AIM: The aim of the present study was to determine sex of human mandible from morphology, morphometric measurements as well as discriminant function analysis from the CT scan.
MATERIALS AND METHODS: The present retrospective study comprised 79 subjects (48 males, 31 females), with age group between 18 and 74 years, and were obtained from the post mortem computed tomography data in the Hospital Kuala Lumpur. The parameters were divided into three morphologic and nine morphometric parameters, which were measured by using Osirix MD Software 3D Volume Rendering.
RESULTS: The Chi-square test showed that men were significantly association with square-shaped chin (92%), prominent muscle marking (85%) and everted gonial glare, whereas women had pointed chin (84%), less prominent muscle marking (90%) and inverted gonial glare (80%). All parameter measurements showed significantly greater values in males than in females by independent t-test (p< 0.01). By discriminant analysis, the classification accuracy was 78.5%, the sensitivity was 79.2% and the specificity was 77.4%. The discriminant function equation was formulated based on bigonial breath and condylar height, which were the best predictors.
CONCLUSION: In conclusion, the mandible could be distinguished according to the sex. The results of the study can be used for identification of damaged and/or unknown mandible in the Malaysian population.
MATERIALS AND METHODS: This study included 64 sets of digitised maxilla and mandible dental casts obtained from a sample of dental arch with normal occlusion. For human evaluation, a convenient sample of orthodontic practitioners ranked the photo images of dental cast from the most tapered to the less tapered (square). In the mathematical analysis, dental arches were interpolated using the fourth-order polynomial equation with millimetric acetate paper and AutoCAD software. Finally, the relations between human evaluation and mathematical objective analyses were evaluated.
RESULTS: Human evaluations were found to be generally in agreement, but only at the extremes of tapered and square arch forms; this indicated general human error and observer bias. The two methods used to plot the arch form were comparable.
CONCLUSION: The use of fourth-order polynomial equation may be facilitative in obtaining a smooth curve, which can produce a template for individual arch that represents all potential tooth positions for the dental arch.
PURPOSE: The purpose of this observational study was to measure the prevalence of the presence of the anterior loop and to estimate sex and ethnicity-related variations in anterior loop length in the Malaysian population.
MATERIAL AND METHODS: A total of 100 cone beam computed tomography (CBCT) Digital Imaging and Communications in Medicine (DICOM) files were selected from a pool of 810 ongoing or completed patients in 3 different ethnic groups: Malay (33), Indian (33), and Chinese (34). The DICOM data were imported into commercial software. The IAN was traced with software along with the anterior loop and part of the incisive nerve. The vertical length of the nerve was estimated from the canal to the opening of the mental foramen from the cross-sectional view and translated to the panoramic view. Measurement was made from this point to the most anterior point of the anterior loop by following the trajectory of the nerve and was repeated on the opposite side. A 2-way mixed analysis of variance (ANOVA) test was carried out to evaluate the sex- and ethnicity-related variations (α=.05).
RESULTS: The anterior loop was present in 94% of the 100 participants. Overall anterior loop length (AnLL) ranged between 0.73 and 7.99 mm with a mean length of 3.69 ±1.75 mm on the left side and 3.85 ±1.73 mm on the right side. Among all participants, no statistically significant differences were found between the left and right sides of the mandible (P=.379). Overall, no significant main effect of ethnicity (P=.869) or sex (P=.576) was found on AnLL measurements. Also, with multiple comparisons, no significant effect was found between each pair of ethnic groups. Men in all 3 ethnic groups had greater AnLL than women.
CONCLUSIONS: The anterior loop was present in 94% of the 100 participants among the 3 major ethnic groups of Malaysia. Overall AnLL ranged between 0.73 and 7.99 mm and mean lengths of 3.69 ±1.75 mm on the left side and 3.85 ±1.73 mm on the right side, with no significant ethnicity- or sex-related variations.
PURPOSE: The purpose of this in vitro study was to evaluate the crestal strain around 2 implants to support mandibular overdentures when placed at different positions.
MATERIAL AND METHODS: Edentulous mandibles were 3-dimensionally (3D) designed separately with 2 holes for implant placement at similar distances of 5, 10, 15, and 20 mm from the midline, resulting in 4 study conditions. The complete denture models were 3D designed and printed from digital imaging and communications in medicine (DICOM) images after scanning the patient's denture. Two 4.3×12-mm dummy implants were placed in the preplanned holes. Two linear strain gauges were attached on the crest of the mesial and distal side of each implant (CH1, CH2, CH3, and CH4) and connected to a computer to record the electrical signals. Male LOCATOR attachments were attached, the mucosal layer simulated, and the denture picked up with pink female nylon caps. A unilateral and bilateral force of 100 N was maintained for 10 seconds for each model in a universal testing machine while recording the maximum strains in the DCS-100A KYOWA computer software program. Data were analyzed by using 1-way analysis of variance, the Tukey post hoc test, and the paired t test (α=.05).
RESULTS: Under bilateral loading, the strain values indicated a trend with increasing distance between the implants with both right and left distal strain gauges (CH4 and CH1). The negative (-ve) values indicated the compressive force, and the positive (+ve) values indicated the tensile force being applied on the strain gauges. The strain values for CH4 ranged between -166.08 for the 5-mm and -251.58 for the 20-mm position; and for CH1 between -168.08 for the 5-mm and -297.83 for the 20-mm position. The remaining 2 mesial strain gauges for all 4 implant positions remained lower than for CH4 and CH1. Under unilateral-right loading, only the right-side distal strain gauge CH4 indicated the increasing trend in the strain values with -147.5 for the 5-mm, -157.17 for the 10-mm, -209.33 for the 15-mm, and -234.75 for the 20 mm position. The remaining 3 strain gauges CH3, CH2, and CH1 ranged between -28.33 and -107.17. For each position for both implants, significantly higher (P
PURPOSE: The purpose of this clinical study was to evaluate the safe distance in the interforaminal region of the mandible measured from the genial tubercle level for implant osteotomy in a Chinese-Malaysian population.
MATERIAL AND METHODS: A total of 201 Digital Imaging and Communications in Medicine (DICOM) files were selected for the study from the CBCTs of dentate or edentulous Chinese-Malaysian adult patients with ongoing or completed treatments. Measurements were made with implant planning software. The anatomy of the whole mandible was assessed in the coronal cross-sectional, horizontal view and in panoramic view. Measurements were obtained in millimeters on one side by locating and marking a genial tubercle and then marking the mesial margin of the mental foramen and the anterior loop of the inferior alveolar nerve. The corresponding points of these landmarks were identified on the crest of the mandibular ridge to measure the linear distances. All the measurement steps were repeated on the other side. The linear distance of 2 mm was deducted from the total distance between the genial tubercle and the anterior loop separately for left and right side measurements to identify the safe zone. The mixed 2-way analysis of variance (ANOVA) test was used to analyze side and sex-related variations.
RESULTS: The mean safe zone measured at the crestal level from the genial tubercle site on the left side of the mandible was 21.12 mm and 21.67 mm on the right side. A statistically significant (P