Displaying publications 81 - 100 of 284 in total

Abstract:
Sort:
  1. Ng, Yen, Green Mark, A.
    MyJurnal
    Carbon-11 labeled radiotracers, such as 11C-acetate and
    11C-palmitate are widely used in positron
    emission tomography (PET) for noninvasive evaluation of myocardial metabolism under varied
    physiological conditions.These tracers are attractive probes of tissue physiology, because they are
    simply radiolabled versions of the native biochemical substrates. One of the major metabolites
    generated by these tracers upon the administration is 11CO2 produced via the citric acid cycle. In
    quantitative modeling of
    11C-acetate and
    11C-palmitate PET data, the fraction of blood
    11C
    radioactivity present as
    11CO2 needs to be measured to obtain a correct radiotracer arterial
    input function. Accordingly, the literature describes a method whereby the total blood
    11C-activity
    is counted in blood samples treated with base solution, while the fraction of
    1 1CO2 is measured
    after the blood is treated with acid followed by a 10 minutes gas-purge. However, a detailed
    description of the experimental validation of this method was not provided. The goal of this study
    was to test the reliability of a 10 minute gas purging method used to assay
    11CO2 radioactivity in
    blood
    Matched MeSH terms: Electrons
  2. Ibrahim, I., Abdul Manan, M.J., Kamaruddin, H.
    MyJurnal
    Haruan or Channa striatus is source of protein that is widely consumed in the region and its extract
    is well known for having medical values. It is of great advantage if this product could be taken
    orally rather than by injection because the oral route of drug delivery is still preferred by the vast
    majority of patients. However protein and peptides can be denatured or degraded by the acidic pH
    of the stomach and the presence of endogenous enzymes. In order to protect or prevent digestion
    and degradation of the protein in the stomach and to ensure the protein reaches the gastro
    intestinal (GI) tract, Carboxymethyl Starch (CMS) nanogel system was developed using electron
    irradiation method. However stability of HTE during the irradiation process needed to be studied
    before being developed further. In this study, the HTE was irradiated using electron beams. Its
    stability was analysed in terms of physical and chemical changes by looking at colour difference,
    melting point by using Differential Scanning Calorimetry (DSC) and molecular bonds by using
    Fourier Transform Infrared (FTIR) respectively. The results of this study were that no apparent
    colour difference was observed with HTE before and after irradiation. These observations were
    supported by the FTIR and DSC results that showed that there were no changes in molecular bonds
    and melting point, compared between no irradiation and irradiation HTE during electron
    irradiation up to 10 kGy. Statistically the test showed no significant difference at p < 0.005 between
    melting temperatures.
    Matched MeSH terms: Electrons
  3. Husniyah Aliyah, L., Anuar, H.
    Movement Health & Exercise, 2014;3(1):49-56.
    MyJurnal
    This study focuses on the mechanical effect of different composition of polymer blend. Polymer blend of high density polyethylene (HDPE) and ethylene propylene rubber (EPR) were selected and varied by three different compositions which are 70:30, 50:50 and 30:70. HDPE-EPR blend is believed to be the best material for sole shoe. In which, HDPE has good flexibility while, EPR can maintain optimum performance at high and low temperature as well as provide better gripping characteristic that suits for insole and outsole sport shoe. On the other hand, the time efficiency of electron beam radiation on these polymer blends helps in improving the croslinking of HDPE-EPR blend. The aim of this paper was to find the optimum composition of electron beam irradiated polymer blends for sole shoes especially in sports application. These irradiated polymer blends were produced by melt blending, underwent compression moulding and then were irradiated by electron beam at 100 kGy/s. Mechanical test of tensile and hardness test were investigated and the morphology of the failure fracture was analysed by field emission scanning electron microscopy (FESEM). The polymer blend with 70% of HDPE and 30% of EPR showed the optimum result of tensile strength, tensile modulus and hardness as well as ductile failure image.
    Matched MeSH terms: Electrons
  4. Ariffin Abas, Abdul Halim Shaari, Zainal Abidin Talib, Zaidan Abdul Wahab
    MyJurnal
    The computer, together with Lab View software, can be used as an automatic data acquisition system. This project deals with the development of a computer interfacing technique for the study of Hall Effect and converting the existing automation system into a Web-based automation system. The drive board RS 217-3611 with PCI 6025E card and stepper motor RS191-8340 with a resolution of 0.1mm, was used to move a pair of permanent magnets backward and forward against the sample. The General Interface Bus (GPIB) card interfaces, together with digital nano voltmeter and Tesla meter using serial port RS232 interface, are used for measuring the potential difference and magnetic field strength respectively. Hall Effect measurement on copper (Cu) and tantalum (Ta) showed negative and positive sign Hall coefficient. Therefore, the system has electron and hole charge carriers respectively at room temperature. The parameters such as drift velocity, conductivity, mobility, Hall Coefficient and charge carrier concentration were also automatically displayed on the front panel of Lab View programming and compared with standard value. The Web-based automation system can be remotely controlled and monitored by users in remote locations using only their web browsers. In addition, video conferencing through Net Meeting has been used to provide audio and video feedback to the client.
    Matched MeSH terms: Electrons
  5. Hutagalung SD, Kam CL, Darsono T
    Sains Malaysiana, 2014;43:267-272.
    Many techniques have been applied to fabricate nanostructures via top-down approach such as electron beam lithography. However, most of the techniques are very complicated and involves many process steps, high cost operation as well as the use of hazardous chemicals. Meanwhile, atomic force microscopy (AFM) lithography is a simple technique which is considered maskless and involves only an average cost and less complexity. In AFM lithography, the movement of a probe tip can be controlled to create nanoscale patterns on sample surface. For silicon nanowire (SiNW) fabrication, a conductive tip was operated in non-contact AFM mode to grow nanoscale oxide patterns on silicon-on-insulator (SOI) wafer surface based on local anodic oxidation (LAO) mechanism. The patterned structure was etched through two steps of wet etching processes. First, the TMAH was used as the etchant solution for Si removing. In the second step, diluted HF was used to remove oxide mask in order to produce a completed SiNW based devices. A SiNW based device which is formed by a nanowire channel, source and drain pads with lateral gate structures can be fabricated by well controlling the lithography process (applied tip voltage and writing speed) as well as the etching processes.
    Matched MeSH terms: Electrons
  6. Zainal N, Azimah E, Hassan Z, Abu Hassan H, Hashim M
    Sains Malaysiana, 2014;43:1557-1564.
    In this work, the emission efficiency of InxGa1-xN based light emitting diodes (LEDs) had been numerically investigated with the variation of the number of quantum well. From our calculation, we found that non-uniformity of carriers distribution (especially electron) in the wells leads to serious inhomogeneity of radiative recombination distribution that would degrade the efficiency of the LED with more wells. However, the problem was minimized when the selected quantum barriers were doped with a reasonable doping level. Comparison with other reported experimental works were also included. At the end of this work, we proposed several types of preferable LEDs designs with optimum structural parameters.
    Matched MeSH terms: Electrons
  7. Pung S, Ong C, Mohd Isha K, Othman M
    Sains Malaysiana, 2014;43:273-281.
    Cu-doped ZnO nanorods were synthesized by sol-gel method using zinc nitrate tetrahydrate, methenamine and cupric acetate monohydrate as precursors. The as-synthesized ZnO nanorods have a twin-rod structure. The polar (002) surface of ZnO nanorods, which could be either negatively charge (O-terminated) or positively charged (Zn- terminated), was responsible for the formation of twin-rod structure. The results showed that the size, aspect ratio, crystallinity and c-lattice parameter of Cu doped ZnO nanorods decreased with increasing of Cu dopant concentration. In fact, the presence of Cu retarded the growth of ZnO nanorods in its preferred growth direction, i.e. (0001). The XPS analysis indicates that Cu ions were oxidized (Cu2+) and substituted into the ZnO lattice at the Zn2+ site. The presence of Cu reduced the optical bandgap of ZnO from 3.34 eV (undoped ZnO nanorods) to 3.31 eV (20 mol% Cu doped ZnO). Besides, it induced a visible PL emission at 2.97 eV, which could be related to the transition of electrons from conduction band (Ec) to Cu acceptor energy level (Ev + 0.45 eV) radiatively.
    Matched MeSH terms: Electrons
  8. Chaudhry AR, Armed R, Irfan A, Shaari A, Maarof H, Abdullah GAS
    Sains Malaysiana, 2014;43:867-875.
    We have designed new derivatives of naphtha [2 ,1-b:6 ,5-13V difuran as DPNDF-CN1 and DPNDF-CN2. The molecular structures of DPNDF, its derivatives DPNDF-CN1 and DPNDF-CN2 have been optimized at the ground (So) and first excited (S1) states using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), respectively. Then the highest occupied molecular orbitals (HOMOs), the lowest unoccupied molecular orbitals (Lumos), photoluminescence properties, electron affinities (EELS), reorganization energies (.1.$) and ionization potentials (iPs) have been investigated. The balanced A(h) and A(e) showed that DPNDF, DPNDF-CN1 and DPNDF-CN2 would be better charge transport materials for both hole and electron. The effect of attached acceptors on the geometrical parameters, electronic, optical and charge transfer properties have also been investigated.
    Matched MeSH terms: Electrons
  9. Hanafi Ithnin, Khalid Kasmin M, Radzi Mat Isa A, Shaari A, Armed R
    Sains Malaysiana, 2014;43:819-825.
    Quantum dots being an interesting class of nanostructures are considered potential prototype systems for novel nano-devices such as single electron transistor (sET). Here in this research, we present an analysis of the electron trajectory in the vicinity of gallium arsenide (GaAs) quantum dot. To perform this study, DFT based methodology is employed to optimize structure of quantum dot and determining the electrostatic potential around the dot. Under the influence of obtained electrostatic potential, trajectory of the moving electron towards the dot is investigated. The results showed that GaAs quantum dot have negative and positive potential surfaces that influence the electron interaction with the dot. These results motivate the development of SET electrode channel where the electron moves towards the dot on the surface with positive potential rather than negative potential surface.
    Matched MeSH terms: Electrons
  10. Janic ES, Butigan V, Novakovic JD, Lekic M
    Sains Malaysiana, 2014;43:637-642.
    The extinction of Br2 molecules in gas state is measured for different wavelengths of incident light in interval of 370 - 570 nm by method of gas spectroscopy. The measurement is made on the basis of Franck-Condon's principle, under which a transition to a more excited state is done without changing the intercore distance (in further text, R). The graph of energy dependence on extinction is drawn. On the graph are recognized two Gausses slopes and their separation (deconvolution) is done. The complete Gausses functions are determined on graph. The method of mirror symmetry is applied on Gausses slopes of extinction and symmetrical extinction values (Es) are obtained. Borders of Franck-Condon's area are determined from ground state of Linear Harmonic Oscillator (LH0). Tables of dependence on R and the excitation energy are given. On the basis of these tables are drawn potential curves of electron energy E(R) in excited electronic states of Br2 molecules as functions of R in Franck-Condon's area.
    Matched MeSH terms: Electrons
  11. Nur Sha'dah Z, Iskandar S, Azhar A, Suhaimi M, Nur Lina R, Halimah M
    Sains Malaysiana, 2014;43:953-958.
    The effects of the X-ray irradiation and chemical etching on the physical and optical properties of cR-39 plastic detectors were investigated for different doses of X-ray. cR-39 detectors were etched in the solution of the 3 M of NaOH after irradiation for revelations of the track. The tracks formed on cR-39 either by irradiated X-ray or due to the effect of environment. The changes in the thickness after exposed have significant decrease in 60 kVp and started to increase in the range of 70 kVp up to 100 kVp due to the formation of oxidation layer on surface by free radicals. The optical band gaps before etching and after etching were determined by using Ultraviolet-visible (uv-Vis) spectroscopy. The optical band gap is attributed to the indirect transition due to its amorphous nature which is significantly decline trend energy in increase of the energy fluence of radiation. The Urbach's energy, is defined as the width of the tail localized states in the forbidden band gap which change increment trend as increase in dose delivered due to the distortion structure of the cR-39 in terms of the electron charges in valences electron hence attributes to the induced modification of angle bond between the neighboring atoms.
    Matched MeSH terms: Electrons
  12. Khuzaimah Arifin, Wan Ramli Wan Daud, Mohammad B. Kassim
    Sains Malaysiana, 2014;43:95-101.
    A novel bimetallic double thiocyanate-bridged ruthenium and tungsten metal complex containing bipyridyl and dithiolene co-ligands was synthesized and the behavior of the complex as a dye-sensitizer for a photoelectrochemical (PEG) cell for a direct water splitting reaction was investigated. The ligands and metal complexes were characterized on the basis of elemental analysis as well as uv-Vis, Fourier transform infrared ( Pim) and nuclear magnetic resonance (11I and 13C NMR) spectroscopy. Cyclic voltammetry of the bimetallic complex showed multiple redox couples, in which half potentials E 112 at 0 .625 , 0.05 and 0.61 V were assigned as the formal redox processes of Ru(III)IRu(II) reduction, W(IV)IW(V) and W(V)IW(VI) oxidations, respectively. Photocurrent measurements were performed in homogeneous system and TiO2 was used as the photoanode for photocurrent measurements. Current density generated by the bimetallic complex was higher than that of N3 commercial dye which suggested that the bimetallic complex donated more electrons to the semiconductor.
    Matched MeSH terms: Electrons
  13. Ong WJ, Tan LL, Chai SP, Yong ST
    Chem Commun (Camb), 2015 Jan 18;51(5):858-61.
    PMID: 25429376 DOI: 10.1039/c4cc08996k
    A facile one-pot impregnation-thermal reduction strategy was employed to fabricate sandwich-like graphene-g-C3N4 (GCN) nanocomposites using urea and graphene oxide as precursors. The GCN sample exhibited a slight red shift of the absorption band edge attributed to the formation of a C-O-C bond as a covalent cross linker between graphene and g-C3N4. The GCN sample demonstrated high visible-light photoactivity towards CO2 reduction under ambient conditions, exhibiting a 2.3-fold enhancement over pure g-C3N4. This was ascribed to the inhibition of electron-hole pair recombination by graphene, which increased the charge transfer.
    Matched MeSH terms: Electrons
  14. Mary YS, Panicker CY, Sapnakumari M, Narayana B, Sarojini BK, Al-Saadi AA, et al.
    Spectrochim Acta A Mol Biomol Spectrosc, 2015 Feb 5;136 Pt B:473-82.
    PMID: 25448948 DOI: 10.1016/j.saa.2014.09.060
    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 1-[5-(4-bromophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]ethanone have been investigated experimentally and theoretically using Gaussian09 software package. The title compound was optimized using the HF/6-31G(d) (6D, 7F), B3LYP/6-31G (6D, 7F) and B3LYP/6-311++G(d,p) (5D, 7F) calculations. The B3LYP/6-311++G(d,p) (5D, 7F) results and in agreement with experimental infrared bands. The geometrical parameters are in agreement with XRD data. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Molecular electrostatic potential was also performed. From the MEP it is evident that the negative charge covers the C=O group and the positive region is over the rings. First hyperpolarizability is calculated in order to find its role in nonlinear optics. Molecular docking studies suggest that the compound might exhibit inhibitory activity against TPII and may act as anti-neoplastic agent.
    Matched MeSH terms: Electrons*
  15. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2015 Feb 13;114(6):061801.
    PMID: 25723204
    A search for new long-lived particles decaying to leptons is presented using proton-proton collisions produced by the LHC at √[s]=8  TeV. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.7  fb(-1). Events are selected with an electron and muon with opposite charges that both have transverse impact parameter values between 0.02 and 2 cm. The search has been designed to be sensitive to a wide range of models with nonprompt e-μ final states. Limits are set on the "displaced supersymmetry" model, with pair production of top squarks decaying into an e-μ final state via R-parity-violating interactions. The results are the most restrictive to date on this model, with the most stringent limit being obtained for a top squark lifetime corresponding to cτ=2  cm, excluding masses below 790 GeV at 95% confidence level.
    Matched MeSH terms: Electrons
  16. Alawiah A, Alina MS, Bauk S, Abdul-Rashid HA, Gieszczyk W, Noramaliza MN, et al.
    Appl Radiat Isot, 2015 Apr;98:80-6.
    PMID: 25644081 DOI: 10.1016/j.apradiso.2015.01.016
    The thermoluminescence (TL) glow curves and kinetics parameters of Thulium (Tm) doped silica cylindrical fibers (CF) are presented. A linear accelerator (LINAC) was used to deliver high-energy radiation of 21MeV electrons and 10MV photons. The CFs were irradiated in the dose range of 0.2-10Gy. The experimental glow curve data was reconstructed by using WinREMS. The WinGCF software was used for the kinetic parameters evaluation. The TL sensitivity of Tm-doped silica CF is about 2 times higher as compared to pure silica CF. Tm-doped silica CF seems to be more sensitive to 21MeV electrons than to 10MV photons. Surprisingly, no supralinearity was displayed and a sub-linear response of Tm-doped silica CF was observed within the analyzed dose range for both 21MeV electrons and 10MV photons. The Tm-doped silica CF glow curve consists of 5 individual glow peaks. The Ea of peak 4 and peak 5 was highly dependent on dose when irradiated with photons. We also noticed that the electron radiation (21MeV) caused a shift of glow peak by 7-13°C to the higher temperature region compared with photons radiation (10MV). Our Tm-doped fibers seem to give high TL response after 21MeV electrons, which gives around 2 times higher peak integral as compared with 10MV photon radiation. We concluded that peak 4 is the first-order kinetic peak and can be used as the main dosimetric peak of Tm-doped silica CF.
    Matched MeSH terms: Electrons
  17. Neves RF, Jones DB, Lopes MC, Blanco F, García G, Ratnavelu K, et al.
    J Chem Phys, 2015 May 21;142(19):194305.
    PMID: 26001459 DOI: 10.1063/1.4921313
    We report on measurements of integral cross sections (ICSs) for electron impact excitation of a series of composite vibrational modes and electronic-states in phenol, where the energy range of those experiments was 15-250 eV. There are currently no other results against which we can directly compare those measured data. We also report results from our independent atom model with screened additivity rule correction computations, namely, for the inelastic ICS (all discrete electronic states and neutral dissociation) and the total ionisation ICS. In addition, for the relevant dipole-allowed excited electronic states, we also report f-scaled Born-level and energy-corrected and f-scaled Born-level (BEf-scaled) ICS. Where possible, our measured and calculated ICSs are compared against one another with the general level of accord between them being satisfactory to within the measurement uncertainties.
    Matched MeSH terms: Electrons*
  18. Bradley DA, Mahdiraji GA, Ghomeishi M, Dermosesian E, Adikan FR, Rashid HA, et al.
    Appl Radiat Isot, 2015 Jun;100:43-9.
    PMID: 25533626 DOI: 10.1016/j.apradiso.2014.12.005
    A method for improving the thermoluminescence (TL) yield of silica-based optical fibres is demonstrated. Using silica obtained from a single manufacturer, three forms of pure (undoped) fibre (capillary-, flat-, and photonic crystal fibre (PCF)) and two forms of Ge-doped fibre (capillary- and flat-fibre) were fabricated. The pure fibre samples were exposed to 6 and 21MeV electrons, the doped fibres to 6MV photons. The consistent observation of large TL yield enhancement is strongly suggestive of surface-strain defects generation. For 6MeV irradiations of flat-fibre and PCF, respective TL yields per unit mass of about 12.0 and 17.5 times that of the undoped capillary-fibre have been observed. Similarly, by making a Ge-doped capillary-fibre into flat-fibre, the TL response is found to increase by some 6.0 times. Thus, in addition to TL from the presence of a dopant, the increase in fused surface areas of flat-fibres and PCF is seen to be a further important source of TL. The glow-curves of the undoped fibres have been analysed by computational deconvolution. Trap centre energies have been estimated and compared for the various fibre samples. Two trap centre types observed in capillary-fibre are also observed in flat-fibre and PCF. An additional trap centre in flat-fibre and one further trap centre in PCF are observed when compared to capillary fibre. These elevated-energy trap centres are linked with strain-generated defects in the collapsed regions of the flat fibre and PCF.
    Matched MeSH terms: Electrons
  19. Lim TY, Wagiran H, Hussin R, Hashim S
    Appl Radiat Isot, 2015 Aug;102:10-4.
    PMID: 25933405 DOI: 10.1016/j.apradiso.2015.04.005
    The paper presents the thermoluminescence (TL) response of strontium tetraborate glass subjected to electron irradiations at various Dy2O3 concentrations ranging from 0.00 to 1.00mol%. All glass samples exhibited single broad peak with maximum peak temperature positioned at 170-215°C. The optimum TL response was found at Dy2O3 concentration 0.75mol%. This glass showed good linearity and higher sensitivity for 7MeV compared to 6MeV electrons. Analysis of kinetic parameters showed that the glasses demonstrate second order kinetic.
    Matched MeSH terms: Electrons
  20. Robson RE, Brunger MJ, Buckman SJ, Garcia G, Petrović ZLj, White RD
    Sci Rep, 2015 Aug 06;5:12674.
    PMID: 26246002 DOI: 10.1038/srep12674
    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the 'gas-phase' assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations.
    Matched MeSH terms: Electrons*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links