Displaying publications 101 - 120 of 721 in total

Abstract:
Sort:
  1. Bukhari SN, Tajuddin Y, Benedict VJ, Lam KW, Jantan I, Jalil J, et al.
    Chem Biol Drug Des, 2014 Feb;83(2):198-206.
    PMID: 24433224 DOI: 10.1111/cbdd.12226
    Inhibitory effects on neutrophils' chemotaxis, phagocytosis and production of reactive oxygen species (ROS) are among the important targets in developing anti-inflammatory agents and immunosuppressants. Eight series of chalcone derivatives including five newly synthesized series were assessed for their inhibitory effects on chemotaxis, phagocytosis and ROS production in human polymorphonuclear neutrophils (PMNs). Inhibition of PMNs' chemotaxis and phagocytosis abilities were investigated using the Boyden chamber technique and the Phagotest kit, respectively, while ROS production was evaluated using luminol- and lucigenin-based chemiluminescence assay. The new derivatives (4d and 8d), which contain 4-methylaminoethanol functional group were active in all the assays performed. It was also observed that some of the compounds were active in inhibiting chemotaxis while others suppressed phagocytosis and ROS production. The information obtained gave new insight into chalcone derivatives with the potential to be developed as immunomodulators.
    Matched MeSH terms: Anti-Inflammatory Agents/chemical synthesis; Anti-Inflammatory Agents/pharmacology
  2. Wijesinghe WA, Kim EA, Kang MC, Lee WW, Lee HS, Vairappan CS, et al.
    Environ Toxicol Pharmacol, 2014 Jan;37(1):110-7.
    PMID: 24317194 DOI: 10.1016/j.etap.2013.11.006
    5β-Hydroxypalisadin B, a halogenated secondary metabolite isolated from red seaweed Laurencia snackeyi was evaluated for its anti-inflammatory activity in lipopolysaccharide (LPS)-induced zebrafish embryo. Preliminary studies suggested the effective concentrations of the compound as 0.25, 0.5, 1 μg/mL for further in vivo experiments. 5β-Hydroxypalisadin B, exhibited profound protective effect in the zebrafish embryo as confirmed by survival rate, heart beat rate, and yolk sac edema size. The compound acts as an effective agent against reactive oxygen species (ROS) formation induced by LPS and tail cut. Moreover, 5β-hydroxypalisadin B effectively inhibited the LPS-induced nitric oxide (NO) production in zebrafish embryo. All the tested protective effects of 5β-hydroxypalisadin B were comparable to the well-known anti-inflammatory agent dexamethasone. According to the results obtained, 5β-hydroxypalisadin B isolated from red seaweed L. snackeyi could be considered as an effective anti-inflammatory agent which might be further developed as a functional ingredient.
    Matched MeSH terms: Anti-Inflammatory Agents/isolation & purification; Anti-Inflammatory Agents/pharmacology*
  3. Dhabali AA, Awang R, Hamdan Z, Zyoud SH
    Int J Clin Pharmacol Ther, 2012 Dec;50(12):851-61.
    PMID: 23006441 DOI: 10.5414/CP201689
    OBJECTIVES: The objectives of this study were 1) to obtain information regarding the prescribing pattern of nonsteroidal anti-inflammatory drugs (NSAIDs) in the primary care setting at a Malaysian university, 2) to determine the prevalence and types of potential NSAID prescription related problems (PRPs), and 3) to identify patient characteristics associated with exposure to these potential PRPs.
    METHODS: We retrospectively collected data from 1 academic year using the electronic medical records of patients in the University Sains Malaysia (USM) primary care system. The defined daily dose (DDD) methodology and the anatomical therapeutic chemical (ATC) drug classification system were used in the analysis and comparison of the data. Statements representing potential NSAID PRPs were developed from authoritative drug information sources. Then, algorithms were developed to screen the databases for these potential PRPs. Descriptive and comparative statistics were used to characterize DRPs.
    RESULTS: During the study period, 12,470 NSAID prescriptions were prescribed for 6,509 patients (mean ± SD = 1.92 ± 1.83). This represented a prevalence of 35,944 per 100,000 patients, or 36%. Based on their DDDs, mefenamic acid and diclofenac were the most prescribed NSAIDs. 573 potential NSAID-related PRPs were observed in a cohort of 432 patients, representing a prevalence of 6,640 per 100,000 NSAIDs users, or 6.6% of all NSAID users. Multivariate logistic regression analysis revealed that patients with a Malay ethnic background (p < 0.001), members of the staff (p < 0.001), having 4 or more prescribers (p < 0.001) or having 2 - 3 prescribers (p = 0.02), and representing 4 or more long-term therapeutic groups (LTTGs) (p < 0.001) or 2 - 3 LTTGs (p < 0.001) were significantly associated with an increased chance of exposure to potential NSAID related PRPs.
    CONCLUSIONS: This is the first study in Malaysia that presents data on the prescribing pattern of NSAIDs and the characteristics of potential NSAID-related PRPs. The prevalence of potential NSAID-related PRPs is frequent in the primary care setting. Exposure to these PRPs is associated with specific sociodemographic and health status factors. These results should help to raise the awareness of clinicians and patients about serious NSAID PRPs.

    Study site: University Sains Malaysia (USM) primary care system.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/adverse effects*; Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
  4. Oskoueian E, Abdullah N, Hendra R, Karimi E
    Int J Mol Sci, 2011;12(12):8610-25.
    PMID: 22272095 DOI: 10.3390/ijms12128610
    Evaluation of abundantly available agro-industrial by-products for their bioactive compounds and biological activities is beneficial in particular for the food and pharmaceutical industries. In this study, rapeseed meal, cottonseed meal and soybean meal were investigated for the presence of bioactive compounds and antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities. Methanolic extracts of rapeseed meal showed significantly (P < 0.01) higher phenolics and flavonoids contents; and significantly (P < 0.01) higher DPPH and nitric oxide free radical scavenging activities when compared to that of cottonseed meal and soybean meal extracts. Ferric thiocyanate and thiobarbituric acid tests results showed rapeseed meal with the highest antioxidant activity (P < 0.01) followed by BHT, cotton seed meal and soybean meal. Rapeseed meal extract in xanthine oxidase and tyrosinase inhibitory assays showed the lowest IC(50) values followed by cottonseed and soybean meals. Anti-inflammatory assay using IFN-γ/LPS stimulated RAW 264.7 cells indicated rapeseed meal is a potent source of anti-inflammatory agent. Correlation analysis showed that phenolics and flavonoids were highly correlated to both antioxidant and anti-inflammatory activities. Rapeseed meal was found to be promising as a natural source of bioactive compounds with high antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities in contrast to cotton and soybean meals.
    Matched MeSH terms: Anti-Inflammatory Agents/analysis*; Anti-Inflammatory Agents/pharmacology
  5. Saravanan M, Bhaskar K, Maharajan G, Pillai KS
    J Drug Target, 2011 Feb;19(2):96-103.
    PMID: 20380621 DOI: 10.3109/10611861003733979
    We have previously reported on the targeting of diclofenac sodium in joint inflammation using gelatin magnetic microspheres. To overcome complications in the administration of magnetic microspheres and achieve higher targeting efficiency, the present work focuses on the formulation of gelatin microspheres for intra-articular administration. Drug-loaded microspheres were prepared by the emulsification/cross-linking method, characterized by drug loading, size distribution, scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), gas chromatography, and in vitro release studies. The targeting efficiency of microspheres was studied in vivo in rabbits. The microspheres showed drug loading of 9.8, 18.3, and 26.7% w/w with an average size range of 37-46 µm, depending upon the drug-polymer ratio. They were spherical in nature and free from surface drug as evidenced by the SEM photographs. FT-IR, DSC, and XRD revealed the absence of drug-polymer interaction and amorphous nature of entrapped drug. Gas chromatography confirms the absences of residual glutaraldehyde. The formulated microspheres could prolong the drug release up to 30 days in vitro. About 81.2 and 43.7% of administered drug in the microspheres were recovered from the target joint after 1 and 7 days of postintra-articular injection, respectively, revealing good targeting efficiency.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage*; Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics
  6. Yam MF, Lim V, Salman IM, Ameer OZ, Ang LF, Rosidah N, et al.
    Molecules, 2010 Jun 21;15(6):4452-66.
    PMID: 20657453 DOI: 10.3390/molecules15064452
    The aim of the present study was to verify the anti-inflammatory activity of Orthosiphon stamineus leaf extracts and to identify the active compound(s) contributing to its anti-inflammatory activity using a developed HPLC method. Active chloroform extract of O. stamineus was fractionated into three fractions using a dry flash column chromatography method. These three fractions were investigated for anti-peritoneal capillary permeability, in vitro nitric oxide scavenging activity, anti-inflammatory and nitric oxide (NO) inhibition using carrageenan-induced hind paw edema method. The flavonoid rich chloroform extract fraction (CF2) [containing sinensetin (2.86% w/w), eupatorin (5.05% w/w) and 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (1.101% w/w)], significantly reduced rat hind paw edema, NO and decreased dye leakage to peritoneal cavity at p < 0.05. IC(50) of in vitro NO scavenging of CF2 was 0.3 mg/mL. These results suggest that the anti-inflammatory properties of these CF2 may possibly be due to the presence of flavonoid compounds capable of affecting the NO pathway.
    Matched MeSH terms: Anti-Inflammatory Agents/therapeutic use; Anti-Inflammatory Agents/chemistry*
  7. Sulaiman MR, Zakaria ZA, Chiong HS, Lai SK, Israf DA, Azam Shah TM
    Med Princ Pract, 2009;18(4):272-9.
    PMID: 19494533 DOI: 10.1159/000215723
    The present study was carried out to explore the antinociceptive as well as the anti-inflammatory effects of an ethanol extract of Stachytarpheta jamaicensis (L.) Vahl (EESJ) using 3 models of nociception and 2 models of inflammation in experimental animals.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*; Anti-Inflammatory Agents/therapeutic use
  8. Nor Azlin MI, Maryasalwati I, Norzilawati MN, Mahdy ZA, Jamil MA, Zainul Rashid MR
    J Obstet Gynaecol, 2008 May;28(4):424-6.
    PMID: 18604680 DOI: 10.1080/01443610802150051
    Dysmenorrhoea is painful menstruation that occurs in 45-72% of all women. This was a prospective randomised study of the efficacy of etoricoxib (Arcoxia) compared with mefenamic acid (Ponstan) in treating primary dysmenorrhoea. All single, sexually inactive women with primary dysmenorrhoea were randomised into two groups (mefenamic acid and etoricoxib) of pain relief and underwent a cross-over study. The success of treatment as evidenced by pain relief, the side-effects and complications were observed and analysed. Some 80% (20 women) had significantly better pain relief with etoricoxib, compared with only 20 per cent in the mefenamic acid group (p = 0.007). Etoricoxib has significantly fewer side-effects compared with mefenamic acid (p = 0.005) with significantly reduced menstrual blood loss (p = 0.025). In conclusion, etoricoxib is a better treatment for primary dysmenorrhoea with better pain relief, less menstrual blood loss and fewer side-effects compared with mefenamic acid.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/adverse effects; Anti-Inflammatory Agents, Non-Steroidal/therapeutic use*
  9. Ong AL, Kamaruddin AH, Bhatia S, Aboul-Enein HY
    J Sep Sci, 2008 Jul;31(13):2476-85.
    PMID: 18646277 DOI: 10.1002/jssc.200800086
    An enzymatic membrane reactor (EMR) for enantioseparation of (R,S)-ketoprofen via Candida antarctica lipase B (CALB) as biocatalyst was investigated. A comparative study of free and immobilized CALB was further conducted. The catalytic behaviour of CALB in an EMR was affected by the process parameters of enzyme load, substrate concentration, substrate molar ratio, lipase solution pH, reaction temperature, and substrate flow rate. Immobilization of CALB in the EMR was able to reduce the amount of enzyme required for the enantioseparation of (R,S)-ketoprofen. Immobilized CALB in the EMR assured higher reaction capacity, better thermal stability, and reusability. It was also found to be more cost effective and practical than free CALB in a batch reactor.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/isolation & purification; Anti-Inflammatory Agents, Non-Steroidal/chemistry
  10. Imran S, Taha M, Ismail NH
    Curr Med Chem, 2015;22(38):4412-33.
    PMID: 26438249
    Bisindolylmethane and its derivatives are pharmacologically active and applicable in the field of pharmaceutical chemistry. Bisindolylmethanes have a variety of biological activities such as antihyperglycemic, antiinflammatory, antibacterial, anticancer, and antileishmanial activities, including enzyme inhibition activity. They play a crucial role in many diseases especially anticancer activity. Modifying their structure had proven to be useful in the search of new therapeutic agents. Extensive research carried out on bisindolylmethane and its derivatives shows that they are pharmacologically significant. The present review focuses on the pharmacological profile of bisindolylmethane derivatives. This review includes the current literature with an update of research findings as well as the perspectives that they hold for future research.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/pharmacology; Anti-Inflammatory Agents, Non-Steroidal/chemistry*
  11. Arumugam G, Swamy MK, Sinniah UR
    Molecules, 2016 Mar 30;21(4):369.
    PMID: 27043511 DOI: 10.3390/molecules21040369
    Plectranthus amboinicus (Lour.) Spreng. is a perennial herb belonging to the family Lamiaceae which occurs naturally throughout the tropics and warm regions of Africa, Asia and Australia. This herb has therapeutic and nutritional properties attributed to its natural phytochemical compounds which are highly valued in the pharmaceutical industry. Besides, it has horticultural properties due to its aromatic nature and essential oil producing capability. It is widely used in folk medicine to treat conditions like cold, asthma, constipation, headache, cough, fever and skin diseases. The leaves of the plant are often eaten raw or used as flavoring agents, or incorporated as ingredients in the preparation of traditional food. The literature survey revealed the occurrence 76 volatiles and 30 non-volatile compounds belonging to different classes of phytochemicals such as monoterpenoids, diterpenoids, triterpenoids, sesquiterpenoids, phenolics, flavonoids, esters, alcohols and aldehydes. Studies have cited numerous pharmacological properties including antimicrobial, antiinflammatory, antitumor, wound healing, anti-epileptic, larvicidal, antioxidant and analgesic activities. Also, it has been found to be effective against respiratory, cardiovascular, oral, skin, digestive and urinary diseases. Yet, scientific validation of many other traditional uses would be appreciated, mainly to discover and authenticate novel bioactive compounds from this herb. This review article provides comprehensive information on the botany, phytochemistry, pharmacology and nutritional importance of P. amboinicus essential oil and its various solvent extracts. This article allows researchers to further explore the further potential of this multi-utility herb for various biomedical applications.
    Matched MeSH terms: Anti-Inflammatory Agents/therapeutic use; Anti-Inflammatory Agents/chemistry
  12. Rao AS, Cardosa M, Inbasegaran K
    Anaesth Intensive Care, 2000 Feb;28(1):22-6.
    PMID: 10701031
    In a double-blind, placebo-controlled clinical trial (power of 80% to detect a 30% reduction in morphine consumption, P < 0.05), we have determined that the administration of two doses of intravenous ketoprofen 100 mg, one at the end of surgery and the second 12 hours postoperatively, was associated with a significant reduction in morphine consumption at eight (P = 0.028), 12 (P = 0.013) and 24 hours (P = 0.013) but not four hours (P = 0.065) postoperatively, as compared to placebo, when assessed by patient-controlled analgesia. There was no difference between the groups in pain scores or in the incidence of nausea and vomiting. One patient in the placebo group suffered from excessive sedation while one patient from the ketoprofen group suffered from transient oliguric renal failure. There were no other adverse effects. The results of this study show that ketoprofen does provide a morphine-sparing effect in the management of postoperative pain after abdominal surgery.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage; Anti-Inflammatory Agents, Non-Steroidal/therapeutic use*
  13. Ahmad Azam A, Ismail IS, Kumari Y, Shaikh MF, Abas F, Shaari K
    PLoS One, 2020;15(9):e0238503.
    PMID: 32925968 DOI: 10.1371/journal.pone.0238503
    Clinacanthus nutans (CN) (Acanthaceae) is well-known for its anti-inflammatory properties among Asian communities; however, there are currently no data specifically focused on the anti-inflammatory effects of CN on the brain tissue. Neuroinflammation is a common consequence of toxin intrusion to any part of the central nervous system (CNS). As an innate immune response, the CNS may react through both protective and/or toxic actions due to the activation of neuron cells producing pro- and/or anti-inflammatory cytokines in the brain. The unresolved activation of the inflammatory cytokines' response is associated with the pathogenesis of neurological disorders. The present study aimed to decipher the metabolic mechanism on the effects of 14 days oral treatment with CN aqueous extract in induced-lipopolysaccharides (LPS) rats through 1H NMR spectroscopic biomarker profiling of the brain tissue and the related cytokines. Based on the principal component analysis (PCA) of the nuclear magnetic resonance (NMR) spectral data, twenty-one metabolites in the brain tissue were profiled as biomarkers for the LPS (10 μL)-induced neuroinflammation following intracerebroventricular injection. Among the twenty-one biomarkers in the neuroinflammed rats, CN treatment of 1000 and 500 mg/kg BW successfully altered lactate, pyruvate, phosphorylcholine, glutamine, and α-ketoglutarate when compared to the negative control. Likewise, statistical isolinear multiple component analysis (SIMCA) showed that treatments by CN and the positive control drug, dextromethorphan (DXM, 5 mg/kg BW), have anti-neuroinflammatory potential. A moderate correlation, in the orthogonal partial least squares (OPLS) regression model, was found between the spectral metabolite profile and the cytokine levels. The current study revealed the existence of high levels of pro-inflammatory cytokines, namely IL-1α, IL-1β, and TNF-α in LPS-induced rats. Both CN dose treatments lowered IL-1β significantly better than DXM Interestingly, DXM and CN treatments both exhibited the upregulation of the anti-inflammatory cytokines IL-2 and 4. However, DXM has an advantage over CN in that the former also increased the expression of IL-10 of anti-inflammatory cytokines. In this study, a metabolomics approach was successfully applied to discover the mechanistic role of CN in controlling the neuroinflammatory conditions through the modulation of complex metabolite interactions in the rat brain.
    Matched MeSH terms: Anti-Inflammatory Agents/therapeutic use*; Anti-Inflammatory Agents/chemistry
  14. Hong X, Ajat M, Fakurazi S, Noor AM, Ismail IS
    J Ethnopharmacol, 2021 Mar 25;268:113647.
    PMID: 33271242 DOI: 10.1016/j.jep.2020.113647
    ETHNOPHARMACOLOGICAL RELEVANCE: Scurrula ferruginea (Jack) Danser (locally known as 'Dedalu' or 'dian nan ji sheng' in Malaysia and China) is a hemi-parasitic shrub that is widely used as herbal medicine to treat inflammation, rheumatism, and stroke. However, the scientific basis of its anti-inflammatory function and mechanism remain to be proven.

    AIM OF THE STUDY: To evaluate the anti-inflammatory activity as well as the preliminary mechanism of S. ferruginea parasitizing on Tecoma stans.

    MATERIALS AND METHODS: The anti-inflammatory capability of freeze-dried stem aqueous extract was assessed via inhibition of inflammatory cytokines interleukin- (IL-) 1β, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α) production in lipopolysaccharide (LPS) and interferon-γ (IFN-γ) stimulated RAW 264.7 macrophages. The underlying anti-inflammatory mechanism was deciphered through reverse transcriptase and real time quantitative polymerase chain reactions (RT-PCR and qPCR) for inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), IL-1β, and TNF-α mRNA expression.

    RESULTS: The results exhibited that aqueous extract of freeze-dried S. ferruginea stem sample concentration-dependently inhibited IL-1β protein production along with the down regulation of iNOS and IL-1β mRNA expression. Moreover, it significantly suppressed the protein release of IL-6 and IL-10 in a concentration-dependent manner. However, it slightly reduced TNF-α at higher sample concentration (250 μg/mL) without affecting the mRNA expression levels of COX-2 and TNF-α.

    CONCLUSIONS: This study suggests that S. ferruginea parasitizing on Tecoma stans exerted anti-inflammatory capability attributed to inhibition of iNOS and IL-1β mRNA expression, NO creation, IL-1β, IL-6, IL-10, and TNF-α protein production, indicating this plant might be a useful plant-derived candidate against inflammation.

    Matched MeSH terms: Anti-Inflammatory Agents/isolation & purification; Anti-Inflammatory Agents/pharmacology*
  15. Mohd Jamil MDH, Taher M, Susanti D, Rahman MA, Zakaria ZA
    Nutrients, 2020 Aug 26;12(9).
    PMID: 32858812 DOI: 10.3390/nu12092584
    Picrasma quassioides is a member of the Simaroubaceae family commonly grown in the regions of Asia, the Himalayas, and India and has been used as a traditional herbal medicine to treat various illnesses such as fever, gastric discomfort, and pediculosis. This study aims to critically review the presence of phytochemicals in P. quassioides and correlate their pharmacological activities with the significance of its use as traditional medicine. Data were collected by reviewing numerous scientific articles from several journal databases on the pharmacological activities of P. quassioides using certain keywords. As a result, approximately 94 phytochemicals extracted from P. quassioides were found to be associated with quassinoids, β-carbolines and canthinones. These molecules exhibited various pharmacological benefits such as anti-inflammatory, antioxidant, anti-cancer, anti-microbial, and anti-parasitic activities which help to treat different diseases. However, P. quassioides were also found to have several toxicity effects in high doses, although the evidence regarding these effects is limited in proving its safe use and efficacy as herbal medicine. Accordingly, while it can be concluded that P. quassioides may have many potential pharmacological benefits with more phytochemistry discoveries, further research is required to determine its real value in terms of quality, safety, and efficacy of use.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology; Anti-Inflammatory Agents/therapeutic use
  16. Alhawarri MB, Dianita R, Razak KNA, Mohamad S, Nogawa T, Wahab HA
    Molecules, 2021 Apr 29;26(9).
    PMID: 33946788 DOI: 10.3390/molecules26092594
    Despite being widely used traditionally as a general tonic, especially in South East Asia, scientific research on Cassia timoriensis, remains scarce. In this study, the aim was to evaluate the in vitro activities for acetylcholinesterase (AChE) inhibitory potential, radical scavenging ability, and the anti-inflammatory properties of different extracts of C. timoriensis flowers using Ellman's assay, a DPPH assay, and an albumin denaturation assay, respectively. With the exception of the acetylcholinesterase activity, to the best of our knowledge, these activities were reported for the first time for C. timoriensis flowers. The phytochemical analysis confirmed the existence of tannins, flavonoids, saponins, terpenoids, and steroids in the C. timoriensis flower extracts. The ethyl acetate extract possessed the highest phenolic and flavonoid contents (527.43 ± 5.83 mg GAE/g DW and 851.83 ± 10.08 mg QE/g DW, respectively) as compared to the other extracts. In addition, the ethyl acetate and methanol extracts exhibited the highest antioxidant (IC50 20.12 ± 0.12 and 34.48 ± 0.07 µg/mL, respectively), anti-inflammatory (92.50 ± 1.38 and 92.22 ± 1.09, respectively), and anti-AChE (IC50 6.91 ± 0.38 and 6.40 ± 0.27 µg/mL, respectively) activities. These results suggest that ethyl acetate and methanol extracts may contain bioactive compounds that can control neurodegenerative disorders, including Alzheimer's disease, through high antioxidant, anti-inflammatory, and anti-AChE activities.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*; Anti-Inflammatory Agents/chemistry
  17. Jubaidi FF, Zainalabidin S, Taib IS, Hamid ZA, Budin SB
    Int J Mol Sci, 2021 May 12;22(10).
    PMID: 34065781 DOI: 10.3390/ijms22105094
    Diabetic cardiomyopathy is one of the major mortality risk factors among diabetic patients worldwide. It has been established that most of the cardiac structural and functional alterations in the diabetic cardiomyopathy condition resulted from the hyperglycemia-induced persistent oxidative stress in the heart, resulting in the maladaptive responses of inflammation and apoptosis. Flavonoids, the most abundant phytochemical in plants, have been reported to exhibit diverse therapeutic potential in medicine and other biological activities. Flavonoids have been widely studied for their effects in protecting the heart against diabetes-induced cardiomyopathy. The potential of flavonoids in alleviating diabetic cardiomyopathy is mainly related with their remedial actions as anti-hyperglycemic, antioxidant, anti-inflammatory, and anti-apoptotic agents. In this review, we summarize the latest findings of flavonoid treatments on diabetic cardiomyopathy as well as elucidating the mechanisms involved.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*; Anti-Inflammatory Agents/therapeutic use*
  18. Kushairi N, Phan CW, Sabaratnam V, Vidyadaran S, Naidu M, David P
    Int J Med Mushrooms, 2020;22(12):1171-1181.
    PMID: 33463934 DOI: 10.1615/IntJMedMushrooms.2020036938
    Pleurotus eryngii (king oyster mushroom) is a renowned culinary mushroom with various medicinal properties that may be beneficial for health maintenance and disease prevention. However, its effect on the nervous system remains elusive. In this study, hot water (PE-HWA) and ethanol (PE-ETH) extracts of P. eryngii were investigated and compared for their neuroprotective, anti-inflammatory, and neurite outgrowth activities in vitro. Based on the results, both extracts up to 400 μg/mL were nontoxic to PC12 cells and BV2 microglia (p > 0.05). Treatment with 250 μM hydrogen peroxide (H2O2) markedly (p < 0.0001) reduced the PC12 cell viability to 67.74 ± 6.47%. Coincubation with 200 μg/mL and 400 μg/mL of PE-ETH dose-dependently increased the cell viability to 85.34 ± 1.91% (p < 0.001) and 98.37 ± 6.42% (p < 0.0001) respectively, while PE-HWA showed no activity. Nitric oxide (NO) released by BV2 microglia was notably (p < 0.0001) increased by 1 μg/mL lipopolysaccharides (LPS) from 7.46 ± 0.73 μM to 80.00 ± 3.78 μM indicating an inflammatory reaction. However, coincubation with 200 and 400 μg/mL of PE-ETH significantly (p < 0.0001) reduced the NO level to 58.57 ± 6.19 μM and 52.86 ± 3.43 μM respectively, while PE-HWA was noneffective. PE-ETH and PE-HWA at 40 μg/mL significantly increased the neurite-bearing cells from 4.70 ± 3.36% to 13.12 ± 2.82% (p < 0.01) and 20.93 ± 5.37% (p < 0.0001) respectively. Pleurotus eryngii, particularly the ethanol extract (PE-ETH) and its potentially bioactive compounds, could be explored as a neurohealth promoting agent, due to its collective neuroprotective, anti-inflammatory, and neurite outgrowth activities.
    Matched MeSH terms: Anti-Inflammatory Agents/isolation & purification; Anti-Inflammatory Agents/pharmacology*
  19. Yi YX, Gaurav A, Akowuah GA
    Curr Drug Discov Technol, 2020;17(2):248-260.
    PMID: 30332967 DOI: 10.2174/1570163815666181017091655
    INTRODUCTION: The primary aim of this study is to understand the binding of curcumin and its analogues to different PDE4 subtypes and identify the role of PDE4 subtype inhibition in the anti-inflammatory property of curcumin. Docking analysis has been used to acquire the above mentioned structural information and this has been further used for designing of curcumin derivatives with better anti-inflammatory activity.

    MATERIALS AND METHODS: Curcumin and its analogues were subjected to docking using PDE4A, PDE4B, PDE4C and PDE4D as the targets. A data set comprising 18 analogues of curcumin, was used as ligands for docking of PDE4 subtypes. Curcumin was used as the standard for comparison. Docking was performed using AutoDock Vina 1.1.2 software integrated in LigandScout 4.1. During this process water molecules were removed from proteins, charges were added and receptor structures were minimised by applying suitable force fields. The docking scores were compared, and the selectivity of compounds for PDE4B over PDE4D was calculated as well.

    RESULTS: All curcumin analogues used in the study showed good binding affinity with all PDE4 subtypes, with evident selectivity towards PDE4B subtype. Analogue A11 provides the highest binding affinity among all ligands.

    CONCLUSION: Curcumin and analogues have moderate to strong affinity towards all PDE4 subtypes and have evident selectivity towards PDE4B. The Oxygen atom of the methoxy group plays a key role in PDE4B binding and any alterations could interfere with the binding. Tetrahydropyran side chain and heterocyclic rings are also suggested to be helpful in PDE4B binding.

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*; Anti-Inflammatory Agents/chemistry
  20. Prasher P, Sharma M, Aljabali AAA, Gupta G, Negi P, Kapoor DN, et al.
    Drug Dev Res, 2020 11;81(7):837-858.
    PMID: 32579723 DOI: 10.1002/ddr.21704
    Majority of the representative drugs customarily interact with multiple targets manifesting unintended side effects. In addition, drug resistance and over expression of the cellular efflux-pumps render certain classes of drugs ineffective. With only a few innovative formulations in development, it is necessary to identify pharmacophores and novel strategies for creating new drugs. The conjugation of dissimilar pharmacophoric moieties to design hybrid molecules with an attractive therapeutic profile is an emerging paradigm in the contemporary drug development regime. The recent decade witnessed the remarkable biological potential of 1,3,5-triazine framework in the development of various chemotherapeutics. The appending of the 1,3,5-triazine nucleus to biologically relevant moieties has delivered exciting results. The present review focuses on 1,3,5-triazine based hybrid molecules in the development of pharmaceuticals.
    Matched MeSH terms: Anti-Inflammatory Agents/therapeutic use; Anti-Inflammatory Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links