Displaying publications 101 - 120 of 277 in total

Abstract:
Sort:
  1. Abedin MZ, Karim AA, Latiff AA, Gan CY, Ghazali FC, Barzideh Z, et al.
    Nat Prod Res, 2014;28(16):1302-5.
    PMID: 24670209 DOI: 10.1080/14786419.2014.900617
    The molecular mass distribution, amino acid composition and radical-scavenging activity of collagen hydrolysates prepared from collagen isolated from the sea cucumber Stichopus vastus were investigated. β and α1 chains of the collagen were successfully hydrolysed by trypsin. The molecular mass distribution of the hydrolysates ranged from 5 to 25 kDa, and they were rich in glycine, alanine, glutamate, proline and hydroxyproline residues. The hydrolysates exhibited excellent radical-scavenging activity. These results indicate that collagen hydrolysates from S. vastus can be used as a functional ingredient in food and nutraceutical products.
    Matched MeSH terms: Collagen/chemistry*
  2. Lo TS, Tan YL, Khanuengkitkong S, Dass AK, Cortes EF, Wu PY
    J Minim Invasive Gynecol, 2014 Sep-Oct;21(5):753-61.
    PMID: 24607796 DOI: 10.1016/j.jmig.2014.02.013
    STUDY OBJECTIVE: To assess the morphologic features of anterior armed transobturator collagen-coated polypropylene mesh and its clinical outcomes in pelvic reconstructive surgery to treat pelvic organ prolapse.
    DESIGN: Evidence obtained from several timed series with intervention (Canadian Task Force classification II-3).
    SETTING: Chang Gung Memorial Hospital, Taoyuan, Taiwan, China.
    PATIENTS: Between April 2010 and October 2012, 70 patients underwent surgery to treat symptomatic pelvic organ prolapse, stage III/IV according to the POP-Q (Pelvic Organ Quantification System).
    INTERVENTION: Anterior armed transobturator collagen-coated mesh.
    MEASUREMENT AND MAIN RESULTS: Morphologic findings and clinical outcome were measured. Morphologic features were assessed via 2-dimensional introital ultrasonography and Doppler studies. Clinical outcome was measured via subjective and objective outcome. Objective outcome was assessed via the 9-point site-specific staging method of the International Continence Society Pelvic Organ Prolapse Quantification before the operation and at 1-year postoperative follow-up. Subjective outcome was based on 4 validated questionnaires: the 6-item UDI-6 (Urogenital Distress Inventory), the 7-item IIQ-7 (Incontinence Impact Questionnaire), the 6-item POPDI-6 (Pelvic Organ Prolapse Distress Inventory 6), and the 12-item PISQ-12 (Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire), at baseline and at 12 months after the operation. Data were obtained for 65 patients who underwent the combined surgery and were able to comply with follow-up for >1 year. Ultrasound studies reveal that mesh length tends to shorten and decrease in thickness over the 1-year follow-up. Vagina thickness also was reduced. Neovascularization through the mesh was observed in <8.5% of patients in the first month and at 1 year, and was evident in approximately 83%. The mesh exposure rate was 6.4%. The recorded objective cure was 90.8% (59 of 65 patients), and subjective cure was 89.2% (58 of 65 patients) at mean (SD) follow-up of 19.40 (10.98) months. At 2 years, UDI-6, IIQ-7, and POPDI-6 scores were all significantly decreased (p < .001), whereas the PISQ-12 score was significantly increased (p = .01).
    CONCLUSIONS: Ultrasound features suggest that the degeneration of collagen barrier may be longer than expected and that integration of collagen-coated mesh could occur up to 1 year. A substantially good clinical outcome was noted.
    KEYWORDS: Anterior vaginal mesh; Collagen-coated mesh; Morphology; Outcome; Pelvic organ prolapse
    Matched MeSH terms: Collagen/chemistry
  3. Dhiyaaldeen SM, Alshawsh MA, Salama SM, Alwajeeh NS, Al Batran R, Ismail S, et al.
    Biomed Res Int, 2014;2014:792086.
    PMID: 24587992 DOI: 10.1155/2014/792086
    Wound healing involves inflammation followed by granular tissue development and scar formation. In this study, synthetic chalcone 3-(2-Chlorophenyl)-1-phenyl-propenone (CPPP) was investigated for a potential role in enhancing wound healing and closure. Twenty-four male rats were divided randomly into 4 groups: carboxymethyl cellulose (CMC) (0.2 mL), Intrasite gel, and CPPP (25 or 50 mg/mL). Gross morphology, wounds treatment with the CPPP, and Intrasite gel accelerate the rate of wound healing compared to CMC group. Ten days after surgery, the animals were sacrificed. Histological assessment revealed that the wounds treated with CPPP showed that wound closure site contained little amount of scar and the granulation tissue contained more collagen and less inflammatory cells than wound treated with CMC. This finding was confirmed with Masson's trichrome staining. The antioxidant defence enzymes catalase (CAT) and superoxide dismutase (SOD) were significantly increased in the wound homogenates treated with CPPP (P < 0.05) compared to CMC treated group. However, in the CPPP treatment group, lipid peroxidation (MDA) was significantly decreased (P < 0.05), suggesting that the CPPP also has an important role in protection against lipid peroxidation-induced skin injury after ten days of treatment with CPPP, which is similar to the values of cytokines TGF-β and TNF-α in tissue homogenate. Finally the administration of CPPP at a dosage of 25 and 50 mg/kg was suitable for the stimulation of wound healing.
    Matched MeSH terms: Collagen/metabolism
  4. Tay LX, Lim CK, Mansor A, Kamarul T
    Int J Med Sci, 2014;11(1):24-33.
    PMID: 24396283 DOI: 10.7150/ijms.7244
    This preliminary study aims to determine the differentially expressed proteins from chondrogenic differentiated multipotent stromal cells (cMSCs) in comparison to undifferentiated multipotent stromal cells (MSCs) and adult chondrocytes (ACs).
    Matched MeSH terms: Collagen Type II/metabolism
  5. Bunawan H, Amin NM, Bunawan SN, Baharum SN, Mohd Noor N
    PMID: 24772185 DOI: 10.1155/2014/902734
    Ficus deltoidea Jack (Moraceae) has had a long history of use in traditional medicine among the Malays to alleviate and heal ailments such as sores, wounds, and rheumatism and as an after-birth tonic and an antidiabetic drug. Modern pharmacological studies demonstrated that this plant has a wide variety of beneficial attributes for human health. Despite its importance, a review of this species has not been published in the scientific literature to date. Here, we review and summarize the historic and current literature concerning the botany, traditional uses, phytochemistry, pharmacological effects, and toxicity of this wonder plant. This summary could be beneficial for future research aiming to exploit the therapeutic potential of this useful, medicinal species.
    Matched MeSH terms: Collagen Diseases
  6. Zulkifli FH, Jahir Hussain FS, Abdull Rasad MS, Mohd Yusoff M
    J Biomater Appl, 2015 Feb;29(7):1014-27.
    PMID: 25186524 DOI: 10.1177/0885328214549818
    The aim of this research is to develop biocompatible nanofibrous mats using hydroxyethyl cellulose with improved cellular adhesion profiles and stability and use these fibrous mats as potential scaffold for skin tissue engineering. Glutaraldehyde was used to treat the scaffolds water insoluble as well as improve their biostability for possible use in biomedical applications. Electrospinning of hydroxyethyl cellulose (5 wt%) with poly(vinyl alcohol) (15 wt%) incorporated with and without collagen was blended at (1:1:1) and (1:1) ratios, respectively, and was evaluated for optimal criteria as tissue engineering scaffolds. The nanofibrous mats were crosslinked and characterized by scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Scanning electron microscope images showed that the mean diameters of blend nanofibers were gradually increased after chemically crosslinking with glutaraldehyde. Fourier transform infrared spectroscopy was carried out to understand chemical interactions in the presence of aldehyde groups. Thermal characterization results showed that the stability of hydroxyethyl cellulose/poly(vinyl alcohol) and hydroxyethyl cellulose/poly(vinyl alcohol)/collagen nanofibers was increased with glutaraldehyde treatment. Studies on cell-scaffolds interaction were carried out by culturing human fibroblast (hFOB) cells on the nanofibers by assessing the growth, proliferation, and morphologies of cells. The scanning electron microscope results show that better cell proliferation and attachment appeared on hydroxyethyl cellulose/poly(vinyl alcohol)/collagen substrates after 7 days of culturing, thus, promoting the potential of electrospun scaffolds as a promising candidate for tissue engineering applications.
    Matched MeSH terms: Collagen/chemistry*
  7. Khor KH, Campbell FE, Owen H, Shiels IA, Mills PC
    Vet J, 2015 Feb;203(2):161-8.
    PMID: 25573453 DOI: 10.1016/j.tvjl.2014.11.018
    The histological features of feline hypertrophic cardiomyopathy (HCM) have been well documented, but there are no reports describing the histological features in mild pre-clinical disease, since cats are rarely screened for the disease in the early stages before clinical signs are apparent. Histological changes at the early stage of the disease in pre-clinical cats could contribute to an improved understanding of disease aetiology or progression. The aim of this study was to evaluate the histological features of HCM in the left ventricular (LV) myocardium of cats diagnosed with pre-clinical HCM. Clinically healthy cats with normal (n = 11) and pre-clinical HCM (n = 6) were identified on the basis of echocardiography; LV free wall dimensions (LVFWd) and/or interventricular septal wall (IVSd) dimensions during diastole of 6-7 mm were defined as HCM, while equivalent dimensions <5.5 mm were defined as normal. LV myocardial sections were assessed and collagen content and inflammatory cell infiltrates were quantified objectively. Multifocal areas of inflammatory cell infiltration, predominantly lymphocytes, were observed frequently in the left myocardium of cats with pre-clinical HCM. Tissue from cats with pre-clinical HCM also had a higher number of neutrophils and a greater collagen content than the myocardium of normal cats. The myocardium variably demonstrated other features characteristic of HCM, including arteriolar mural hypertrophy and interstitial fibrosis and, to a lesser extent, myocardial fibre disarray and cardiomyocyte hypertrophy. These results suggest that an inflammatory process could contribute to increased collagen content and the myocardial fibrosis known to be associated with HCM.
    Matched MeSH terms: Collagen/metabolism*
  8. Xian LJ, Chowdhury SR, Bin Saim A, Idrus RB
    Cytotherapy, 2015 Mar;17(3):293-300.
    PMID: 25456581 DOI: 10.1016/j.jcyt.2014.10.005
    Platelet-rich plasma (PRP) has been found to contain a high concentration of growth factors that are present during the process of healing. Studies conducted found that application of PRP accelerates wound healing. In this study, we characterized the skin cell suspension harvested using the co-isolation technique and evaluated the effects of PRP (10% and 20%, v/v) on co-cultured keratinocytes and fibroblasts in terms of wound healing.
    Matched MeSH terms: Collagen/metabolism; Collagen Type I/metabolism; Collagen Type III/metabolism
  9. Lau PS, Bidin N, Krishnan G, Nassir Z, Bahktiar H
    J Cosmet Laser Ther, 2015 Apr;17(2):86-9.
    PMID: 25260140 DOI: 10.3109/14764172.2014.968587
    Low-energy laser irradiance at certain wavelengths is able to stimulate the tissue bio-reaction and enhance the healing process. Collagen deposition is one of the important aspects in healing process because it can increase the strength of the skin. This study was designed to examine the biophotonic effect of irradiance on collagen production of diabetic wound in rat model. The tensile strength of skin was employed as a parameter to describe the wound. Diabetic rat models were induced by streptozotocin via intravenous injection. Skin-breaking strength was measured using an Instron tensile test machine. The experimental animals were treated with 808-nm diode laser at two different powers-0.1 and 0.5 W/cm(2)-and 30, 60, and 120 s for each session. The tensile strength was optimized after treated with high-power diode laser. The photostimulation effect was revealed by accelerated healing process and enhanced tensile strength of wound. Laser photostimulation on tensile strength in diabetic wound suggests that such therapy facilitates collagen production in diabetic wound healing.
    Matched MeSH terms: Collagen/biosynthesis*
  10. Ngan CL, Basri M, Tripathy M, Abedi Karjiban R, Abdul-Malek E
    Eur J Pharm Sci, 2015 Apr 5;70:22-8.
    PMID: 25619806 DOI: 10.1016/j.ejps.2015.01.006
    Despite the fact that intrinsic oxidative stress is inevitable, the extrinsic factor such as ultraviolet radiation enhances reactive oxygen species (ROS) generation resulting in premature skin aging. Nanoemulsion was loaded with fullerene, a strong free radical scavenger, and its efficacy to provide protection and regenerative effect against ROS-induced collagen breakdown in human skin was studied. Stable fullerene nanoemulsions were formulated using high shear homogenization and ultrasonic dispersion technique. An open trial was conducted using fullerene nanoemulsion on skin twice a day for 28 days. The mean collagen score significantly increased (P<0.05) from 36.53±4.39 to 48.69±5.46 with 33.29% increment at the end of the treatment. Biophysical characteristics of skin revealed that skin hydration was increased significantly (P<0.05) from 40.91±7.01 to 58.55±6.08 corneometric units (43.12% increment) and the water was able to contain within the stratum corneum without any increased in transepidermal water loss. In the in vitro safety evaluation, fullerene nanoemulsion showed no acute toxicity on 3T3 fibroblast cell line for 48h and no indication of potential dermal irritation. Hence, the fullerene nanoemulsion may assist in protecting collagen from breakdown with cosmeceutical benefit.
    Matched MeSH terms: Collagen/physiology*; Collagen/chemistry
  11. Abood WN, Al-Henhena NA, Najim Abood A, Al-Obaidi MM, Ismail S, Abdulla MA, et al.
    Bosn J Basic Med Sci, 2015 05 12;15(2):25-30.
    PMID: 26042509 DOI: 10.17305/bjbms.2015.39
    The wound-healing potential of Phaleria macrocarpa was evaluated by monitoring the levels of inflammatory mediators, collagen, and antioxidant enzymes. Experimentally, two-centimeter-wide full-thickness-deep skin excision wounds were created on the posterior neck area of the rats. The wounds were topically treated with gum acacia as a vehicle in the control group, intrasite gel in the reference group, and 100 and 200 mg/mL P. macrocarpa ‎fruit extract in the treatment group. Granulation tissues were excised on the 15th day and were further processed for histological and biochemical analyzes. Wound healing was evaluated by measuring the contractions and protein contents of the wounds. Cellular redistribution and collagen deposition were assessed morphologically using Masson's trichrome stain. Superoxide dismutase (SOD) and catalase (CAT) activities, along with malondialdehyde (MDA) level were determined in skin tissue homogenates of the dermal wounds. Serum levels of transforming growth factor beta 1 (TGF-β1) and tumor necrosis factor alpha (TNF-α) were evaluated in all the animals. A significant decrease in wound area was caused by a significant increase in TGF-β1 level in the treated groups. Decrease in TNF-α level and increase in the collagen formation were also observed in the treated groups. Topical treatment with P. macrocarpa fruit extract increased the SOD and CAT activities in the healing wounds, thereby significantly increasing MDA level. The topical treatment with P. macrocarpa fruit extract showed significant healing effect on excision wounds and demonstrated an important role in the inflammation process by increasing antioxidant enzyme activities, thereby accelerating the wound healing process and reducing tissue injury.
    Matched MeSH terms: Collagen/metabolism
  12. Mieczkowska A, Mansur SA, Irwin N, Flatt PR, Chappard D, Mabilleau G
    Bone, 2015 Jul;76:31-9.
    PMID: 25813583 DOI: 10.1016/j.bone.2015.03.010
    Type 1 diabetes mellitus (T1DM) is a severe disorder characterized by hyperglycemia and hypoinsulinemia. A higher occurrence of bone fractures has been reported in T1DM, and although bone mineral density is reduced in this disorder, it is also thought that bone quality may be altered in this chronic pathology. Vibrational microscopies such as Fourier transform infrared microspectroscopy (FTIRM) represent an interesting approach to study bone quality as they allow investigation of the collagen and mineral compartment of the extracellular matrix in a specific bone location. However, as spectral feature arising from the mineral may overlap with those of the organic component, the demineralization of bone sections should be performed for a full investigation of the organic matrix. The aims of the present study were to (i) develop a new approach, based on the demineralization of thin bone tissue section to allow a better characterization of the bone organic component by FTIRM, (ii) to validate collagen glycation and collagen integrity in bone tissue and (iii) to better understand what alterations of tissue material properties in newly forming bone occur in T1DM. The streptozotocin-injected mouse (150 mg/kg body weight, injected at 8 weeks old) was used as T1DM model. Animals were randomly allocated to control (n = 8) or diabetic (n = 10) groups and were sacrificed 4 weeks post-STZ injection. Bones were collected at necropsy, embedded in polymethylmethacrylate and sectioned prior to examination by FTIRM. FTIRM collagen parameters were collagen maturity (area ratio between 1660 and 1690 cm(-1) subbands), collagen glycation (area ratio between the 1032 cm(-1) subband and amide I) and collagen integrity (area ratio between the 1338 cm(-1) subband and amide II). No significant differences in the mineral compartment of the bone matrix could be observed between controls and STZ-injected animals. On the other hand, as compared with controls, STZ-injected animals presented with significant higher value for collagen maturity (17%, p = 0.0048) and collagen glycation (99%, p = 0.0121), while collagen integrity was significantly lower by 170% (p = 0.0121). This study demonstrated the profound effect of early T1DM on the organic compartment of the bone matrix in newly forming bone. Further studies in humans are required to ascertain whether T1DM also lead to similar effect on the quality of the bone matrix.
    Matched MeSH terms: Collagen/metabolism
  13. Gumel AM, Razaif-Mazinah MR, Anis SN, Annuar MS
    Biomed Mater, 2015 Aug;10(4):045001.
    PMID: 26154416 DOI: 10.1088/1748-6041/10/4/045001
    Wound management and healing in several physiological or pathological conditions, particularly when comorbidities are involved, usually proves to be difficult. This presents complications leading to socio-economic and public health burdens. The accelerative wound healing potential of biocompatible poly(3-hydroxyalkanoates)-co-(6-hydroxyhexanoate) (PHA-PCL) composite hydrogel is reported herein. The biosynthesized PHA-PCL macromer was cross-linked with PEGMA to give a hydrogel. Twenty-four rats weighing 200-250 g each were randomly assigned to four groups of six rats. Rats in group I (negative control) were dressed with sterilized gum acacia paste in 10% normal saline while PEGMA-alone hydrogel (PH) was used to dress group II (secondary control) rats. Group III rats were dressed with PHAs-PCL cross-linked PEGMA hydrogel (PPH). For the positive control (group IV), the rats were dressed with Intrasite(®) gel. Biochemical, histomorphometric and immunohistomorphometric analyses revealed a significant difference in area closure and re-epithelialization on days 7 and 14 in PPH or Intrasite(®) gel groups compared to gum acacia or PEGMA-alone groups. Furthermore, wounds dressed with PPH or Intrasite(®) gel showed evident collagen deposition, enhanced fibrosis and extensively organized angiogenesis on day 14 compared to the negative control group. While improvement in wound healing of the PH dressed group could be observed, there was no significant difference between the negative control group and the PH dressed group in any of the tests. The findings suggested that topical application of PPH accelerated the rats' wound healing process by improving angiogenesis attributed to the increased microvessel density (MVD) and expressions of VEGF-A in tissue samples. Thus, PPH has been demonstrated to be effective in the treatment of cutaneous wounds in rats, and could be a potential novel agent in the management and acceleration of wound healing in humans and animals.
    Matched MeSH terms: Collagen/metabolism
  14. Abdul Rahman R, Mohamad Sukri N, Md Nazir N, Ahmad Radzi MA, Zulkifly AH, Che Ahmad A, et al.
    Tissue Cell, 2015 Aug;47(4):420-30.
    PMID: 26100682 DOI: 10.1016/j.tice.2015.06.001
    Articular cartilage is well known for its simple uniqueness of avascular and aneural structure that has limited capacity to heal itself when injured. The use of three dimensional construct in tissue engineering holds great potential in regenerating cartilage defects. This study evaluated the in vitro cartilaginous tissue formation using rabbit's bone marrow mesenchymal stem cells (BMSCs)-seeded onto poly(lactic-co-glycolic acid) PLGA/fibrin and PLGA scaffolds. The in vitro cartilaginous engineered constructs were evaluated by gross inspection, histology, cell proliferation, gene expression and sulphated glycosaminoglycan (sGAG) production at week 1, 2 and 3. After 3 weeks of culture, the PLGA/fibrin construct demonstrated gross features similar to the native tissue with smooth, firm and glistening appearance, superior histoarchitectural and better cartilaginous extracellular matrix compound in concert with the positive glycosaminoglycan accumulation on Alcian blue. Significantly higher cell proliferation in PLGA/fibrin construct was noted at day-7, day-14 and day-21 (p<0.05 respectively). Both constructs expressed the accumulation of collagen type II, collagen type IX, aggrecan and sox9, showed down-regulation of collagen type I as well as produced relative sGAG content with PLGA/fibrin construct exhibited better gene expression in all profiles and showed significantly higher relative sGAG content at each time point (p<0.05). This study suggested that with optimum in vitro manipulation, PLGA/fibrin when seeded with pluripotent non-committed BMSCs has the capability to differentiate into chondrogenic lineage and may serve as a prospective construct to be developed as functional tissue engineered cartilage.
    Matched MeSH terms: Collagen Type II/chemistry
  15. Baleg SM, Bidin N, Suan LP, Ahmad MF, Krishnan G, Johari AR, et al.
    J Cosmet Dermatol, 2015 Sep;14(3):246-53.
    PMID: 25817596 DOI: 10.1111/jocd.12142
    The aim of this study was to evaluate the effects of multiple pulses on the depth of injury caused by CO2 laser in an in vivo rat model.
    Matched MeSH terms: Collagen/analysis
  16. Feng Z, Ishiguro Y, Fujita K, Kosawada T, Nakamura T, Sato D, et al.
    Biomaterials, 2015 Oct;67:365-81.
    PMID: 26247391 DOI: 10.1016/j.biomaterials.2015.07.038
    In this paper, we present a general, fibril-based structural constitutive theory which accounts for three material aspects of crosslinked filamentous materials: the single fibrillar force response, the fibrillar network model, and the effects of alterations to the fibrillar network. In the case of the single fibrillar response, we develop a formula that covers the entropic and enthalpic deformation regions, and introduce the relaxation phase to explain the observed force decay after crosslink breakage. For the filamentous network model, we characterize the constituent element of the fibrillar network in terms its end-to-end distance vector and its contour length, then decompose the vector orientation into an isotropic random term and a specific alignment, paving the way for an expanded formalism from principal deformation to general 3D deformation; and, more important, we define a critical core quantity over which macroscale mechanical characteristics can be integrated: the ratio of the initial end-to-end distance to the contour length (and its probability function). For network alterations, we quantitatively treat changes in constituent elements and relate these changes to the alteration of network characteristics. Singular in its physical rigor and clarity, this constitutive theory can reproduce and predict a wide range of nonlinear mechanical behavior in materials composed of a crosslinked filamentous network, including: stress relaxation (with dual relaxation coefficients as typically observed in soft tissues); hysteresis with decreasing maximum stress under serial cyclic loading; strain-stiffening under uniaxial tension; the rupture point of the structure as a whole; various effects of biaxial tensile loading; strain-stiffening under simple shearing; the so-called "negative normal stress" phenomenon; and enthalpic elastic behaviors of the constituent element. Applied to compacted collagen gels, the theory demonstrates that collagen fibrils behave as enthalpic elasticas with linear elasticity within the gels, and that the macroscale nonlinearity of the gels originates from the curved fibrillar network. Meanwhile, the underlying factors that determine the mechanical properties of the gels are clarified. Finally, the implications of this study on the enhancement of the mechanical properties of compacted collagen gels and on the cellular mechanics with this model tissue are discussed.
    Matched MeSH terms: Collagen/pharmacology*
  17. Bohari SP, Grover LM, Hukins DW
    J Tissue Eng, 2015 Nov 19;6:2041731415615777.
    PMID: 26668710 DOI: 10.1177/2041731415615777
    This study evaluated the effect of pulsed low-intensity ultrasound on cell proliferation, collagen production and glycosaminoglycan deposition by human dermal fibroblasts encapsulated in alginate. Hoechst 33258 assay for cell number, hydroxyproline assay for collagen content, dimethylmethylene blue assay for glycosaminoglycan content and scanning electron microscopy were performed on the encapsulated cells treated with pulsed low-intensity ultrasound and a control group that remained untreated. Pulsed low-intensity ultrasound showed a significant effect on cell proliferation and collagen deposition but no consistent pattern for glycosaminoglycan content. Alcian blue staining showed that glycosaminoglycans were deposited around the cells in both treated and control groups. These results suggest that pulsed low-intensity ultrasound alone shows a positive effect on cell proliferation and collagen deposition even without growth factor supplements.
    Matched MeSH terms: Collagen
  18. Normah, I., Nur-Hani Suryati, M.Z.
    MyJurnal
    Collagen was isolated from threadfin bream (Nemipterus japonicas) waste (mixture of scale and fin) by using 0.5 M citric acid or calamansi juice (Citrofortunella microcarpa) for 12 and 24 hrs at 4°C. The physico-chemical characteristics of the collagens were then compared with the commercial collagen. Shorter extraction time (12 hrs) and extraction using calamansi juice resulted in higher yield. The yield was 22% (12 hrs) and 20.37% (24 hrs) for collagen extracted using calamansi juice and 8.3% (12 hrs) and 6.9% (24 hrs) for collagen extracted using citric acid. Collagen extracted using calamansi juice were light yellow (L = 93.70, a = -1.84, b = 13.44) while citric acid collagens were white (L = 94.82, a = 0.31, b = 0.20). Sensory evaluation on odor recognition test showed that collagen extracted with calamansi juice has a pleasant
    natural fragrance which is sweet citrus. Electrophoresis profile indicated that the collagen were of type I comprising of α1 and α2 chains. Threadfin bream collagen contained higher amount of imino acids proline (254.72 to 275.50/1000 residues) and hydroxyproline (7.56 to 13.50/1000 residues) than commercial collagen which is 21.25 and 5.16/1000 residues, respectively. Maximum transition temperature (Tmax) falls within a close range for all the collagens ranging from 24.81 to 25.91°C. Calamansi juice collagens were more viscous compared to others. The extraction of threadfin bream collagen for 12 hrs using calamansi juice generally leads to collagen characterised by pleasant odor, reasonably high yield and more viscous. Therefore, natural source such as calamansi juice could be an alternative medium for collagen extraction.
    Matched MeSH terms: Collagen
  19. Hashim, P., Mohd Ridzwan, M.S., Bakar, J., Mat Hashim, D.
    MyJurnal
    This paper reviews the structure, function and applications of collagens in food industry. Collagen is the most abundant protein in animal origin. It helps maintaining the structure of various tissues and organs. It is a modern foodstuff and widely used in food and beverage industries to improve the elasticity, consistency and stability of products. Furthermore, it also enhances the quality, nutritional and health value of the products. Collagen has been applied as protein dietary supplements, carriers, food additive, edible film and coatings. Therefore, this paper will review the functions and applications of collagen in the food and beverage industries. The structure and composition of collagen are also included.
    Matched MeSH terms: Collagen
  20. Abedin, M.Z., Karim, A.A., Gan, C.Y., Ghazali, F.C., Barzideh, Z., Zzaman, W., et al.
    MyJurnal
    The sea cucumber (Stichopus vastus) is an underutilized species, as most of its parts, including the integument (high collagen content) are thrown away during processing. The aim of this study was to investigate the effects of different hydrolysis conditions (substrate to enzyme ratio (S/E), reaction temperature, and hydrolysis time) on the angiotensin I converting enzyme (ACE) inhibitory and radical scavenging (RSc) activities of the hydrolysates produced from trypsin hydrolysis of S. vastus collagen. Optimal conditions predicted by Box-Behnken Design modelling for producing ACE inhibitory and RSc hydrolysates were found to be S/E ratio (15), reaction temperature (55°C), and hydrolysis time (1 h). Under optimal conditions, ACE inhibitory and RSc activities were estimated to be as high as 67.8% and 77.9%, respectively. Besides, some novel bioactive peptides were identified through mass spectrometry analysis. These results indicate that S. vastus hydrolysates might be used as a functional ingredient in food and nutraceutical products.
    Matched MeSH terms: Collagen
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links