Displaying publications 981 - 1000 of 1088 in total

Abstract:
Sort:
  1. Shimelis H, Mesman RLS, Von Nicolai C, Ehlen A, Guidugli L, Martin C, et al.
    Cancer Res, 2017 Jun 01;77(11):2789-2799.
    PMID: 28283652 DOI: 10.1158/0008-5472.CAN-16-2568
    Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk were investigated through a breast cancer case-control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine studies of Asian ancestry (6,269 cases and 6,624 controls). The BRCA2 c.9104A>C, p.Tyr3035Ser (OR = 2.52; P = 0.04), and BRCA1 c.5096G>A, p.Arg1699Gln (OR = 4.29; P = 0.009) variant were associated with moderately increased risks of breast cancer among Europeans, whereas BRCA2 c.7522G>A, p.Gly2508Ser (OR = 2.68; P = 0.004), and c.8187G>T, p.Lys2729Asn (OR = 1.4; P = 0.004) were associated with moderate and low risks of breast cancer among Asians. Functional characterization of the BRCA2 variants using four quantitative assays showed reduced BRCA2 activity for p.Tyr3035Ser compared with wild-type. Overall, our results show how BRCA2 missense variants that influence protein function can confer clinically relevant, moderately increased risks of breast cancer, with potential implications for risk management guidelines in women with these specific variants. Cancer Res; 77(11); 2789-99. ©2017 AACR.
  2. Page EC, Bancroft EK, Brook MN, Assel M, Hassan Al Battat M, Thomas S, et al.
    Eur Urol, 2019 Dec;76(6):831-842.
    PMID: 31537406 DOI: 10.1016/j.eururo.2019.08.019
    BACKGROUND: Mutations in BRCA2 cause a higher risk of early-onset aggressive prostate cancer (PrCa). The IMPACT study is evaluating targeted PrCa screening using prostate-specific-antigen (PSA) in men with germline BRCA1/2 mutations.

    OBJECTIVE: To report the utility of PSA screening, PrCa incidence, positive predictive value of PSA, biopsy, and tumour characteristics after 3 yr of screening, by BRCA status.

    DESIGN, SETTING, AND PARTICIPANTS: Men aged 40-69 yr with a germline pathogenic BRCA1/2 mutation and male controls testing negative for a familial BRCA1/2 mutation were recruited. Participants underwent PSA screening for 3 yr, and if PSA > 3.0 ng/ml, men were offered prostate biopsy.

    OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: PSA levels, PrCa incidence, and tumour characteristics were evaluated. Statistical analyses included Poisson regression offset by person-year follow-up, chi-square tests for proportion t tests for means, and Kruskal-Wallis for medians.

    RESULTS AND LIMITATIONS: A total of 3027 patients (2932 unique individuals) were recruited (919 BRCA1 carriers, 709 BRCA1 noncarriers, 902 BRCA2 carriers, and 497 BRCA2 noncarriers). After 3 yr of screening, 527 men had PSA > 3.0 ng/ml, 357 biopsies were performed, and 112 PrCa cases were diagnosed (31 BRCA1 carriers, 19 BRCA1 noncarriers, 47 BRCA2 carriers, and 15 BRCA2 noncarriers). Higher compliance with biopsy was observed in BRCA2 carriers compared with noncarriers (73% vs 60%). Cancer incidence rate per 1000 person years was higher in BRCA2 carriers than in noncarriers (19.4 vs 12.0; p =  0.03); BRCA2 carriers were diagnosed at a younger age (61 vs 64 yr; p =  0.04) and were more likely to have clinically significant disease than BRCA2 noncarriers (77% vs 40%; p =  0.01). No differences in age or tumour characteristics were detected between BRCA1 carriers and BRCA1 noncarriers. The 4 kallikrein marker model discriminated better (area under the curve [AUC] = 0.73) for clinically significant cancer at biopsy than PSA alone (AUC = 0.65).

    CONCLUSIONS: After 3 yr of screening, compared with noncarriers, BRCA2 mutation carriers were associated with a higher incidence of PrCa, younger age of diagnosis, and clinically significant tumours. Therefore, systematic PSA screening is indicated for men with a BRCA2 mutation. Further follow-up is required to assess the role of screening in BRCA1 mutation carriers.

    PATIENT SUMMARY: We demonstrate that after 3 yr of prostate-specific antigen (PSA) testing, we detect more serious prostate cancers in men with BRCA2 mutations than in those without these mutations. We recommend that male BRCA2 carriers are offered systematic PSA screening.

  3. Bancroft EK, Page EC, Castro E, Lilja H, Vickers A, Sjoberg D, et al.
    Eur Urol, 2014 Sep;66(3):489-99.
    PMID: 24484606 DOI: 10.1016/j.eururo.2014.01.003
    BACKGROUND: Men with germline breast cancer 1, early onset (BRCA1) or breast cancer 2, early onset (BRCA2) gene mutations have a higher risk of developing prostate cancer (PCa) than noncarriers. IMPACT (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening in BRCA1/2 mutation carriers and controls) is an international consortium of 62 centres in 20 countries evaluating the use of targeted PCa screening in men with BRCA1/2 mutations.

    OBJECTIVE: To report the first year's screening results for all men at enrollment in the study.

    DESIGN, SETTING AND PARTICIPANTS: We recruited men aged 40-69 yr with germline BRCA1/2 mutations and a control group of men who have tested negative for a pathogenic BRCA1 or BRCA2 mutation known to be present in their families. All men underwent prostate-specific antigen (PSA) testing at enrollment, and those men with PSA >3 ng/ml were offered prostate biopsy.

    OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: PSA levels, PCa incidence, and tumour characteristics were evaluated. The Fisher exact test was used to compare the number of PCa cases among groups and the differences among disease types.

    RESULTS AND LIMITATIONS: We recruited 2481 men (791 BRCA1 carriers, 531 BRCA1 controls; 731 BRCA2 carriers, 428 BRCA2 controls). A total of 199 men (8%) presented with PSA >3.0 ng/ml, 162 biopsies were performed, and 59 PCas were diagnosed (18 BRCA1 carriers, 10 BRCA1 controls; 24 BRCA2 carriers, 7 BRCA2 controls); 66% of the tumours were classified as intermediate- or high-risk disease. The positive predictive value (PPV) for biopsy using a PSA threshold of 3.0 ng/ml in BRCA2 mutation carriers was 48%-double the PPV reported in population screening studies. A significant difference in detecting intermediate- or high-risk disease was observed in BRCA2 carriers. Ninety-five percent of the men were white, thus the results cannot be generalised to all ethnic groups.

    CONCLUSIONS: The IMPACT screening network will be useful for targeted PCa screening studies in men with germline genetic risk variants as they are discovered. These preliminary results support the use of targeted PSA screening based on BRCA genotype and show that this screening yields a high proportion of aggressive disease.

    PATIENT SUMMARY: In this report, we demonstrate that germline genetic markers can be used to identify men at higher risk of prostate cancer. Targeting screening at these men resulted in the identification of tumours that were more likely to require treatment.

  4. Lakeman IMM, van den Broek AJ, Vos JAM, Barnes DR, Adlard J, Andrulis IL, et al.
    Genet Med, 2021 Sep;23(9):1726-1737.
    PMID: 34113011 DOI: 10.1038/s41436-021-01198-7
    PURPOSE: To evaluate the association between a previously published 313 variant-based breast cancer (BC) polygenic risk score (PRS313) and contralateral breast cancer (CBC) risk, in BRCA1 and BRCA2 pathogenic variant heterozygotes.

    METHODS: We included women of European ancestry with a prevalent first primary invasive BC (BRCA1 = 6,591 with 1,402 prevalent CBC cases; BRCA2 = 4,208 with 647 prevalent CBC cases) from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA), a large international retrospective series. Cox regression analysis was performed to assess the association between overall and ER-specific PRS313 and CBC risk.

    RESULTS: For BRCA1 heterozygotes the estrogen receptor (ER)-negative PRS313 showed the largest association with CBC risk, hazard ratio (HR) per SD = 1.12, 95% confidence interval (CI) (1.06-1.18), C-index = 0.53; for BRCA2 heterozygotes, this was the ER-positive PRS313, HR = 1.15, 95% CI (1.07-1.25), C-index = 0.57. Adjusting for family history, age at diagnosis, treatment, or pathological characteristics for the first BC did not change association effect sizes. For women developing first BC 

  5. Grootes I, Keeman R, Blows FM, Milne RL, Giles GG, Swerdlow AJ, et al.
    Eur J Cancer, 2022 Sep;173:178-193.
    PMID: 35933885 DOI: 10.1016/j.ejca.2022.06.011
    BACKGROUND: Predict Breast (www.predict.nhs.uk) is an online prognostication and treatment benefit tool for early invasive breast cancer. The aim of this study was to incorporate the prognostic effect of progesterone receptor (PR) status into a new version of PREDICT and to compare its performance to the current version (2.2).

    METHOD: The prognostic effect of PR status was based on the analysis of data from 45,088 European patients with breast cancer from 49 studies in the Breast Cancer Association Consortium. Cox proportional hazard models were used to estimate the hazard ratio for PR status. Data from a New Zealand study of 11,365 patients with early invasive breast cancer were used for external validation. Model calibration and discrimination were used to test the model performance.

    RESULTS: Having a PR-positive tumour was associated with a 23% and 28% lower risk of dying from breast cancer for women with oestrogen receptor (ER)-negative and ER-positive breast cancer, respectively. The area under the ROC curve increased with the addition of PR status from 0.807 to 0.809 for patients with ER-negative tumours (p = 0.023) and from 0.898 to 0.902 for patients with ER-positive tumours (p = 2.3 × 10-6) in the New Zealand cohort. Model calibration was modest with 940 observed deaths compared to 1151 predicted.

    CONCLUSION: The inclusion of the prognostic effect of PR status to PREDICT Breast has led to an improvement of model performance and more accurate absolute treatment benefit predictions for individual patients. Further studies should determine whether the baseline hazard function requires recalibration.

  6. Zanti M, O'Mahony DG, Parsons MT, Li H, Dennis J, Aittomäkkiki K, et al.
    Hum Mutat, 2023;2023.
    PMID: 38725546 DOI: 10.1155/2023/9961341
    A large number of variants identified through clinical genetic testing in disease susceptibility genes, are of uncertain significance (VUS). Following the recommendations of the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP), the frequency in case-control datasets (PS4 criterion), can inform their interpretation. We present a novel case-control likelihood ratio-based method that incorporates gene-specific age-related penetrance. We demonstrate the utility of this method in the analysis of simulated and real datasets. In the analyses of simulated data, the likelihood ratio method was more powerful compared to other methods. Likelihood ratios were calculated for a case-control dataset of BRCA1 and BRCA2 variants from the Breast Cancer Association Consortium (BCAC), and compared with logistic regression results. A larger number of variants reached evidence in favor of pathogenicity, and a substantial number of variants had evidence against pathogenicity - findings that would not have been reached using other case-control analysis methods. Our novel method provides greater power to classify rare variants compared to classical case-control methods. As an initiative from the ENIGMA Analytical Working Group, we provide user-friendly scripts and pre-formatted excel calculators for implementation of the method for rare variants in BRCA1, BRCA2 and other high-risk genes with known penetrance.
  7. Feng G, Mózes FE, Ji D, Treeprasertsuk S, Okanoue T, Shima T, et al.
    PMID: 39362618 DOI: 10.1016/j.cgh.2024.07.045
    BACKGROUND & AIMS: Metabolic dysfunction-associated steatohepatitis (MASH) and fibrotic MASH are significant health challenges. This multi-national study aimed to validate the acMASH index (including serum creatinine and aspartate aminotransferase concentrations) for MASH diagnosis and develop a new index (acFibroMASH) for non-invasively identifying fibrotic MASH and exploring its predictive value for liver-related events (LREs).

    METHODS: We analyzed data from 3004 individuals with biopsy-proven metabolic dysfunction-associated steatotic liver disease (MASLD) across 29 Chinese and 9 international cohorts to validate the acMASH index and develop the acFibroMASH index. Additionally, we utilized the independent external data from a multi-national cohort of 9034 patients with MASLD to examine associations between the acFibroMASH index and the risk of LREs.

    RESULTS: In the pooled global cohort, the acMASH index identified MASH with an area under the receiver operating characteristic curve (AUROC) of 0.802 (95% confidence interval [CI], 0.786-0.818). The acFibroMASH index (including the acMASH index plus liver stiffness measurement) accurately identified fibrotic MASH with an AUROC of 0.808 in the derivation cohort and 0.800 in the validation cohort. Notably, the AUROC for the acFibroMASH index was 0.835 (95% CI, 0.786-0.882), superior to that of the FAST score at 0.750 (95% CI, 0.693-0.800; P < .01) in predicting the 5-year risk of LREs. Patients with acFibroMASH >0.39 had a higher risk of LREs than those with acFibroMASH <0.15 (adjusted hazard ratio, 11.23; 95% CI, 3.98-31.66).

    CONCLUSIONS: This multi-ethnic study validates the acMASH index as a reliable, noninvasive test for identifying MASH. The newly proposed acFibroMASH index is a reliable test for identifying fibrotic MASH and predicting the risk of LREs.

  8. Zhang H, Targher G, Byrne CD, Kim SU, Wong VW, Valenti L, et al.
    Hepatol Int, 2024 Aug;18(4):1178-1201.
    PMID: 38878111 DOI: 10.1007/s12072-024-10702-5
    BACKGROUND: With the implementation of the 11th edition of the International Classification of Diseases (ICD-11) and the publication of the metabolic dysfunction-associated fatty liver disease (MAFLD) nomenclature in 2020, it is important to establish consensus for the coding of MAFLD in ICD-11. This will inform subsequent revisions of ICD-11.

    METHODS: Using the Qualtrics XM and WJX platforms, questionnaires were sent online to MAFLD-ICD-11 coding collaborators, authors of papers, and relevant association members.

    RESULTS: A total of 890 international experts in various fields from 61 countries responded to the survey. We also achieved full coverage of provincial-level administrative regions in China. 77.1% of respondents agreed that MAFLD should be represented in ICD-11 by updating NAFLD, with no significant regional differences (77.3% in Asia and 76.6% in non-Asia, p = 0.819). Over 80% of respondents agreed or somewhat agreed with the need to assign specific codes for progressive stages of MAFLD (i.e. steatohepatitis) (92.2%), MAFLD combined with comorbidities (84.1%), or MAFLD subtypes (i.e., lean, overweight/obese, and diabetic) (86.1%).

    CONCLUSIONS: This global survey by a collaborative panel of clinical, coding, health management and policy experts, indicates agreement that MAFLD should be coded in ICD-11. The data serves as a foundation for corresponding adjustments in the ICD-11 revision.

  9. He F, Aebersold R, Baker MS, Bian X, Bo X, Chan DW, et al.
    Nature, 2025 Jan;637(8046):E22.
    PMID: 39715925 DOI: 10.1038/s41586-024-08555-x
  10. He F, Aebersold R, Baker MS, Bian X, Bo X, Chan DW, et al.
    Nature, 2024 Dec;636(8042):322-331.
    PMID: 39663494 DOI: 10.1038/s41586-024-08280-5
    The human body contains trillions of cells, classified into specific cell types, with diverse morphologies and functions. In addition, cells of the same type can assume different states within an individual's body during their lifetime. Understanding the complexities of the proteome in the context of a human organism and its many potential states is a necessary requirement to understanding human biology, but these complexities can neither be predicted from the genome, nor have they been systematically measurable with available technologies. Recent advances in proteomic technology and computational sciences now provide opportunities to investigate the intricate biology of the human body at unprecedented resolution and scale. Here we introduce a big-science endeavour called π-HuB (proteomic navigator of the human body). The aim of the π-HuB project is to (1) generate and harness multimodality proteomic datasets to enhance our understanding of human biology; (2) facilitate disease risk assessment and diagnosis; (3) uncover new drug targets; (4) optimize appropriate therapeutic strategies; and (5) enable intelligent healthcare, thereby ushering in a new era of proteomics-driven phronesis medicine. This ambitious mission will be implemented by an international collaborative force of multidisciplinary research teams worldwide across academic, industrial and government sectors.
  11. Klein AP, Wolpin BM, Risch HA, Stolzenberg-Solomon RZ, Mocci E, Zhang M, et al.
    Nat Commun, 2018 02 08;9(1):556.
    PMID: 29422604 DOI: 10.1038/s41467-018-02942-5
    In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10-8). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10-14), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10-10), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10-8), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10-8). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.
  12. Walsh N, Zhang H, Hyland PL, Yang Q, Mocci E, Zhang M, et al.
    J Natl Cancer Inst, 2019 Jun 01;111(6):557-567.
    PMID: 30541042 DOI: 10.1093/jnci/djy155
    BACKGROUND: Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes.

    METHODS: We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided.

    RESULTS: We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P ≤ 1.3 × 10-5), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets.

    CONCLUSION: Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.

  13. Zhong J, Jermusyk A, Wu L, Hoskins JW, Collins I, Mocci E, et al.
    J Natl Cancer Inst, 2020 Oct 01;112(10):1003-1012.
    PMID: 31917448 DOI: 10.1093/jnci/djz246
    BACKGROUND: Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association studies in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely unknown.

    METHODS: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples).

    RESULTS: We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction.

    CONCLUSIONS: By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.

  14. De Moor D, Skelton M, MacaqueNet, Amici F, Arlet ME, Balasubramaniam KN, et al.
    J Anim Ecol, 2025 Feb 11.
    PMID: 39934999 DOI: 10.1111/1365-2656.14223
    There is a vast and ever-accumulating amount of behavioural data on individually recognised animals, an incredible resource to shed light on the ecological and evolutionary drivers of variation in animal behaviour. Yet, the full potential of such data lies in comparative research across taxa with distinct life histories and ecologies. Substantial challenges impede systematic comparisons, one of which is the lack of persistent, accessible and standardised databases. Big-team approaches to building standardised databases offer a solution to facilitating reliable cross-species comparisons. By sharing both data and expertise among researchers, these approaches ensure that valuable data, which might otherwise go unused, become easier to discover, repurpose and synthesise. Additionally, such large-scale collaborations promote a culture of sharing within the research community, incentivising researchers to contribute their data by ensuring their interests are considered through clear sharing guidelines. Active communication with the data contributors during the standardisation process also helps avoid misinterpretation of the data, ultimately improving the reliability of comparative databases. Here, we introduce MacaqueNet, a global collaboration of over 100 researchers (https://macaquenet.github.io/) aimed at unlocking the wealth of cross-species data for research on macaque social behaviour. The MacaqueNet database encompasses data from 1981 to the present on 61 populations across 14 species and is the first publicly searchable and standardised database on affiliative and agonistic animal social behaviour. We describe the establishment of MacaqueNet, from the steps we took to start a large-scale collective, to the creation of a cross-species collaborative database and the implementation of data entry and retrieval protocols. We share MacaqueNet's component resources: an R package for data standardisation, website code, the relational database structure, a glossary and data sharing terms of use. With all these components openly accessible, MacaqueNet can act as a fully replicable template for future endeavours establishing large-scale collaborative comparative databases.
  15. Ham H, Jing H, Lamborn IT, Kober MM, Koval A, Berchiche YA, et al.
    Science, 2024 Sep 20;385(6715):eadd8947.
    PMID: 39298586 DOI: 10.1126/science.add8947
    Humans with monogenic inborn errors responsible for extreme disease phenotypes can reveal essential physiological pathways. We investigated germline mutations in GNAI2, which encodes Gαi2, a key component in heterotrimeric G protein signal transduction usually thought to regulate adenylyl cyclase-mediated cyclic adenosine monophosphate (cAMP) production. Patients with activating Gαi2 mutations had clinical presentations that included impaired immunity. Mutant Gαi2 impaired cell migration and augmented responses to T cell receptor (TCR) stimulation. We found that mutant Gαi2 influenced TCR signaling by sequestering the guanosine triphosphatase (GTPase)-activating protein RASA2, thereby promoting RAS activation and increasing downstream extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)-AKT S6 signaling to drive cellular growth and proliferation.
  16. Zheng SL, Henry A, Cannie D, Lee M, Miller D, McGurk KA, et al.
    Nat Genet, 2024 Dec;56(12):2646-2658.
    PMID: 39572783 DOI: 10.1038/s41588-024-01952-y
    Dilated cardiomyopathy (DCM) is a leading cause of heart failure and cardiac transplantation. We report a genome-wide association study and multi-trait analysis of DCM (14,256 cases) and three left ventricular traits (36,203 UK Biobank participants). We identified 80 genomic risk loci and prioritized 62 putative effector genes, including several with rare variant DCM associations (MAP3K7, NEDD4L and SSPN). Using single-nucleus transcriptomics, we identify cellular states, biological pathways, and intracellular communications that drive pathogenesis. We demonstrate that polygenic scores predict DCM in the general population and modify penetrance in carriers of rare DCM variants. Our findings may inform the design of genetic testing strategies that incorporate polygenic background. They also provide insights into the molecular etiology of DCM that may facilitate the development of targeted therapeutics.
  17. Zanti M, O'Mahony DG, Parsons MT, Dorling L, Dennis J, Boddicker NJ, et al.
    medRxiv, 2024 Sep 04.
    PMID: 39281752 DOI: 10.1101/2024.09.04.24313051
    Clinical genetic testing identifies variants causal for hereditary cancer, information that is used for risk assessment and clinical management. Unfortunately, some variants identified are of uncertain clinical significance (VUS), complicating patient management. Case-control data is one evidence type used to classify VUS, and previous findings indicate that case-control likelihood ratios (LRs) outperform odds ratios for variant classification. As an initiative of the Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) Analytical Working Group we analyzed germline sequencing data of BRCA1 and BRCA2 from 96,691 female breast cancer cases and 303,925 unaffected controls from three studies: the BRIDGES study of the Breast Cancer Association Consortium, the Cancer Risk Estimates Related to Susceptibility consortium, and the UK Biobank. We observed 11,227 BRCA1 and BRCA2 variants, with 6,921 being coding, covering 23.4% of BRCA1 and BRCA2 VUS in ClinVar and 19.2% of ClinVar curated (likely) benign or pathogenic variants. Case-control LR evidence was highly consistent with ClinVar assertions for (likely) benign or pathogenic variants; exhibiting 99.1% sensitivity and 95.4% specificity for BRCA1 and 92.2% sensitivity and 86.6% specificity for BRCA2. This approach provides case-control evidence for 785 unclassified variants, that can serve as a valuable element for clinical classification.
  18. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, et al.
    JAMA Oncol, 2019 Dec 01;5(12):1749-1768.
    PMID: 31560378 DOI: 10.1001/jamaoncol.2019.2996
    IMPORTANCE: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data.

    OBJECTIVE: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning.

    EVIDENCE REVIEW: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence.

    FINDINGS: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572 000 deaths and 15.2 million DALYs), and stomach cancer (542 000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819 000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601 000 deaths and 17.4 million DALYs), TBL cancer (596 000 deaths and 12.6 million DALYs), and colorectal cancer (414 000 deaths and 8.3 million DALYs).

    CONCLUSIONS AND RELEVANCE: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care.

  19. Jones BC, DeBruine LM, Flake JK, Liuzza MT, Antfolk J, Arinze NC, et al.
    Nat Hum Behav, 2021 01;5(1):159-169.
    PMID: 33398150 DOI: 10.1038/s41562-020-01007-2
    Over the past 10 years, Oosterhof and Todorov's valence-dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov's methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov's original analysis strategy, the valence-dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence-dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution. PROTOCOL REGISTRATION: The stage 1 protocol for this Registered Report was accepted in principle on 5 November 2018. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.7611443.v1 .
  20. Fachal L, Aschard H, Beesley J, Barnes DR, Allen J, Kar S, et al.
    Nat Genet, 2020 01;52(1):56-73.
    PMID: 31911677 DOI: 10.1038/s41588-019-0537-1
    Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links