Displaying publications 101 - 120 of 133 in total

Abstract:
Sort:
  1. Al-Ani LA, Yehye WA, Kadir FA, Hashim NM, AlSaadi MA, Julkapli NM, et al.
    PLoS One, 2019;14(5):e0216725.
    PMID: 31086406 DOI: 10.1371/journal.pone.0216725
    Nanotechnology-based antioxidants and therapeutic agents are believed to be the next generation tools to face the ever-increasing cancer mortality rates. Graphene stands as a preferred nano-therapeutic template, due to the advanced properties and cellular interaction mechanisms. Nevertheless, majority of graphene-based composites suffer from hindered development as efficient cancer therapeutics. Recent nano-toxicology reviews and recommendations emphasize on the preliminary synthetic stages as a crucial element in driving successful applications results. In this study, we present an integrated, green, one-pot hybridization of target-suited raw materials into curcumin-capped gold nanoparticle-conjugated reduced graphene oxide (CAG) nanocomposite, as a prominent anti-oxidant and anti-cancer agent. Distinct from previous studies, the beneficial attributes of curcumin are employed to their fullest extent, such that they perform dual roles of being a natural reducing agent and possessing antioxidant anti-cancer functional moiety. The proposed novel green synthesis approach secured an enhanced structure with dispersed homogenous AuNPs (15.62 ± 4.04 nm) anchored on reduced graphene oxide (rGO) sheets, as evidenced by transmission electron microscopy, surpassing other traditional chemical reductants. On the other hand, safe, non-toxic CAG elevates biological activity and supports biocompatibility. Free radical DPPH inhibition assay revealed CAG antioxidant potential with IC50 (324.1 ± 1.8%) value reduced by half compared to that of traditional citrate-rGO-AuNP nanocomposite (612.1 ± 10.1%), which confirms the amplified multi-potent antioxidant activity. Human colon cancer cell lines (HT-29 and SW-948) showed concentration- and time-dependent cytotoxicity for CAG, as determined by optical microscopy images and WST-8 assay, with relatively low IC50 values (~100 μg/ml), while preserving biocompatibility towards normal human colon (CCD-841) and liver cells (WRL-68), with high selectivity indices (≥ 2.0) at all tested time points. Collectively, our results demonstrate effective green synthesis of CAG nanocomposite, free of additional stabilizing agents, and its bioactivity as an antioxidant and selective anti-colon cancer agent.
    Matched MeSH terms: Gold/chemistry*
  2. Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, et al.
    Int J Nanomedicine, 2020;15:275-300.
    PMID: 32021180 DOI: 10.2147/IJN.S233789
    Gold nanoparticles (AuNPs) are extensively studied nanoparticles (NPs) and are known to have profound applications in medicine. There are various methods to synthesize AuNPs which are generally categorized into two main types: chemical and physical synthesis. Continuous efforts have been devoted to search for other more environmental-friendly and economical large-scale methods, such as environmentally friendly biological methods known as green synthesis. Green synthesis is especially important to minimize the harmful chemical and toxic by-products during the conventional synthesis of AuNPs. Green materials such as plants, fungi, microorganisms, enzymes and biopolymers are currently used to synthesize various NPs. Biosynthesized AuNPs are generally safer for use in biomedical applications since they come from natural materials themselves. Multiple surface functionalities of AuNPs allow them to be more robust and flexible when combined with different biological assemblies or modifications for enhanced applications. This review focuses on recent developments of green synthesized AuNPs and discusses their numerous biomedical applications. Sources of green materials with successful examples and other key parameters that determine the functionalities of AuNPs are also discussed in this review.
    Matched MeSH terms: Gold/chemistry*
  3. Yuhana Ariffin E, Heng LY, Tan LL, Abd Karim NH, Hasbullah SA
    Sensors (Basel), 2020 Feb 26;20(5).
    PMID: 32111092 DOI: 10.3390/s20051279
    A novel label-free electrochemical DNA biosensor was constructed for the determination of Escherichia coli bacteria in environmental water samples. The aminated DNA probe was immobilized onto hollow silica microspheres (HSMs) functionalized with 3-aminopropyltriethoxysilane and deposited onto a screen-printed electrode (SPE) carbon paste with supported gold nanoparticles (AuNPs). The biosensor was optimized for higher specificity and sensitivity. The label-free E. coli DNA biosensor exhibited a dynamic linear response range of 1 × 10-10 µM to 1 × 10-5 µM (R2 = 0.982), with a limit of detection at 1.95 × 10-15 µM, without a redox mediator. The sensitivity of the developed DNA biosensor was comparable to the non-complementary and single-base mismatched DNA. The DNA biosensor demonstrated a stable response up to 21 days of storage at 4 ℃ and pH 7. The DNA biosensor response was regenerable over three successive regeneration and rehybridization cycles.
    Matched MeSH terms: Gold/chemistry
  4. Ge Y, Lakshmipriya T, Gopinath SC, Anbu P, Chen Y, Hariri F, et al.
    Int J Nanomedicine, 2019;14:7851-7860.
    PMID: 31632005 DOI: 10.2147/IJN.S222238
    BACKGROUND: Gestational diabetes mellitus is a commonly occurring metabolic disorder during pregnancy, affecting >4% of pregnant women. It is generally defined as the intolerance of glucose with the onset or initial diagnosis during pregnancy. This illness affects the placenta and poses a threat to the baby as it affects the supply of proper oxygen and nutrients.

    PURPOSE: Due to the high percentage of affected pregnant women, it should be mandatory to evaluate glucose levels during pregnancy and there is a need for a continuous monitoring system.

    METHODS: Herein, the investigators modified the interdigitated (di)electrodes (IDE) sensing surface to detect the glucose on covalently immobilized glucose oxidase (GOx) with the graphene. The characterization of graphene and gold nanoparticle (GNP) was performed by high-resolution microscopy.

    RESULTS: Sensitivity was found to be 0.06 mg/mL and to enhance the detection, GOx was complexed with GNP. GNP-GOx was improved the sensitive detection twofold from 0.06 to 0.03 mg/mL, and it also displayed higher levels of current changes at all the concentrations of glucose that were tested. High-performance of the above IDE sensing system was attested by the specificity, reproducibility and higher sensitivity detections. Further, the linear regression analysis indicated the limit of detection to be between 0.02 and 0.03 mg/mL.

    CONCLUSION: This study demonstrated the potential strategy with nanocomposite for diagnosing gestational diabetes mellitus.

    Matched MeSH terms: Gold/chemistry*
  5. Rashid JI, Yusof NA, Abdullah J, Hashim U, Hajian R
    PMID: 25491829 DOI: 10.1016/j.msec.2014.09.010
    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0-178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4°C in silica gel.
    Matched MeSH terms: Gold/chemistry
  6. Ang GY, Yu CY, Yean CY
    Biosens Bioelectron, 2012 Oct-Dec;38(1):151-6.
    PMID: 22705404 DOI: 10.1016/j.bios.2012.05.019
    In the field of diagnostics, molecular amplification targeting unique genetic signature sequences has been widely used for rapid identification of infectious agents, which significantly aids physicians in determining the choice of treatment as well as providing important epidemiological data for surveillance and disease control assessment. We report the development of a rapid nucleic acid lateral flow biosensor (NALFB) in a dry-reagent strip format for the sequence-specific detection of single-stranded polymerase chain reaction (PCR) amplicons at ambient temperature (22-25°C). The NALFB was developed in combination with a linear-after-the-exponential PCR assay and the applicability of this biosensor was demonstrated through detection of the cholera toxin gene from diarrheal-causing toxigenic Vibrio cholerae. Amplification using the advanced asymmetric PCR boosts the production of fluorescein-labeled single-stranded amplicons, allowing capture probes immobilized on the NALFB to hybridize specifically with complementary targets in situ on the strip. Subsequent visual formation of red lines is achieved through the binding of conjugated gold nanoparticles to the fluorescein label of the captured amplicons. The visual detection limit observed with synthetic target DNA was 0.3 ng and 1 pg with pure genomic DNA. Evaluation of the NALFB with 164 strains of V. cholerae and non-V. cholerae bacteria recorded 100% for both sensitivity and specificity. The whole procedure of the low-cost NALFB, which is performed at ambient temperature, eliminates the need for preheated buffers or additional equipment, greatly simplifying the protocol for sequence-specific PCR amplicon analysis.
    Matched MeSH terms: Gold/chemistry
  7. Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, et al.
    Anal Chem, 2016 06 21;88(12):6254-64.
    PMID: 27012657 DOI: 10.1021/acs.analchem.6b00195
    In nucleic acid testing (NAT), gold nanoparticle (AuNP)-based lateral flow assays (LFAs) have received significant attention due to their cost-effectiveness, rapidity, and the ability to produce a simple colorimetric readout. However, the poor sensitivity of AuNP-based LFAs limits its widespread applications. Even though various efforts have been made to improve the assay sensitivity, most methods are inappropriate for integration into LFA for sample-to-answer NAT at the point-of-care (POC), usually due to the complicated fabrication processes or incompatible chemicals used. To address this, we propose a novel strategy of integrating a simple fluidic control strategy into LFA. The strategy involves incorporating a piece of paper-based shunt and a polydimethylsiloxane (PDMS) barrier to the strip to achieve optimum fluidic delays for LFA signal enhancement, resulting in 10-fold signal enhancement over unmodified LFA. The phenomena of fluidic delay were also evaluated by mathematical simulation, through which we found the movement of fluid throughout the shunt and the tortuosity effects in the presence of PDMS barrier, which significantly affect the detection sensitivity. To demonstrate the potential of integrating this strategy into a LFA with sample-in-answer-out capability, we further applied this strategy into our prototype sample-to-answer LFA to sensitively detect the Hepatitis B virus (HBV) in clinical blood samples. The proposed strategy offers great potential for highly sensitive detection of various targets for wide application in the near future.
    Matched MeSH terms: Gold/chemistry
  8. Leow SN, Luu CD, Hairul Nizam MH, Mok PL, Ruhaslizan R, Wong HS, et al.
    PLoS One, 2015;10(6):e0128973.
    PMID: 26107378 DOI: 10.1371/journal.pone.0128973
    To investigate the safety and efficacy of subretinal injection of human Wharton's Jelly-derived mesenchymal stem cells (hWJ-MSCs) on retinal structure and function in Royal College of Surgeons (RCS) rats.
    Matched MeSH terms: Gold/chemistry
  9. Wang L, Xu J, Yan Y, Liu H, Karunakaran T, Li F
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):1617-1627.
    PMID: 31014134 DOI: 10.1080/21691401.2019.1594862
    Nanotechnology has been materialized as a proficient technology for the development of anticancer nanoparticles all the way through an environment-friendly approach. Conventionally, nanoparticles have been assembled by dissimilar methods, but regrettably rely on the negative impact on the natural environment. Amalgamation of nanoparticles by means of plant extract is alternate conservative methods. Scutellaria barbata species was used majorly as food or as medicines against various diseases, and extensive research was conducted for their therapeutic properties. The present research was mainly focused on the synthesis of gold nanoparticles from the Scutellaria barbata by green route method and evaluation of its anticancer activity against pancreatic cancer cell lines (PANC-1). The gold nanoparticles have been characterized by UV-visible spectroscopy, TEM, SAED, AFM, and FTIR analysis. The synthesized gold nanoparticles (AuNPs) possessed effective anticancer activity against pancreatic cancer cell lines (PANC-1). Hence, further research on this plant may lead to the development of novel anticancer drugs which can be used to combat pancreatic cancer.
    Matched MeSH terms: Gold/chemistry*
  10. Low KF, Zain ZM, Yean CY
    Biosens Bioelectron, 2017 Jan 15;87:256-263.
    PMID: 27567251 DOI: 10.1016/j.bios.2016.08.064
    A novel enzyme/nanoparticle-based DNA biosensing platform with dual colorimetric/electrochemical approach has been developed for the sequence-specific detection of the bacterium Vibrio cholerae, the causative agent of acute diarrheal disease in cholera. This assay platform exploits the use of shelf-stable and ready-to-use (shelf-ready) reagents to greatly simplify the bioanalysis procedures, allowing the assay platform to be more amenable to point-of-care applications. To assure maximum diagnosis reliability, an internal control (IC) capable of providing instant validation of results was incorporated into the assay. The microbial target, single-stranded DNA amplified with asymmetric PCR, was quantitatively detected via electrochemical stripping analysis of gold nanoparticle-loaded latex microspheres as a signal-amplified hybridization tag, while the incorporated IC was analyzed using a simplified horseradish peroxidase enzyme-based colorimetric scheme by simple visual observation of enzymatic color development. The platform showed excellent diagnostic sensitivity and specificity (100%) when challenged with 145 clinical isolate-spiked fecal specimens. The limits of detection were 0.5ng/ml of genomic DNA and 10 colony-forming units (CFU)/ml of bacterial cells with dynamic ranges of 0-100ng/ml (R(2)=0.992) and log10 (1-10(4) CFU/ml) (R(2)=0.9918), respectively. An accelerated stability test revealed that the assay reagents were stable at temperatures of 4-37°C, with an estimated ambient shelf life of 200 days. The versatility of the biosensing platform makes it easily adaptable for quantitative detection of other microbial pathogens.
    Matched MeSH terms: Gold/chemistry
  11. Abd Muain MF, Cheo KH, Omar MN, Amir Hamzah AS, Lim HN, Salleh AB, et al.
    Bioelectrochemistry, 2018 Aug;122:199-205.
    PMID: 29660648 DOI: 10.1016/j.bioelechem.2018.04.004
    Hepatitis B virus core antigen (HBcAg) is the major structural protein of hepatitis B virus (HBV). The presence of anti-HBcAg antibody in a blood serum indicates that a person has been exposed to HBV. This study demonstrated that the immobilization of HBcAg onto the gold nanoparticles-decorated reduced graphene oxide (rGO-en-AuNPs) nanocomposite could be used as an antigen-functionalized surface to sense the presence of anti-HBcAg. The modified rGO-en-AuNPs/HBcAg was then allowed to undergo impedimetric detection of anti-HBcAg with anti-estradiol antibody and bovine serum albumin as the interferences. Upon successful detection of anti-HBcAg in spiked buffer samples, impedimetric detection of the antibody was then further carried out in spiked human serum samples. The electrochemical response showed a linear relationship between electron transfer resistance and the concentration of anti-HBcAg ranging from 3.91ngmL-1 to 125.00ngmL-1 with lowest limit of detection (LOD) of 3.80ngmL-1 at 3σm-1. This established method exhibits potential as a fast and convenient way to detect anti-HBcAg.
    Matched MeSH terms: Gold/chemistry*
  12. Saad SM, Abdullah J, Rashid SA, Fen YW, Salam F, Yih LH
    Mikrochim Acta, 2019 11 19;186(12):804.
    PMID: 31745737 DOI: 10.1007/s00604-019-3913-8
    A fluorometric assay is described for highly sensitive quantification of Escherichia coli O157:H7. Reporter oligos were immobilized on graphene quantum dots (GQDs), and quencher oligos were immobilized on gold nanoparticles (AuNPs). Target DNA was co-hybridized with reporter oligos on the GQDs and quencher oligos on AuNPs. This triggers quenching of fluorescence (with excitation/emission peaks at 400 nm/530 nm). On introducing target into the system, fluorescence is quenched by up to 95% by 100 nM concentrations of target oligos having 20 bp. The response to the fliC gene of E. coli O157:H7 increases with the logarithm of the concentration in the range from 0.1 nM to 150 nM. The limit of detection is 1.1 ± 0.6 nM for n = 3. The selectivity and specificity of the assay was confirmed by evaluating the various oligos sequences and PCR product (fliC gene) amplified from genomic DNA of the food samples spiked with E. coli O157:H7. Graphical abstractSchematic representation of fluorometric assay for highly sensitive quantification of Escherichia coli O157:H7 based on fluorescence quenching gene assay for fliC gene of E. coli O157:H7.
    Matched MeSH terms: Gold/chemistry
  13. Qian L, Su W, Wang Y, Dang M, Zhang W, Wang C
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):1173-1180.
    PMID: 30942109 DOI: 10.1080/21691401.2018.1549064
    Cervical cancer is the third most common highest mortality in women worldwide. The use of standard chemotherapeutic drugs against cervical cancer patients received several side effects. Therefore, we focused phytoconsituents-mediated synthesis of gold nanoparticles (AuNPs) considered as greatest attention in the treatment of cervical cancer. In this present study, we reported that green synthesis of AuNPs by using with Alternanthera Sessilis aqueous extract. Synthesis of AuNPs were characterized by UV visible spectroscopy, energy dispersive X-ray (EDX), selected area diffraction pattern (SAED), Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM) and atomic force microscope. Synthesized AuNPs confirmed by the UV absorption maximum at 535 and crystal structure of gold AuNPs was further confirmed by EDX and SAED. TEM and atomic force microscopy images show the size and morphological distribution of nanoparticles. FTIR analysis was confirmed the hydroxyl groups, amine and alkaline groups of biomolecules are present in the AuNPs. Moreover, AuNPs induce cytotoxicity in cervical cancer cells and also induce apoptosis through modulating intrinsic apoptotic mechanisms in cervical cancer cells. This green synthesis of AuNPs from Alternanthera sessilis approach was easy, large scaled up and eco-friendly.
    Matched MeSH terms: Gold/chemistry*
  14. Zhang X, Tan Z, Jia K, Zhang W, Dang M
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):2171-2178.
    PMID: 31159596 DOI: 10.1080/21691401.2019.1620249
    Nanomedicine is a rapidly emerging field and is reported to be a promising tool for treating various diseases. Green synthesized nanoparticles are documented to possess a potent anticancer effect. Rabdosia rubescens is a Chinese plant which is also one of the components of PC-SPES and used to treat prostate cancer. In the present study, we synthesized the gold nanoparticles from R. rubescens (RR-AuNP) and analyzed its anticancer activity against the lung carcinoma A549 cell lines. Since lung cancer is reported to be with increased morbidity and decreased survival rate. The biosynthesized RR-AuNP were confirmed using UV-Visible spectrophotometer, size and shape of RR-AuNP were assessed by DLS, TEM and EDX. The biomolecules present in RR-AuNP and its topographical structure were detected using FTIR, SAED and AFM analysis. MTT assay was performed to detect the IC50 dose of RR-AuNP and its apoptotic effect was assessed by detecting the caspases activation, ROS generation. The anticancer effect of RR-AuNP was confirmed by DAPI staining, TUNEL assay and its molecular mechanism were confirmed by assessing the apoptotic signalling molecules protein expression. Our results illustrate that RR-AuNP showed a strong absorption peak at 550 nm and the RRAuNP were polydispersed nanospheres with size of 130 nm. RR-AuNP IC50 dose against A549 lung carcinoma cell line was detected to be at 25 µg/ml. The results of DAPI staining, TUNEL and immunoblotting analysis confirms both the 25 µg/ml and 50 µg/ml of RR-AuNP possess potent anticancer and apoptotic effect, suggesting that RR-AuNP that it may be a persuasive molecule to treat lung cancer.
    Matched MeSH terms: Gold/chemistry*
  15. Dalila NR, Arshad MKM, Gopinath SCB, Nuzaihan MNM, Fathil MFM
    Mikrochim Acta, 2020 10 05;187(11):588.
    PMID: 33015730 DOI: 10.1007/s00604-020-04562-7
    Nanofabricated gold nanoparticles (Au-NPs) on MoS2 nanosheets (Au-NPs/MoS2) in back-gated field-effect transistor (BG-FET) are presented, which acts as an efficient semiconductor device for detecting a low concentration of C-reactive protein (C-RP). The decorated nanomaterials lead to an enhanced electron conduction layer on a 100-μm-sized transducing channel. The sensing surface was characterized by Raman spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), atomic force microscopy (AFM), scanning electron microscopy (SEM), and high-power microscopy (HPM). The BG-FET device exhibits an excellent limit of detection of 8.38 fg/mL and a sensitivity of 176 nA/g·mL-1. The current study with Au-NPs/MoS2 BG-FET displays a new potential biosensing technology; especially for integration into complementary metal oxide (CMOS) technology for hand-held future device application.
    Matched MeSH terms: Gold/chemistry
  16. Saeedfar K, Heng LY, Chiang CP
    Bioelectrochemistry, 2017 Dec;118:106-113.
    PMID: 28780443 DOI: 10.1016/j.bioelechem.2017.07.012
    Multi-wall carbon nanotubes (MWCNTs) were modified to design a new DNA biosensor. Functionalized MWCNTs were equipped with gold nanoparticles (GNPs) (~15nm) (GNP-MWCNTCOOH) to construct DNA biosensors based on carbon-paste screen-printed (SPE) electrodes. GNP attachment onto functionalized MWCNTs was carried out by microwave irradiation and was confirmed by spectroscopic studies and surface analysis. DNA biosensors based on differential pulse voltammetry (DPV) were constructed by immobilizing thiolated single-stranded DNA probes onto GNP-MWCNTCOOH. Ruthenium (III) chloride hexaammoniate [Ru(NH3)6,2Cl(-)] (RuHex) was used as hybridization redox indicator. RuHex and MWCNT interaction was low in compared to other organic redox hybridization indicators. The linear response range for DNA determination was 1×10(-21) to 1×10(-9)M with a lower detection limit of 1.55×10(-21)M. Thus, the attachment of GNPs onto functionalized MWCNTs yielded sensitive DNA biosensor with low detection limit and stability more than 30days. Constructed electrode was used to determine gender of arowana fish.
    Matched MeSH terms: Gold/chemistry*
  17. Ariffin EY, Lee YH, Futra D, Tan LL, Karim NHA, Ibrahim NNN, et al.
    Anal Bioanal Chem, 2018 Mar;410(9):2363-2375.
    PMID: 29504083 DOI: 10.1007/s00216-018-0893-1
    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10-12-1.0×10-2 μM, with a low detection limit of 8.17×10-14 μM (R2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.
    Matched MeSH terms: Gold/chemistry
  18. Anwar A, Khalid S, Perveen S, Ahmed S, Siddiqui R, Khan NA, et al.
    J Nanobiotechnology, 2018 Jan 29;16(1):6.
    PMID: 29378569 DOI: 10.1186/s12951-017-0332-z
    BACKGROUND: Gold nanoparticles are useful candidate for drug delivery applications and are associated with enhancement in the bioavailability of coated drugs and/or therapeutic agent. Since, heterocyclic compounds are known to exhibit antimicrobial potential against variety of pathogens, we designed this study to evaluate the antibacterial effects of gold nanoparticles conjugation with new synthesized cationic ligand; 4-Dimethyl aminopyridinium propylthioacetate (DMAP-PTA) in comparison with pure compound and antibiotic drug Pefloxacin. Antibacterial activity of DMAP-PTA coated gold nanoparticles was investigated against a fecal strain of E. coli (ATCC 8739).

    RESULTS: A new dimethyl aminopyridine based stabilizing agent named as DMAP-PTA was synthesized and used for stabilization of gold nanoparticles. Gold nanoparticles coated with DMAP-PTA abbreviated as DMAP-PTA-AuNPs were thoroughly characterized by UV-visible, FT-IR spectroscopic methods and transmission electron microscope before biological assay. DMAP-PTA, DMAP-PTA-AuNPs and Pefloxacin were examined for their antibacterial potential against E. coli, and the minimum inhibitory concentration (MIC) was determined to be 300, 200 and 50 µg/mL respectively. Gold nanoparticles conjugation was found to significantly enhance the antibacterial activity of DMAP-PTA as compared to pure compound. Moreover, effects of DMAP-PTA-AuNPs on the antibacterial potential of Pefloxacin was also evaluated by combination therapy of 1:1 mixture of DMAP-PTA-AuNPs and Pefloxacin against E. coli in a wide range of concentrations from 5 to 300 µg/mL. The MIC of Pefloxacin + DMAP-PTA-AuNPs mixture was found to be 25 µg/mL as compared to Pefloxacin alone (50 µg/mL), which clearly indicates that DMAP-PTA-AuNPs increased the potency of Pefloxacin. AFM analysis was also carried out to show morphological changes occur in bacteria before and after treatment of test samples. Furthermore, DMAP-PTA-AuNPs showed high selectivity towards Pefloxacin in spectrophotometric drug recognition studies which offers tremendous potential for analytical applications.

    CONCLUSIONS: Gold nanoparticles conjugation was shown to enhance the antibacterial efficacy of DMAP-PTA ligand, while DMAP-PTA-AuNPs also induced synergistic effects on the potency of Pefloxacin against E. coli. DMAP-PTA-AuNPs were also developed as Pefloxacin probes in recognizing the drug in blood and water samples in the presence of other drugs.

    Matched MeSH terms: Gold/chemistry*
  19. Anwar A, Mungroo MR, Anwar A, Sullivan WJ, Khan NA, Siddiqui R
    ACS Infect Dis, 2019 Dec 13;5(12):2039-2046.
    PMID: 31612700 DOI: 10.1021/acsinfecdis.9b00263
    Brain-eating amoebae cause devastating infections in the central nervous system of humans, resulting in a mortality rate of 95%. There are limited effective therapeutic options available clinically for treating granulomatous amoebic encephalitis and primary amoebic meningoencephalitis caused by Acanthamoeba castellanii (A. castellanii) and Naegleria fowleri (N. fowleri), respectively. Here, we report for the first time that guanabenz conjugated to gold and silver nanoparticles has significant antiamoebic activity against both A. castellanii and N. fowleri. Gold and silver conjugated guanabenz nanoparticles were synthesized by the one-phase reduction method and were characterized by ultraviolet-visible spectrophotometry and atomic force microscopy. Both metals were facilely stabilized by the coating of guanabenz, which was examined by surface plasmon resonance determination. The average size of gold nanoconjugated guanabenz was found to be 60 nm, whereas silver nanoparticles were produced in a larger size distribution with the average diameter of around 100 nm. Guanabenz and its noble metal nanoconjugates exhibited potent antiamoebic effects in the range of 2.5 to 100 μM against both amoebae. Nanoparticle conjugation enhanced the antiamoebic effects of guanabenz, as more potent activity was observed at a lower effective concentration (2.5 and 5 μM) compared to the drug alone. Moreover, encystation and excystation assays revealed that guanabenz inhibits the interconversion between the trophozoite and cyst forms of A. castellanii. Cysticdal effects against N. fowleri were also observed. Notably, pretreatment of A. castellanii with guanabenz and its nanoconjugates exhibited a significant reduction in the host cell cytopathogenicity from 65% to 38% and 2% in case of gold and silver nanoconjugates, respectively. Moreover, the cytotoxic evaluation of guanabenz and its nanoconjugates revealed negligible cytotoxicity against human cells. Guanabenz is already approved for hypertension and crosses the blood-brain barrier; the results of our current study suggest that guanabenz and its conjugated gold and silver nanoparticles can be repurposed as a potential drug for treating brain-eating amoebic infections.
    Matched MeSH terms: Gold/chemistry*
  20. Zhang P, Wang P, Yan L, Liu L
    Int J Nanomedicine, 2018;13:7047-7059.
    PMID: 30464458 DOI: 10.2147/IJN.S180138
    BACKGROUND: Nasopharyngeal cancer (NPC) is one of the subtypes of head and neck cancers. It occurs rarely, and its prevalence depends mainly on geographical location. Modern-day research is focused on coupling nanotechnology and traditional medicine for combating cancers. Gold nanoparticles (AuNPs) were synthesized from Solanum xanthocarpum (Sx) leaf extract using reduction method.

    METHODS: Characterization of the synthesized AuNPs was done by different techniques such as ultraviolet-visible spectrum absorption, X-ray diffraction, dynamic light scattering, Fourier transform infrared spectroscopy, transmission electron microscopy, and energy-dispersive X-ray analysis.

    RESULTS: All the results showed the successful green synthesis of AuNPs from Sx, which induced apoptosis of C666-1 cell line (NPC cell line). There was a decline in both cell viability and colony formation in C666-1 cells upon treatment with Sx-AuNPs. The cell death was proved to be caused by autophagy and mitochondrial-dependent apoptotic pathway.

    CONCLUSION: Thus, due to their anticancer potential, these nanoparticles coupled with Sx can be used for in vivo applications and clinical research in future.

    Matched MeSH terms: Gold/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links