PATIENTS AND METHODS: Fourteen patients with normal ejection fraction and 16 patients with reduced ejection fraction were compared with 20 healthy individuals. Phase-contrast MRI was used to assess intraventricular flow variables and speckle-tracking echocardiography to assess myocardial strain and left ventricular (LV) dyssynchrony. Infarct size was acquired using delayed-enhancement MRI.
RESULTS: The results obtained showed no significant differences in intraventricular flow variables between the healthy group and the patients with normal ejection fraction group, whereas considerable reductions in kinetic energy (KE) fluctuation index, E' (P<0.001) and vortex KE (P=0.003) were found in the patients with reduced ejection fraction group. In multivariate analysis, only vortex KE and infarct size were significantly related to LV ejection fraction (P<0.001); furthermore, vortex KE was correlated negatively with energy dissipation, energy dissipation index (r=-0.44, P=0.021).
CONCLUSION: This study highlights that flow energetic indices have limited applicability as early predictors of LV progressive dysfunction, whereas vortex KE could be an alternative to LV performance.
Objective: To determine the association between perioperative hsTnT measurements and 30-day mortality and potential diagnostic criteria for MINS (ie, myocardial injury due to ischemia associated with 30-day mortality).
Design, Setting, and Participants: Prospective cohort study of patients aged 45 years or older who underwent inpatient noncardiac surgery and had a postoperative hsTnT measurement. Starting in October 2008, participants were recruited at 23 centers in 13 countries; follow-up finished in December 2013.
Exposures: Patients had hsTnT measurements 6 to 12 hours after surgery and daily for 3 days; 40.4% had a preoperative hsTnT measurement.
Main Outcomes and Measures: A modified Mazumdar approach (an iterative process) was used to determine if there were hsTnT thresholds associated with risk of death and had an adjusted hazard ratio (HR) of 3.0 or higher and a risk of 30-day mortality of 3% or higher. To determine potential diagnostic criteria for MINS, regression analyses ascertained if postoperative hsTnT elevations required an ischemic feature (eg, ischemic symptom or electrocardiography finding) to be associated with 30-day mortality.
Results: Among 21 842 participants, the mean age was 63.1 (SD, 10.7) years and 49.1% were female. Death within 30 days after surgery occurred in 266 patients (1.2%; 95% CI, 1.1%-1.4%). Multivariable analysis demonstrated that compared with the reference group (peak hsTnT <5 ng/L), peak postoperative hsTnT levels of 20 to less than 65 ng/L, 65 to less than 1000 ng/L, and 1000 ng/L or higher had 30-day mortality rates of 3.0% (123/4049; 95% CI, 2.6%-3.6%), 9.1% (102/1118; 95% CI, 7.6%-11.0%), and 29.6% (16/54; 95% CI, 19.1%-42.8%), with corresponding adjusted HRs of 23.63 (95% CI, 10.32-54.09), 70.34 (95% CI, 30.60-161.71), and 227.01 (95% CI, 87.35-589.92), respectively. An absolute hsTnT change of 5 ng/L or higher was associated with an increased risk of 30-day mortality (adjusted HR, 4.69; 95% CI, 3.52-6.25). An elevated postoperative hsTnT (ie, 20 to <65 ng/L with an absolute change ≥5 ng/L or hsTnT ≥65 ng/L) without an ischemic feature was associated with 30-day mortality (adjusted HR, 3.20; 95% CI, 2.37-4.32). Among the 3904 patients (17.9%; 95% CI, 17.4%-18.4%) with MINS, 3633 (93.1%; 95% CI, 92.2%-93.8%) did not experience an ischemic symptom.
Conclusions and Relevance: Among patients undergoing noncardiac surgery, peak postoperative hsTnT during the first 3 days after surgery was significantly associated with 30-day mortality. Elevated postoperative hsTnT without an ischemic feature was also associated with 30-day mortality.
CASE PRESENTATION: A 19-year-old female presented acutely with massive hemoptysis. Cardiopulmonary resuscitation (CPR) followed, and the patient was subsequently intubated for airway protection with intensive care unit (ICU) admission. Urgent CT angiography of the thorax showed a bleeding pulmonary AVM, with evidence of hemothorax. Non-contrasted cranial CT initially revealed cerebral edema. Day 3 post admission, repeat cranial CT showed worsening cerebral edema, with evidence of pseudo-SAH. Patient passed away the next day.
CONCLUSIONS: Pseudo-SAH, if present, carries a poor prognosis. It should be recognized as a potential CT finding in patients with severe cerebral edema, due to various causes. The diagnosis is vital, to avoid wrongful treatment institution, as well as determination of cause of death.