METHODS: A website called D-PATH was developed, consisting of 6 learning units for managing hypertension. A 4-week program was implemented, and a pre- and post-intervention assessment was conducted to measure acceptability and changes in knowledge, attitude and practice, dietary intake, physical activity, and anthropometric status.
RESULTS: The D-PATH website was acceptable in terms of understandability, actionability and cognitive load. Knowledge, attitude and practice, and physical activity levels were improved, but no changes were noted for dietary intake and blood pressure level.
CONCLUSION: The D-PATH website was accepted and feasible for the intervention study. This study has shed light on using the website to promote behavioral change in patients with cardiometabolic risks.
OBJECTIVE: This study explores the factors, characteristics, and effects of MAP changes caused by KOA, providing a neuromuscular-based causal analysis for the rehabilitation treatment of KOA.
METHODS: Keywords including the association of MAP with KOA will be included. "Knee, Osteoarthritis, Electromyography(EMG), Muscle Activity patterns, activation amplitudes, activation time, Muscle Synergy, Co-contraction/activation" were used to search the databases of Science Direct, PubMed, Scopus, and Wiley. The criteria include studies from the past fifteen years that document changes in muscle contraction characteristics and causality analysis in patients with KOA. we compared MAP changes between individuals with and without KOA, such as the activation amplitudes, activation time, muscle synergy and co-contraction index(CCI). Additionally, we explored the potential relationship between muscle weakness, pain, and lower limb mechanical changes with the variations of MAP.
RESULTS: A total of 832 articles were reviewed, and 44 articles that met the inclusion criteria were selected for analysis. The changes in biomechanical structure, pain, and muscle atrophy may contribute to the formation and progression of the changes in MAP in KOA patients. In moderate KOA patients, the vastus lateralis (VL) and biceps femoris (BF) exhibits larger activation amplitudes, with earlier and longer activation times. The vastus medialis (VM) shows a delayed activation time relative to VL. Gastrocnemius activation time is prolonged during mid-gait, while the soleus exhibits lower activation amplitudes during the late stance phase. There are fewer, merged synergies with prolonged activation coefficients, and a higher percentage of unclassifiable synergies. Additionally, the CCI is positively correlated with task difficulty and symptoms. It is higher in the medial and lateral than hamstrings and quadriceps, and CCI specifically respond to joint stabilisation and load.
CONCLUSION: In patients with moderate KOA, changes in MAP are mainly related to symptoms and the difficulty of tasks. MAP changes primarily result in variations in amplitude, contraction duration, muscle synergy, and CCI. The MAP changes can subsequently affect the intermuscular structure, pain, joint loading, and stiffness.
CLINICAL IMPLICATIONS: These contribute to the progression of KOA and create a vicious cycle that accelerates disease advancement. Clinical rehabilitation treatments can target the MAP changes to break the cycle and help mitigate disease progression.
METHODOLOGY/PRINCIPAL FINDINGS: Five electronic databases were extensively searched for potentially eligible studies published between 2003 and 2012. Two authors independently assessed selected articles using an MS-Word based form created for this review. Several domains (name of muscle, study type, sensor type, subject's types, muscle contraction, measured parameters, frequency range, hardware and software, signal processing and statistical analysis, results, applications, authors' conclusions and recommendations for future work) were extracted for further analysis. From a total of 2184 citations 119 were selected for full-text evaluation and 36 studies of MFs were identified. The systematic results find sufficient evidence that MMG may be used for assessing muscle fatigue, strength, and balance. This review also provides reason to believe that MMG may be used to examine muscle actions during movements and for monitoring muscle activities under various types of exercise paradigms.
CONCLUSIONS/SIGNIFICANCE: Overall judging from the increasing number of articles in recent years, this review reports sufficient evidence that MMG is increasingly being used in different aspects of MF. Thus, MMG may be applied as a useful tool to examine diverse conditions of muscle activity. However, the existing studies which examined MMG for MFs were confined to a small sample size of healthy population. Therefore, future work is needed to investigate MMG, in examining MFs between a sufficient number of healthy subjects and neuromuscular patients.