving access to and affordability of this key modality of cancer cure and control. Public and policy engagement plans will involve patients as key partners.
METHODS: Articles published between 2010 and 2023 were searched from five electronic databases. 59 papers were included for analysis with regards to: i). types of motion tested (functional vs. purposeful ankle movement); ii) types of biomechanical parameters measured (kinetic vs kinematic); iii) types of sensor systems used (lab-based vs field-based); and, iv) AI techniques used.
FINDINGS: Most studies (83.1%) examined biomechanics during functional motion. Single kinematic parameter, specifically ankle range of motion, could obtain accuracy up to 100% in identifying injury status. Wearable sensor exhibited high reliability for use in both laboratory and on-field/clinical settings. AI algorithms primarily utilized electromyography and joint angle information as input data. Support vector machine was the most used supervised learning algorithm (18.64%), while artificial neural network demonstrated the highest accuracy in eight studies.
INTERPRETATIONS: The potential for remote patient monitoring is evident with the adoption of field-based devices. Nevertheless, AI-based sensors are underutilized in detecting ankle motions at risk of sprain. We identify three key challenges: sensor designs, the controllability of AI models, and the integration of AI-sensor models, providing valuable insights for future research.