Displaying publications 101 - 120 of 123 in total

Abstract:
Sort:
  1. Ambrose L, Cooper RD, Russell TL, Burkot TR, Lobo NF, Collins FH, et al.
    Int J Parasitol, 2014 Mar;44(3-4):225-33.
    PMID: 24440418 DOI: 10.1016/j.ijpara.2013.12.001
    Anopheles farauti is the primary malaria vector throughout the coastal regions of the Southwest Pacific. A shift in peak biting time from late to early in the night occurred following widespread indoor residue spraying of dichlorodiphenyltrichloro-ethane (DDT) and has persisted in some island populations despite the intervention ending decades ago. We used mitochondrial cytochrome oxidase I (COI) sequence data and 12 newly developed microsatellite markers to assess the population genetic structure of this malaria vector in the Solomon Archipelago. With geographically distinct differences in peak A. farauti night biting time observed in the Solomon Archipelago, we tested the hypothesis that strong barriers to gene flow exist in this region. Significant and often large fixation index (FST) values were found between different island populations for the mitochondrial and nuclear markers, suggesting highly restricted gene flow between islands. Some discordance in the location and strength of genetic breaks was observed between the mitochondrial and microsatellite markers. Since early night biting A. farauti individuals occur naturally in all populations, the strong gene flow barriers that we have identified in the Solomon Archipelago lend weight to the hypothesis that the shifts in peak biting time from late to early night have appeared independently in these disconnected island populations. For this reason, we suggest that insecticide impregnated bed nets and indoor residue spraying are unlikely to be effective as control tools against A. farauti occurring elsewhere, and if used, will probably result in peak biting time behavioural shifts similar to that observed in the Solomon Islands.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  2. Takaoka H, Low VL, Sofian-Azirun M, Otsuka Y, Ya'cob Z, Chen CD, et al.
    Parasit Vectors, 2016;9:136.
    PMID: 26961508 DOI: 10.1186/s13071-016-1393-9
    A species of Simulium in the Simulium melanopus species-group of the subgenus Simulium (formerly misidentified as S. laterale Edwards from Sabah and Sarawak, Malaysia) is suspected to have dimorphic male scutal color patterns linked with different numbers of upper-eye facets. This study aimed to confirm whether or not these two forms of adult males represent a single species.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  3. Yusof R, Ahmed MA, Jelip J, Ngian HU, Mustakim S, Hussin HM, et al.
    Emerg Infect Dis, 2016 Aug;22(8):1371-80.
    PMID: 27433965 DOI: 10.3201/eid2208.151885
    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  4. Wang M, Yan S, Brown CL, Shaharom-Harrison F, Shi SF, Yang TB
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):3865-3875.
    PMID: 25319302
    To examine the phylogeographical pattern of Tetrancistrum nebulosi (Monogenea, Dactylogyridae) in the South China Sea, fragments of mitochondrial cytochrome c oxidase subunit I and NADH dehydrogenase subunit 2 genes were obtained for 220 individuals collected from 8 localities along the southeast coast of China and 1 locality in Terengganu, Malaysia. Based on these two genes, two and three distinct clades with geographic signals were revealed on the phylogenetic trees respectively. The divergence between these clades was estimated to occur in the late Pleistocene. Analysis of molecular variance and pairwise FSTsuggested a high rate of gene flow among individuals sampled from the Chinese coast, but with obvious genetic differentiation from the Malaysian population. Mismatch distribution and neutrality tests indicated that the T. nebulosi population experienced expansion in Pleistocene low sea level periods. Vicariance was considered to account for the genetic divergence between Chinese and Malaysian populations, while sea level fluctuations and mainland-island connections during glacial cycles were associated with the slight genetic divergence between the populations along the mainland coast of China and those off Sanya. On the contrary, oceanographic circulations and host migration could lead to genetic homogeneity of populations distributed along the mainland coast of China.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  5. Hussain T, Periasamy K, Nadeem A, Babar ME, Pichler R, Diallo A
    Vet Parasitol, 2014 Dec 15;206(3-4):188-99.
    PMID: 25468018
    Haemonchus species are major gastro-intestinal parasites affecting ruminants across the world. The present study aimed to assess the sympatric species distribution, genetic diversity, population structure and frequency of β-tubulin isotype 1 alleles associated with benzimidazole resistance. Internal transcribed spacer 2 (ITS2) sequences revealed three sympatric species of Haemonchus, H. contortus, H. placei and H. longistipes with 12 distinct genotypes circulating among ruminant hosts in Pakistan. High genetic variability was observed in Pakistani Haemonchus isolates at nicotine amide dehydrogenase subunit 4 (ND4) and cytochrome oxidase subunit 1 (COI) gene loci. Intra-population diversity parameters were higher in H. contortus isolates than H. placei. Phylogenetic analysis of ND4 and COI sequences did not reveal clustering of haplotypes originating from a particular host indicating high rate of gene flow among Haemonchus parasites infecting sheep, goat and cattle in Pakistan. ND4 and COI haplotypes from Pakistan were compared to sequences of Haemonchus isolates from 11 countries to elucidate the population structure. Multidimensional scaling (MDS) plot of pairwise FST derived from 531 ND4 haplotypes revealed clustering together of H. contortus from Pakistan, China, Malaysia and Italy while the isolates from Yemen and United States were found to be genetically distinct. With respect to H. placei, isolates from Pakistan were found to be genetically differentiated from isolates of other countries. The tests for selective neutrality revealed negative D statistics and did not reveal significant deviations in Pakistani Haemonchus populations while significant deviation (P < 0.05) was observed in Brazilian and Chinese H. contortus populations. Median Joining (MJ) network of ND4 haplotypes revealed Yemenese H. contortus being closer to H. placei cluster. β-tubulin isotype 1 genotyping revealed 7.86% frequency of Y allele associated with benzimidazole resistance at F200Y locus in Pakistani Haemonchus isolates.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  6. Ngui R, Mahdy MA, Chua KH, Traub R, Lim YA
    Acta Trop, 2013 Oct;128(1):154-7.
    PMID: 23774318 DOI: 10.1016/j.actatropica.2013.06.003
    Ancylostoma ceylanicum is the only zoonotic hookworm species that is able to produce patent infections in humans with the majority of cases reported in South East Asia. Over the past few years, there have been an increasing number of studies investigating the prevalence of this parasitic zoonosis using molecular diagnostic tools and a single genetic locus as marker for species identification. As there can be limitations in using a single genetic locus for epidemiological studies and genetic discrimination, the complementary use of a more variable locus will provide additional evidence to support the zoonotic exchange of hookworm species between humans and animals. In the present study, the cytochrome c oxidase subunit 1 (cox 1) sequence of A. ceylanicum from positive human and animal fecal samples were determined and compared with published reference sequences. Phylogenetic analysis demonstrated that isolates of A. ceylanicum were divided into two clusters, one consisting 3 human isolates and the other comprising 19 isolates of human and animal origin from different geographical locations within Malaysia. The two groups of A. ceylanicum could be distinguished from one another through five fixed nucleotide differences at locations 891, 966, 1008, 1077 and 1083. The detection of genetically distinct groups and considerable level of genetic variation within the cox 1 sequence of A. ceylanicum might suggest potential haplotype-linked differences in zoonotic, epidemiological and pathobiological characteristics, a hypothesis that still needs further investigation.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  7. Ip YK, Kuah SS, Chew SF
    Physiol Biochem Zool, 2004 Sep-Oct;77(5):824-37.
    PMID: 15547800
    The effects of sulfide on the energy metabolism of Boleophthalmus boddaerti in normoxia and hypoxia were examined. The 24-, 48-, and 96-h LC50 values of sulfide for B. boddaerti with body weight ranging from 11.6 to 14.2 g were 0.786, 0.567, and 0.467 mM, respectively. The tolerance of B. boddaerti to sulfide was not due to the presence of a sulfide-insensitive cytochrome c oxidase. There was no accumulation of lactate in the muscle and liver of specimens exposed to sulfide in normoxia. In addition, the levels of ATP, AMP, and energy charge in both the muscle and the liver were unaffected. These results indicate that B. boddaerti was able to sustain the energy supply required for its metabolic needs via mainly aerobic respiration when exposed to sulfide (up to 0.4 mM) in normoxia. Exposure of B. boddaerti simultaneously to hypoxia and 0.2 mM sulfide for 48 h resulted in decreases in the ATP levels in the muscle and liver. However, the energy charge in both tissues remained unchanged, and the level of lactate accumulated in the muscle was too low to have any major contribution to the energy budget of the fish. Our results reveal that B. boddaerti possesses inducible mechanisms to detoxify sulfide in an ample supply or a lack of O2. In normoxia, it detoxified sulfide to sulfate, sulfite, and thiosulfate. There were significant increases in the activities of sulfide oxidase in the muscle and liver of specimens exposed to sulfide, with that in the liver being >13-fold higher than that in the muscle. However, in hypoxia, sulfide oxidase activity in the liver was suppressed in response to environmental sulfide. In such conditions, there were significant increases in the activities of sulfane sulfur-forming enzyme(s) in the muscle and liver that were not observed in specimens exposed to sulfide in normoxia. Correspondingly, there were no changes in the levels of sulfate or sulfite in the muscle or liver. Instead, B. boddaerti detoxified sulfide mainly to sulfane sulfur in hypoxia. In conclusion, B. boddaerti was able to activate different mechanisms to detoxify sulfide, producing different types of detoxification products in normoxia and hypoxia.
    Matched MeSH terms: Electron Transport Complex IV/metabolism
  8. Ravera S, Ferrando S, Agas D, De Angelis N, Raffetto M, Sabbieti MG, et al.
    J Biophotonics, 2019 09;12(9):e201900101.
    PMID: 31033186 DOI: 10.1002/jbio.201900101
    Photobiomodulation (PBM) is a non-plant-cell manipulation through a transfer of energy by means of light sources at the non-ablative or thermal intensity. Authors showed that cytochrome-c-oxidase (complex IV) is the specific chromophore's target of PBM at the red (600-700 nm) and NIR (760-900 nm) wavelength regions. Recently, it was suggested that the infrared region of the spectrum could influence other chromospheres, despite the interaction by wavelengths higher than 900 nm with mitochondrial chromophores was not clearly demonstrated. We characterized the interaction between mitochondria respiratory chain, malate dehydrogenase, a key enzyme of Krebs cycle, and 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in the β-oxidation (two mitochondrial matrix enzymes) with the 1064 nm Nd:YAG (100mps and 10 Hz frequency mode) irradiated at the average power density of 0.50, 0.75, 1.00, 1.25 and 1.50 W/cm2 to generate the respective fluences of 30, 45, 60, 75 and 90 J/cm2 . Our results show the effect of laser light on the transmembrane mitochondrial complexes I, III, IV and V (adenosine triphosphate synthase) (window effects), but not on the extrinsic mitochondrial membrane complex II and mitochondria matrix enzymes. The effect is not due to macroscopical thermal change. An interaction of this wavelength with the Fe-S proteins and Cu-centers of respiratory complexes and with the water molecules could be supposed.
    Matched MeSH terms: Electron Transport Complex IV/metabolism
  9. Tan SH, Aris EM, Surin J, Omar B, Kurahashi H, Mohamed Z
    Trop Biomed, 2009 Aug;26(2):173-81.
    PMID: 19901904
    The mitochondiral DNA region encompassing the cytochrome oxidase subunit I (COI) and cytochrome oxidase subunit II (COII) genes of two Malaysian blow fly species, Chrysomya megacephala (Fabricius) and Chrysomya rufifacies (Macquart) were studied. This region, which spans 2303bp and includes the COI, tRNA leucine and partial COII was sequenced from adult fly and larval specimens, and compared. Intraspecific variations were observed at 0.26% for Ch. megacephala and 0.17% for Ch. rufifacies, while sequence divergence between the two species was recorded at a minimum of 141 out of 2303 sites (6.12%). Results obtained in this study are comparable to published data, and thus support the use of DNA sequence to facilitate and complement morphology-based species identification.
    Matched MeSH terms: Electron Transport Complex IV/genetics*
  10. Maizatul-Suriza M, Dickinson M, Idris AS
    World J Microbiol Biotechnol, 2019 Feb 27;35(3):44.
    PMID: 30810828 DOI: 10.1007/s11274-019-2618-9
    Bud rot disease is a damaging disease of oil palm in Colombia. The pathogen responsible for this disease is a species of oomyctes, Phytophthora palmivora which is also the causal pathogen of several tropical crop diseases such as fruit rot and stem canker of cocoa, rubber, durian and jackfruit. No outbreaks of bud rot have been reported in oil palm in Malaysia or other Southeast Asian countries, despite this particular species being present in the region. Analysis of the genomic sequences of several genetic markers; the internal transcribe spacer regions (ITS) of the ribosomal RNA gene cluster, beta-tubulin gene, translation elongation factor 1 alpha gene (EF-1α), cytochrome c oxidase subunit I & II (COXI and COXII) gene cluster along with amplified fragment length polymorphism (AFLP) analyses have been carried out to investigate the genetic diversity and variation of P. palmivora isolates from around the world and from different hosts in comparison to Colombian oil palm isolates, as one of the steps in understanding why this species of oomycetes causes devastating damage to oil palm in Latin America but not in other regions. Phylogenetic analyses of these regions showed that the Colombian oil palm isolates were not separated from Malaysian isolates. AFLP analysis and a new marker PPHPAV, targeting an unclassified hypothetical protein, was found to be able to differentiate Malaysian and Colombian isolates and showed a clear clade separations. Despite this, pathogenicity studies did not show any significant differences in the level of aggressiveness of different isolates against oil palm in glasshouse tests.
    Matched MeSH terms: Electron Transport Complex IV/genetics
  11. Tan SH, Normi YM, Leow AT, Salleh AB, Karjiban RA, Murad AM, et al.
    BMC Struct Biol, 2014 Mar 19;14:11.
    PMID: 24641837 DOI: 10.1186/1472-6807-14-11
    BACKGROUND: At least a quarter of any complete genome encodes for hypothetical proteins (HPs) which are largely non-similar to other known, well-characterized proteins. Predicting and solving their structures and functions is imperative to aid understanding of any given organism as a complete biological system. The present study highlights the primary effort to classify and cluster 1202 HPs of Bacillus lehensis G1 alkaliphile to serve as a platform to mine and select specific HP(s) to be studied further in greater detail.

    RESULTS: All HPs of B. lehensis G1 were grouped according to their predicted functions based on the presence of functional domains in their sequences. From the metal-binding group of HPs of the cluster, an HP termed Bleg1_2507 was discovered to contain a thioredoxin (Trx) domain and highly-conserved metal-binding ligands represented by Cys69, Cys73 and His159, similar to all prokaryotic and eukaryotic Sco proteins. The built 3D structure of Bleg1_2507 showed that it shared the βαβαββ core structure of Trx-like proteins as well as three flanking β-sheets, a 310 -helix at the N-terminus and a hairpin structure unique to Sco proteins. Docking simulations provided an interesting view of Bleg1_2507 in association with its putative cytochrome c oxidase subunit II (COXII) redox partner, Bleg1_2337, where the latter can be seen to hold its partner in an embrace, facilitated by hydrophobic and ionic interactions between the proteins. Although Bleg1_2507 shares relatively low sequence identity (47%) to BsSco, interestingly, the predicted metal-binding residues of Bleg1_2507 i.e. Cys-69, Cys-73 and His-159 were located at flexible active loops similar to other Sco proteins across biological taxa. This highlights structural conservation of Sco despite their various functions in prokaryotes and eukaryotes.

    CONCLUSIONS: We propose that HP Bleg1_2507 is a Sco protein which is able to interact with COXII, its redox partner and therefore, may possess metallochaperone and redox functions similar to other documented bacterial Sco proteins. It is hoped that this scientific effort will help to spur the search for other physiologically relevant proteins among the so-called "orphan" proteins of any given organism.

    Matched MeSH terms: Electron Transport Complex IV/metabolism*
  12. Teh CY, Ho CL, Shaharuddin NA, Lai KS, Mahmood M
    3 Biotech, 2019 Mar;9(3):101.
    PMID: 30800612 DOI: 10.1007/s13205-019-1615-x
    Proteomic analysis was conducted to identify the rice root proteins induced by exogenous proline and their involvement in root growth. Proteins were extracted from the root tissues grown under two conditions, T1 (control) and T2 (10 mM proline), and profiled by two-dimensional polyacrylamide gel electrophoresis. Seventeen of 30 differentially expressed proteins were identified by mass spectrometry. Proline-treated rice roots showed up-regulation and down-regulation of nine and eight proteins, respectively, when compared to those in the control. Among the differentially expressed proteins, the down-regulation of glutathione reductase and peroxidase could be involved in the regulation of cellular hydrogen peroxide and reactive oxygen species levels that modulate the root cell wall structure. Differentially expressed proteins identified as pathogenesis-related proteins might be related to stress adaptive mechanisms in response to exogenous proline treatment. In addition, differentially expressed protein identified as the fructose-bisphosphate aldolases and cytochrome c oxidase might be associated with energy metabolism, which is needed during root developmental process. This is the first attempt to study the changes in rice root proteome treated with proline. The acquired information could open new avenues for further functional studies on the involvement of proline in modulating root development and its relation to stress adaptation of plants.
    Matched MeSH terms: Electron Transport Complex IV
  13. Ortega Pérez P, Wibbelt G, Brinkmann A, Galindo Puentes JA, Tuh FYY, Lakim MB, et al.
    Int J Parasitol Parasites Wildl, 2020 Aug;12:220-231.
    PMID: 32695576 DOI: 10.1016/j.ijppaw.2020.07.003
    Sarcocystis scandentiborneensis sp. nov. was discovered in histological sections of striated musculature of treeshrews (Tupaia minor, T. tana) from Northern Borneo. Sarcocysts were cigar-shaped, 102 μm-545 μm long, and on average 53 μm in diameter. The striated cyst wall varied in thickness (2-10 μm), depending on whether the finger-like, villous protrusions (VP) were bent. Ultrastructurally, sarcocysts were similar to wall type 12 but basal microtubules extended into VPs that tapered off with a unique U-shaped, electron-dense apical structure. In phylogenetic trees of the nuclear 18S rRNA gene, S. scandentiborneensis formed a distinct branch within a monophyletic subclade of Sarcocystis spp. with (colubrid) snake-rodent life cycle. We mapped all intraspecific (two haplotypes) and interspecific nucleotide substitutions to the secondary structure of the 18S rRNA gene: in both cases, the highest variability occurred within helices V2 and V4 but intraspecific variability mostly related to transitions, while transition/transversion ratios between S. scandentiborneensis, S. zuoi, and S. clethrionomyelaphis were skewed towards transversions. Lack of relevant sequences restricted phylogenetic analysis of the mitochondrial Cytochrome C oxidase subunit I (COI) gene to include only one species of Sarcocystis recovered from a snake host (S. pantherophisi) with which the new species formed a sister relationship. We confirm the presence of the functionally important elements of the COI barcode amino acid sequence of S. scandentiborneensis, whereby the frequency of functionally important amino acids (Alanine, Serine) was markedly different to other taxa of the Sarcocystidae. We regard S. scandentiborneensis a new species, highlighting that structurally or functionally important aspects of the 18S rRNA and COI could expand their utility for delineation of species. We also address the question why treeshrews, believed to be close to primates, carry a parasite that is genetically close to a Sarcocystis lineage preferably developing in the Rodentia as intermediate hosts.
    Matched MeSH terms: Electron Transport Complex IV
  14. Kamarudin KR, Rehan MM
    Trop Life Sci Res, 2015 Apr;26(1):87-99.
    PMID: 26868593 MyJurnal
    This preliminary study aimed to identify a commercial gamat species, Stichopus horrens Selenka, 1867, and a timun laut species, Holothuria (Mertensiothuria) leucospilota (Brandt, 1835), from Pangkor Island, Perak, Malaysia, employing morphological techniques based on the shape of the ossicles and molecular techniques based on the cytochrome c oxidase I (COI) mitochondrial DNA (mtDNA) gene. In Malaysia, a gamat is defined as a sea cucumber species of the family Stichopodidae with medicinal value, and timun laut refers to non-gamat species. S. horrens is very popular on Pangkor Island as a main ingredient in the traditional production of air gamat and minyak gamat, while H. leucospilota is the most abundant species in Malaysia. In contrast to previous studies, internal body parts (the respiratory tree and gastrointestine) were examined in this study to obtain better inferences based on morphology. The results showed that there were no ossicles present in the gastrointestine of H. leucospilota, and this characteristic is suggested as a unique diagnostic marker for the timun laut species. In addition, the presence of Y-shaped rods in the respiratory tree of S. horrens subsequently supported the potential to use internal body parts to identify the gamat species. Phylogenetic analysis of the COI mtDNA gene of the sea cucumber specimens using the neighbour-joining method and maximum likelihood methods further confirmed the species status of H. leucospilota and S. horrens from Pangkor Island, Perak, Malaysia. The COI mtDNA gene sequences were registered with GenBank, National Center for Biotechnology Information (NCBI), US National Library of Medicine (GenBank accession no.: KC405565-KC405568). Although additional specimens from various localities will be required to produce more conclusive results, the current findings provide better insight into the importance of complementary approaches involving morphological and molecular techniques in the identification of the two Malaysian sea cucumber species.
    Matched MeSH terms: Electron Transport Complex IV
  15. Brandon-Mong GJ, Ketzis JK, Choy JS, Boonroumkaew P, Tooba M, Sawangjaroen N, et al.
    Trop Biomed, 2018 Dec 01;35(4):1131-1139.
    PMID: 33601860
    Trichuris trichiura, the whipworm of humans, is one of the most prevalent soiltransmitted helminths (STH) reported worldwide. According to a recent study, out of 289 STH studies in Southeast Asia, only three studies used molecular methods. Hence, the genetic assemblages of Trichuris in Southeast Asia are poorly understood. In this study, we used partial mitochondrial DNA (cytochrome c oxidase subunit 1 or COI) sequences for analysis. Trichuris grouped in a same clade with different hosts indicate the potential of cross infection between hosts. Based on COI, the adult Trichuris isolated from a Malaysian patient was most closely related to Trichuris isolated from Papio anubis (olive baboons) from the USA. The Trichuris isolated from the dog from Malaysia was genetically similar to a Trichuris species isolated from Macaca silenus (lion-tailed macaque) from Czech Republic. Both the human and dog isolated Trichuris grouped in clades with different hosts indicating the potential of cross infection between hosts. Specific PCR primers based on the partial COI of T. trichiura isolated from African green monkey and T. serrata were designed and successfully amplified using multiplex PCR of the pooled DNA samples. Our results suggest a complex parasite-host relationship, and support the theory of cross infection of Trichuris between humans and non-human primates as suggested in previous publications.
    Matched MeSH terms: Electron Transport Complex IV
  16. Al-Shuhaib MBS, Al-Kafajy FR, Badi MA, AbdulAzeez S, Marimuthu K, Al-Juhaishi HAI, et al.
    Comput Biol Med, 2018 09 01;100:17-26.
    PMID: 29960146 DOI: 10.1016/j.compbiomed.2018.06.019
    Because of variable inconvenient living conditions in some places around the world, it is difficult to collect reliable physiological data for ostriches. Therefore, this study aims to provide a comprehensive in silico insight for the nature of polymorphism of important genetic loci that are related to physiological and reproductive traits. Sixty-nine mature ostriches ranging over half of Iraq were screened. Six exonic genetic loci, including cytochrome c oxidase I (COX1), cytochrome b (CYTB), secretogranin V (SCG5), feather keratin 2-like (FK2), prolactin (PRL) and placenta growth factor (PGF) were genotyped by PCR-single stranded conformation polymorphism (SSCP). Thirty-six novel SNPs, including seventeen nonsynonymous (ns) SNPs, were observed. Several computational software programs were utilized to assess the extent of the nsSNPs on their corresponding proteins structure, function and stability. The results showed several deleterious functional and stability changes in almost all the proteins studied. The total severity of each missense mutation was evaluated and compared with other nsSNPs accumulatively. It is evident from the extensive cumulative in silico computation that both p.E34D and p.E60K in PGF have the highest deleterious effect. The cumulative predictions from the present study are an impressive guide for the genotypes of African ostriches, which bypassed the expensive protocols for wet laboratory screening, to identify the effects of variants. To the best of our knowledge, this is the first investigation of its kind on the analyses and prediction outcome of missense mutations in African ostrich populations. The highly deleterious nsSNPs in the placenta growth factor are possible adaptive mutations which might be associated with adaptation in extreme and new environments. The flow and protocol of the computational predictions can be extended for various wild animals to identify the molecular nature of adaptations.
    Matched MeSH terms: Electron Transport Complex IV
  17. Hamezah HS, Durani LW, Yanagisawa D, Ibrahim NF, Aizat WM, Bellier JP, et al.
    Exp Gerontol, 2018 Oct 01;111:53-64.
    PMID: 29981398 DOI: 10.1016/j.exger.2018.07.002
    Decrease in multiple functions occurs in the brain with aging, all of which can contribute to age-related cognitive and locomotor impairments. Brain atrophy specifically in hippocampus, medial prefrontal cortex (mPFC), and striatum, can contribute to this age-associated decline in function. Our recent metabolomics analysis showed age-related changes in these brain regions. To further understand the aging processes, analysis using a proteomics approach was carried out. This study was conducted to identify proteome profiles in the hippocampus, mPFC, and striatum of 14-, 18-, 23-, and 27-month-old rats. Proteomics analysis using ultrahigh performance liquid chromatography coupled with Q Exactive HF Orbitrap mass spectrometry identified 1074 proteins in the hippocampus, 871 proteins in the mPFC, and 241 proteins in the striatum. Of these proteins, 97 in the hippocampus, 25 in mPFC, and 5 in striatum were differentially expressed with age. The altered proteins were classified into three ontologies (cellular component, molecular function, and biological process) containing 44, 38, and 35 functional groups in the hippocampus, mPFC, and striatum, respectively. Most of these altered proteins participate in oxidative phosphorylation (e.g. cytochrome c oxidase and ATP synthase), glutathione metabolism (e.g. peroxiredoxins), or calcium signaling pathway (e.g. protein S100B and calmodulin). The most prominent changes were observed in the oldest animals. These results suggest that alterations in oxidative phosphorylation, glutathione metabolism, and calcium signaling pathway are involved in cognitive and locomotor impairments in aging.
    Matched MeSH terms: Electron Transport Complex IV
  18. Dusfour I, Linton YM, Cohuet A, Harbach RE, Baimai V, Trung HD, et al.
    J Med Entomol, 2004 May;41(3):287-95.
    PMID: 15185927
    Anopheles sundaicus s.l. is a principal malaria vector taxon on islands and along the coastal areas of Southeast Asia. It has a wide geographical distribution and exhibits a high level of ecological and behavioral variability. Study of this taxon is crucial for understanding its biology and implementing effectise vector control measures. We compared populations of An. sundaicus from Vietnam, Thailand, and Malaysian Borneo by using two mitochondrial DNA markers: cytochrome oxidase I and cytochrome b. Genetic divergence, geographic separation, and cladistic analysis of relationships revealed the presence of two cryptic species: Anopheles sundaicus s.s. on Malaysian Borneo and An. sundaicus species A in coastal areas of Thailand and Vietnam. A polymerase chain reaction (PCR) assay was developed to easily identify these two species throughout their geographic distributions. The assay was based on sequence characterized amplified region derived from random amplified polymorphic DNA. This PCR identification method needs to be validated and adapted for the recognition of other possible species in the Sundaicus Complex.
    Matched MeSH terms: Electron Transport Complex IV
  19. Saeung A, Srisuka W, Aupalee K, Fukuda M, Otsuka Y, Taai K, et al.
    Acta Trop, 2020 Apr;204:105344.
    PMID: 31954685 DOI: 10.1016/j.actatropica.2020.105344
    Zoonotic onchocerciasis is a human infection caused by Onchocerca species of animal origins and transmitted by black fly vectors. The reported incidence of this disease has increased throughout the world. This study aims to clarify the vectorial roles of black fly species in zoonotic filarial transmission in Tak province, western Thailand. The integrated approach of morphological and DNA sequence-based analyses was used to identify species of both wild-caught female black flies and infective filarial larvae found in the infected black flies. All of 494 female black flies captured were identified as Simulium nigrogilvum, through scanning electron microscopy (SEM) and DNA sequence analyses based on the cytochrome c oxidase subunit I (COI) and subunit II (COII), and the fast-evolving nuclear elongation complex protein 1 (ECP1) genes. Four females of S. nigrogilvum harbored one to three third-stage larvae (infective larvae) in their thoraces, with an infection rate of 0.81% (4/494). All infective larvae were similar in morphology and size to one another, being identified as Onchocerca species type I (= O. sp. type A), a bovine filaria, originally reported from Japan, and also as O. sp. found in S. nodosum in Thailand, based on their body lengths and widths being 1,068-1,346 µm long by 25-28 µm wide, and morphological characters. Comparisons of cytochrome c oxidase subunit I (COI) and 12S rRNA sequences of mitochondrial DNA (mtDNA) and phylogenetic analyses with those of previous reports strongly supported that all larvae were O. sp. type I. This report is the first indicating the presence of O. sp. type I in Thailand and its vector being S. nigrogilvum.
    Matched MeSH terms: Electron Transport Complex IV
  20. Yamada M, Shishito N, Nozawa Y, Uni S, Nishioka K, Nakaya T
    Trop Med Health, 2017;45:26.
    PMID: 29118653 DOI: 10.1186/s41182-017-0067-4
    Background: Dirofilaria ursi is a filarial nematode that parasitizes the subcutaneous tissues of the American black bear (Ursus americanus) and Japanese black bear (Ursus thiabetanus japonicus). D. ursi that has parasitized black bears has the potential to subsequently infect humans. In addition, extra-gastrointestinal anisakiasis is less common in Japan.

    Case presentation: We report a case of ventral subcutaneous anisakiasis and dorsal subcutaneous dirofilariasis that was acquired in Fukushima, in the northern part of Japan. The patient was an 83-year-old Japanese female, and subcutaneous parasitic granulomas were present on her left abdomen (near the navel) and left scapula. A pathological examination of the surgically dissected tissue sections from each region demonstrated eosinophilic granulomas containing different species of parasites. To enable the morphological and molecular identification of these parasites, DNA was extracted from paraffin-embedded sections using DEXPAT reagent, and the cytochrome oxidase 2 (COX2), internal transcribed spacer 1 (ITS1), 5.8S and ITS2 regions of the Anisakis larvae, and the 5S rRNA region of the male Dirofilaria were sequenced. The PCR products were examined and compared with DNA databases. Molecular analysis of the COX2 and 5S rRNA sequences of each worm revealed that the nematode found in the ventral region belonged to Anisakis simplex sensu stricto (s.s.) and the male Dirofilaria found in the dorsal region was classified as D. ursi.

    Conclusion: The present case showed a combined human case of D. ursi and A. simplex s.s. infections in subcutaneous tissues. The results of this study will contribute to the identification of unknown parasites in histological sections.
    Matched MeSH terms: Electron Transport Complex IV
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links