Displaying publications 101 - 120 of 379 in total

Abstract:
Sort:
  1. Zinatizadeh AA, Mohamed AR, Abdullah AZ, Mashitah MD, Hasnain Isa M, Najafpour GD
    Water Res, 2006 Oct;40(17):3193-208.
    PMID: 16949124
    In this study, the interactive effects of feed flow rate (QF) and up-flow velocity (V up) on the performance of an up-flow anaerobic sludge fixed film (UASFF) reactor treating palm oil mill effluent (POME) were investigated. Long-term performance of the UASFF reactor was first examined with raw POME at a hydraulic loading rate (HRT) of 3 d and an influent COD concentration of 44300 mg/l. Extreme reactor instability was observed after 25 d. Raw POME was then chemically pretreated and used as feed. Anaerobic digestion of pretreated POME was modeled and analyzed with two operating variables, i.e. feed flow rate and up-flow velocity. Experiments were conducted based on a central composite face-centered design (CCFD) and analyzed using response surface methodology (RSM). The region of exploration for digestion of the pretreated POME was taken as the area enclosed by the feed flow rate (1.01, 7.63 l/d) and up-flow velocity (0.2, 3 m/h) boundaries. Twelve dependent parameters were either directly measured or calculated as response. These parameters were total COD (TCOD) removal, soluble COD (SCOD) removal, effluent pH, effluent total volatile fatty acid (TVFA), effluent bicarbonate alkalinity (BA), effluent total suspended solids (TSS), CH4 percentage in biogas, methane yield (Y M), specific methanogenic activity (SMA), food-to-sludge ratio (F/M), sludge height in the UASB portion and solid retention time (SRT). The optimum conditions for POME treatment were found to be 2.45 l/d and 0.75 m/h for QF and V up, respectively (corresponding to HRT of 1.5 d and recycle ratio of 23.4:1). The present study provides valuable information about interrelations of quality and process parameters at different values of the operating variables.
    Matched MeSH terms: Bioreactors*
  2. Zwain HM, Aziz HA, Dahlan I
    Environ Technol, 2018 Jun;39(12):1557-1565.
    PMID: 28514902 DOI: 10.1080/09593330.2017.1332692
    The performance of modified anaerobic inclining-baffled reactor (MAI-BR) treating recycled paper mill effluent (RPME) was investigated by varying the influent chemical oxygen demand (CODin) concentration from 1000 to 4000 mg/L, and the hydraulic retention time (HRT) from 3 to 1 day, corresponding to an organic loading rate increase from 0.33 to 4 g COD/L day. Throughout 126 days of operation, a maximum removal efficiency of up to 96% of chemical oxygen demand (COD) and 99% of biological oxygen demand, methane (CH4) yield of 0.259 L CH4/g COD, and a stable effluent pH of 6.5 were achieved. Furthermore, the compartmental performance showed that most of the organic substrates were removed in the initial two compartments, resulting in low pH and alkalinity levels and a high concentration of volatile fatty acids. Overall, the results showed that the MAI-BR successfully treated RPME, and the performance was affected by the variation of HRT more than the CODin.
    Matched MeSH terms: Bioreactors*
  3. Musa MA, Idrus S, Hasfalina CM, Daud NNN
    PMID: 30314290 DOI: 10.3390/ijerph15102220
    In this study, the performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor operating at mesophilic temperature (35 °C) was examined. Cattle slaughterhouse wastewater (CSWW) was used as the main substrate. The total and effective volumes of the reactor were 8 L and 6 L, respectively. Twelve different organic loading rates (OLR) were applied and the performance was evaluated. The chemical oxygen demand (COD) removal efficiency was more than 90% during batch study. In the continuous study, COD removal was also approximately 90% at OLR 0.4 g/L d-1 which subsequently dropped to below 50% when the loading rate increased to 15 g/L d-1. Approximately 5 L/d of biogas was obtained with high methane concentration at stages VI and XI corresponding to OLR of 2 and 10 g/L d-1, respectively. It was observed that the concentration of volatile fatty acids was low and that the alkalinity of the wastewater was sufficient to avoid acidification. Specific methane yields of 0.36 and 0.38 LCH₄/g COD added were achieved at OLR 7 and 10 g/L d-1. A hydraulic retention time (HRT) of 1 day was sufficient to remove greater than 70% of COD which correspond to 89% methane concentration. Parameters like soluble COD, NH₃-N, pH, alkalinity, total suspended solid (TSS), fats, oil, and grease were also investigated. The results show that the UASB reactor could serve as a good alternative for anaerobic treatment of CSWW and methane production.
    Matched MeSH terms: Bioreactors*
  4. Kadier A, Kalil MS, Chandrasekhar K, Mohanakrishna G, Saratale GD, Saratale RG, et al.
    Bioelectrochemistry, 2018 Feb;119:211-219.
    PMID: 29073521 DOI: 10.1016/j.bioelechem.2017.09.014
    Microbial electrolysis cells (MECs) are perceived as a potential and promising innovative biotechnological tool that can convert carbon-rich waste biomass or wastewater into hydrogen (H2) or other value-added chemicals. Undesired methane (CH4) producing H2 sinks, including methanogens, is a serious challenge faced by MECs to achieve high-rate H2 production. Methanogens can consume H2 to produce CH4 in MECs, which has led to a drop of H2 production efficiency, H2 production rate (HPR) and also a low percentage of H2 in the produced biogas. Organized inference related to the interactions of microbes and potential processes has assisted in understanding approaches and concepts for inhibiting the growth of methanogens and profitable scale up design. Thus, here in we review the current developments and also the improvements constituted for the reduction of microbial H2 losses to methanogens. Firstly, the greatest challenge in achieving practical applications of MECs; undesirable microorganisms (methanogens) growth and various studied techniques for eliminating and reducing methanogens activities in MECs were discussed. Additionally, this extensive review also considers prospects for stimulating future research that could help to achieve more information and would provide the focus and path towards MECs as well as their possibilities for simultaneously generating H2 and waste remediation.
    Matched MeSH terms: Bioreactors/microbiology
  5. Ng CA, Wong LY, Chai HY, Bashir MJK, Ho CD, Nisar H, et al.
    Water Sci Technol, 2017 Sep;76(5-6):1389-1398.
    PMID: 28953465 DOI: 10.2166/wst.2017.326
    Three different sizes of powdered activated carbon (PAC) were added in hybrid anaerobic membrane bioreactors (AnMBRs) and their performance was compared with a conventional AnMBR without PAC in treating palm oil mill effluent. Their working volume was 1 L each. From the result, AnMBRs with PAC performed better than the AnMBR without PAC. It was also found that adding a relatively smaller size of PAC (approximately 100 μm) enhanced the chemical oxygen demand removal efficiency to 78.53 ± 0.66%, while the concentration of mixed liquor suspended solid and mixed liquor volatile suspended solid were 8,050 and 6,850 mg/L, respectively. The smaller size of PAC could also enhance the biofloc formation and biogas production. In addition, the smaller particle sizes of PAC incorporated into polyethersulfone membrane resulted in higher performance of membrane fouling control and produced better quality of effluent as compared to the membrane without the addition of PAC.
    Matched MeSH terms: Bioreactors*
  6. Ismail IN, Taufik M, Umor NA, Norulhuda MR, Zulkarnaini Z, Ismail S
    Water Sci Technol, 2022 Dec;86(12):3093-3112.
    PMID: 36579872 DOI: 10.2166/wst.2022.403
    Treatment of ammonia- and nitrate-rich wastewater, such as that generated in the aquaculture industry, is important to prevent environmental pollution. The anaerobic ammonium oxidation (anammox) process has been reported as a great alternative in reducing ammoniacal nitrogen concentration in aquaculture wastewater treatment compared to conventional treatment systems. This paper will highlight the impact of the anammox process on aquaculture wastewater, particularly in the regulation of ammonia and nitrogen compounds. The state of the art for anammox treatment systems is discussed in comparison to other available treatment methods. While the anammox process is viable for the treatment of aquaculture wastewater, the efficiency of nitrogen removal could be further improved through the proper use of anammox bacteria, operating conditions, and microbial diversity. In conclusion, a new model of the anammox process is proposed in this review.
    Matched MeSH terms: Bioreactors/microbiology
  7. Purba LDA, Zahra SA, Yuzir A, Iwamoto K, Abdullah N, Shimizu K, et al.
    J Environ Manage, 2023 May 01;333:117374.
    PMID: 36758398 DOI: 10.1016/j.jenvman.2023.117374
    Despite various research works on algal-bacterial aerobic granular sludge for wastewater treatment and resource recovery processes, limited information is available on its application in real wastewater treatment in terms of performance, microbial community variation and resource recovery. This study investigated the performance of algal-bacterial aerobic granular sludge on real low-strength wastewater treatment in addition to the characterization of microbial community and fatty acid compositions for biodiesel production. The results demonstrated 71% COD, 77% NH4+-N and 31% phosphate removal efficiencies, respectively. In addition, all the water parameters successfully met the effluent standard A, imposed by the Department of Environment (DOE) Malaysia. Core microbiome analyses revealed important microbial groups (i.e., Haliangium ochraceum, Burkholderiales and Chitinophagaceae) in bacterial community. Meanwhile the photosynthetic microorganisms, such as Oxyphotobacteria and Trebouxiophyceae dominated the algal-bacterial aerobic granular sludge, suggesting their important roles in granulation and wastewater treatment. Up to 12.51 mg/gSS lipid content was recovered from the granules. In addition, fatty acids composition showed high percetages of C16:0 and C18:0, demonstrating high feasibility to be used for biodiesel production application indicated by the cetane number, iodine value and oxidation stability properties.
    Matched MeSH terms: Bioreactors/microbiology
  8. Lim JW, Lim PE, Seng CE, Adnan R
    Environ Sci Pollut Res Int, 2014 Jan;21(1):485-94.
    PMID: 23807562 DOI: 10.1007/s11356-013-1933-1
    The feasibility of using dried attached-growth biomass from the polyurethane (PU) foam cubes as a solid carbon source to enhance the denitrification process in the intermittently aerated moving bed sequencing batch reactor (IA-MBSBR) during the treatment of low COD/N containing wastewater was investigated. By packing the IA-MBSBR with 8% (v/v) of 8-mL PU foam cubes saturated with dried attached-growth biomass, total nitrogen removal efficiency of 80% could be achieved for 10 consecutive cycles of operation when the intermittent aeration strategy of consecutive 1 h of aeration followed by 2 h of non-aeration period during the REACT period of the IA-MBSBR was adopted. Negligible release of ammonium nitrogen (NH4(+)-N) and slow-release of COD from the dried biomass would ensure that the use of this solid carbon source would not further burden the treatment system. The slow-releasing COD was found to have no effect in promoting the assimilation process and would also allow the carbon source to be used for many cycles of operation. The 'carbon-spent' PU foam cubes could be reused by merely drying at 60 °C at the end of the operational mode. Thus, the dried attached-growth biomass formed on the PU foam cubes could be exploited as an alternative solid carbon source for the enhancement of denitrification process in the IA-MBSBR.
    Matched MeSH terms: Bioreactors/microbiology*
  9. Jagaba AH, Lawal IM, Ghfar AA, Usman AK, Yaro NSA, Noor A, et al.
    Chemosphere, 2023 Oct;339:139620.
    PMID: 37524265 DOI: 10.1016/j.chemosphere.2023.139620
    Agro-industrial biorefinery effluent (AIBW) is considered a highly polluting source responsible for environmental contamination. It contains high loads of chemical oxygen demand (COD), and phenol, with several other organic and inorganic constituents. Thus, an economic treatment approach is required for the sustainable discharge of the effluent. The long-term process performance, contaminant removal and microbial response of AIBW to rice straw-based biochar (RSB) and biochar-based geopolymer nanocomposite (BGC) as biosorbents in an activated sludge process were investigated. The adsorbents operated in an extended aeration system with a varied hydraulic retention time of between 0.5 and 1.5 d and an AIBW concentration of 40-100% for COD and phenol removal under standard conditions. Response surface methodology was utilised to optimize the process variables of the bioreactor system. Process results indicated a significant reduction of COD (79.51%, 98.01%) and phenol (61.94%, 74.44%) for BEAS and GEAS bioreactors respectively, at 1 d HRT and AIBW of 70%. Kinetic model analysis indicated that the Stover-Kincannon model best describes the system functionality, while the Grau model was better in predicting substrate removal rate and both with a precision of between R2 (0.9008-0.9988). Microbial communities examined indicated the abundance of genera, following the biosorbent addition, while RSB and BGC had no negative effect on the bioreactor's performance and bacterial community structure of biomass. Proteobacteria and Bacteroidetes were abundant in BEAS. While the GEAS achieved higher COD and phenol removal due to high Nitrosomonas, Nitrospira, Comamonas, Methanomethylovorans and Acinetobacter abundance in the activated sludge. Thus, this study demonstrated that the combination of biosorption and activated sludge processes could be promising, highly efficient, and most economical for AIBW treatment, without jeopardising the elimination of pollutants or the development of microbial communities.
    Matched MeSH terms: Bioreactors/microbiology
  10. Dahalan FA, Abdullah N, Yuzir A, Olsson G, Salmiati, Hamdzah M, et al.
    Bioresour Technol, 2015 Apr;181:291-6.
    PMID: 25661308 DOI: 10.1016/j.biortech.2015.01.062
    Aerobic granulation is increasingly used in wastewater treatment due to its unique physical properties and microbial functionalities. Granule size defines the physical properties of granules based on biomass accumulation. This study aims to determine the profile of size development under two physicochemical conditions. Two identical bioreactors namely Rnp and Rp were operated under non-phototrophic and phototrophic conditions, respectively. An illustrative scheme was developed to comprehend the mechanism of size development that delineates the granular size throughout the granulation. Observations on granules' size variation have shown that activated sludge revolutionised into the form of aerobic granules through the increase of biomass concentration in bioreactors which also determined the changes of granule size. Both reactors demonstrated that size transformed in a similar trend when tested with and without illumination. Thus, different types of aerobic granules may increase in size in the same way as recommended in the aerobic granule size development scheme.
    Matched MeSH terms: Bioreactors
  11. Nor Anuar A, Ujang Z, van Loosdrecht MC, de Kreuk MK
    Water Sci Technol, 2007;56(7):55-63.
    PMID: 17951868
    Aerobic granular sludge (AGS) technology has been extensively studied recently to improve sludge settling and behaviour in activated sludge systems. The main advantage is that aerobic granular sludge (AGS) can settle very fast in a reactor or clarifier because AGS is compact and has strong structure. It also has good settleability and a high capacity for biomass retention. Several experimental works have been conducted in this study to observe the settling behaviours of AGS. The study thus has two aims: (1) to compare the settling profile of AGS with other sludge flocs and (2) to observe the influence of mechanical mixing and design of the reactor to the settleability of AGS. The first experimental outcome shows that AGS settles after less than 5 min in a depth of 0.4 m compared to other sludge flocs (from sequencing batch reactor, conventional activated sludge and extended aeration) which takes more than 30 min. This study also shows that the turbulence from the mixing mechanism and shear in the reactor provides an insignificant effect on the AGS settling velocity.
    Matched MeSH terms: Bioreactors
  12. Abdullah MA, Ariff AB, Marziah M, Ali AM, Lajis NH
    J Agric Food Chem, 2000 Sep;48(9):4432-8.
    PMID: 10995375
    The effects of medium strategy, number of impellers, aeration mode, and mode of operation on Morinda elliptica cell suspension cultures in a stirred-tank bioreactor are described. A lower number of impellers and continuous aeration contributed toward high cell growth rate, whereas a higher number of impellers reduced cell growth rate, although not anthraquinone yield. The semicontinuous mode could indirectly imitate the larger scale version of production medium strategy and improved anthraquinone production even with 0. 012% (v/v) antifoam addition. Production medium promoted both growth (maximum dry cell weight of 24.6 g/L) and anthraquinone formation (maximum content of 19.5 mg/g of dry cell weight), without any necessity for antifoam addition. Cultures in production medium or with higher growth rate and anthraquinone production were less acidic than cultures in growth medium or with lower growth rate and anthraquinone production. Using the best operating variables, growth of M. elliptica cells (24.6 g/L) and anthraquinone yield (0.25 g/L) were 45% and 140%, respectively, lower than those using a shake flask culture after 12 days of cultivation.
    Matched MeSH terms: Bioreactors
  13. Rahmawati R, Bilad MR, Laziz AM, Nordin NAHM, Jusoh N, Putra ZA, et al.
    J Environ Manage, 2019 Nov 01;249:109359.
    PMID: 31404857 DOI: 10.1016/j.jenvman.2019.109359
    Membrane based technologies are highly reliable for water and wastewater treatment, including for removal of total oil and grease from produced water. However, performances of the pressure driven processes are highly restricted by membrane fouling and the application of traditional air bubbling system is limited by their low shear stress due to poor contacts with the membrane surface. This study develops and assesses a novel finned spacer, placed in between vertical panel, for membrane fouling control in submerged plate-and-frame module system for real produced water filtration. Results show that permeability of the panel is enhanced by 87% from 201 to 381 L/(m2 h bar). The spacer system can be operated in switching mode to accommodate two-sided panel aeration. This leads to panel permeability increment by 22% higher than the conventional vertical system. The mechanisms of finned spacer in encouraging the flow trajectory was proven by visual observation and flow simulation. The fins alter the air bubbles flow trajectory toward the membrane surface to effectively scour-off the foulant. Overall results demonstrate the efficacy of the developed spacer in projecting the air bubble trajectory toward the membrane surface and thus significantly enhances membrane panel productivity.
    Matched MeSH terms: Bioreactors
  14. We ACE, Aris A, Zain NAM, Muda K, Sulaiman S
    Chemosphere, 2021 Jan;263:128209.
    PMID: 33297168 DOI: 10.1016/j.chemosphere.2020.128209
    The present work investigates the feasibility of aerobic granulation for the treatment of low-medium strength domestic wastewater for long-term operation and effects of a static mixer on the properties and removal performances of the aerobic granules formed. The static mixer was installed in a sequential batch reactor to provide higher hydrodynamic shear force in enhancing the formation of the aerobic granules. Aerobic granules were successfully formed in the domestic wastewater, and the granulation treatment system was sustained for a period of 356 days without granules disintegration. Subsequent to the installation, aerobic granules with a low SVI30 of 41.37 mL/gTSS, average diameter 1.11 mm, granular strength with integrity coefficient 10.4% and regular shape with minimum filamentous outgrowth were formed. Mineral concentrations such as Fe, Mg, Ca and Na as well as composition of protein and polysaccharide in tightly bound-extracellular polymeric substance of the aerobic granules were found to be higher under the effect of the static mixer. However, no significant improvement was observed on the TCOD, NH4+-N and TSS removal performance. Good TCOD and TSS removal performance of above 85% and 90%, respectively and moderate NH4+-N removal performance of about 60% were observed throughout the study. Higher simultaneous nitrification and denitrification (SND) efficiency of 56% was observed after the installation of the static mixer, as compared to 21% prior. Therefore, it may be concluded that the installation of the static mixer significantly improved the properties of aerobic granules formation and SND efficiency but not the TCOD, NH4+-N and TSS removal performance.
    Matched MeSH terms: Bioreactors
  15. Sayed K, Baloo L, Sharma NK
    PMID: 33668225 DOI: 10.3390/ijerph18052226
    A crude oil spill is a common issue during offshore oil drilling, transport and transfer to onshore. Second, the production of petroleum refinery effluent is known to cause pollution due to its toxic effluent discharge. Sea habitats and onshore soil biota are affected by total petroleum hydrocarbons (TPH) as a pollutant in their natural environment. Crude oil pollution in seawater, estuaries and beaches requires an efficient process of cleaning. To remove crude oil pollutants from seawater, various physicochemical and biological treatment methods have been applied worldwide. A biological treatment method using bacteria, fungi and algae has recently gained a lot of attention due to its efficiency and lower cost. This review introduces various studies related to the bioremediation of crude oil, TPH and related petroleum products by bioaugmentation and biostimulation or both together. Bioremediation studies mentioned in this paper can be used for treatment such as emulsified residual spilled oil in seawater with floating oil spill containment booms as an enclosed basin such as a bioreactor, for petroleum hydrocarbons as a pollutant that will help environmental researchers solve these problems and completely clean-up oil spills in seawater.
    Matched MeSH terms: Bioreactors
  16. Soomro RR, Ndikubwimana T, Zeng X, Lu Y, Lin L, Danquah MK
    Front Plant Sci, 2016;7:113.
    PMID: 26904075 DOI: 10.3389/fpls.2016.00113
    Even though microalgal biomass is leading the third generation biofuel research, significant effort is required to establish an economically viable commercial-scale microalgal biofuel production system. Whilst a significant amount of work has been reported on large-scale cultivation of microalgae using photo-bioreactors and pond systems, research focus on establishing high performance downstream dewatering operations for large-scale processing under optimal economy is limited. The enormous amount of energy and associated cost required for dewatering large-volume microalgal cultures has been the primary hindrance to the development of the needed biomass quantity for industrial-scale microalgal biofuels production. The extremely dilute nature of large-volume microalgal suspension and the small size of microalgae cells in suspension create a significant processing cost during dewatering and this has raised major concerns towards the economic success of commercial-scale microalgal biofuel production as an alternative to conventional petroleum fuels. This article reports an effective framework to assess the performance of different dewatering technologies as the basis to establish an effective two-stage dewatering system. Bioflocculation coupled with tangential flow filtration (TFF) emerged a promising technique with total energy input of 0.041 kWh, 0.05 kg CO2 emissions and a cost of $ 0.0043 for producing 1 kg of microalgae biomass. A streamlined process for operational analysis of two-stage microalgae dewatering technique, encompassing energy input, carbon dioxide emission, and process cost, is presented.
    Matched MeSH terms: Bioreactors
  17. Guo X, Sun C, Lin R, Xia A, Huang Y, Zhu X, et al.
    J Hazard Mater, 2020 11 15;399:122830.
    PMID: 32937692 DOI: 10.1016/j.jhazmat.2020.122830
    Stimulating direct interspecies electron transfer with conductive materials is a promising strategy to overcome the limitation of electron transfer efficiency in syntrophic methanogenesis of industrial wastewater. This paper assessed the impact of conductive foam nickel (FN) supplementation on syntrophic methanogenesis and found that addition of 2.45 g/L FN in anaerobic digestion increased the maximum methane production rate by 27.4 % (on day 3) while decreasing the peak production time by 33 % as compared to the control with no FN. Cumulative methane production from day 2 to 6 was 14.5 % higher with addition of 2.45 g/L FN than in the control. Levels of FN in excess of 2.45 g/L did not show benefits. Cyclic voltammetry results indicated that the biofilm formed on the FN could generate electrons. The dominant bacterial genera in suspended sludge were Dechlorobacter and Rikenellaceae DMER64, whereas that in the FN biofilm was Clostridium sensu stricto 11. The dominant archaea Methanosaeta in the FN biofilm was enriched by 14.1 % as compared to the control.
    Matched MeSH terms: Bioreactors
  18. Goh, W.N., Rosma, A., Kaur, B., Fazilah, A., Karim, A.A., Rajeev Bhat
    MyJurnal
    The yield and properties of cellulose produced from bacterial fermentation of black tea broth (known as Kombucha) were investigated in this study. The tea broth was fermented naturally over a period of up to 8 days in the presence of sucrose. Tea broth with a sucrose concentration of 90 g/l produced highest yield of bacterial cellulose (66.9%). The thickness and yield of bacterial cellulose increased with fermentation time. The bacterial cellulose production increased correspondingly with increased surface area:depth ratio. Changes in pH were related to the symbiotic metabolic activities of yeasts and acetic acid bacteria, and the counts of both of these in the tea broths were relatively higher than those in the cellulose layer. Findings from this study suggest that the yield of cellulose depends on many factors that need to be optimized to achieve maximum yield.
    Matched MeSH terms: Bioreactors
  19. Abolhassani, Y, Khan, M.A., Salam, A.B, Ghasem, M.
    MyJurnal
    The effects of lactic acid bacteria (Lactobacillus plantarum and Lactobacillus bulgaricus) inoculation
    on the sensory attributes and consumers acceptance of fermented curry paste compared with uncultured sample were assessed. pH, titratable acidity (TA) and color changes, during four-month storage were monitored. Hedonic test was utilized to evaluate consumer perception and acceptability of fermented and ordinary curry pastes. Rapid pH drop was observed in inoculated sample with Lb. plantarum presenting better performance than the Lb. bulgaricus. Titratable acidity increased significantly (p0.05) in most of the attributes of
    original recipe and fermented curry paste except for color and sweetness. In summary, this study showed fermented curry paste with Lb. plantarum and Lb. bulgaricus exhibited new sensory attributes encouraging acceptability by consumers.
    Matched MeSH terms: Bioreactors
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links