Displaying publications 101 - 120 of 4601 in total

Abstract:
Sort:
  1. Alqahtani T, Deore SL, Kide AA, Shende BA, Sharma R, Dadarao Chakole R, et al.
    Mitochondrion, 2023 Jul;71:83-92.
    PMID: 37269968 DOI: 10.1016/j.mito.2023.05.007
    Misfolded proteins in the central nervous system can induce oxidative damage, which can contribute to neurodegenerative diseases in the mitochondria. Neurodegenerative patients face early mitochondrial dysfunction, impacting energy utilization. Amyloid-ß and tau problems both have an effect on mitochondria, which leads to mitochondrial malfunction and, ultimately, the onset of Alzheimer's disease. Cellular oxygen interaction yields reactive oxygen species within mitochondria, initiating oxidative damage to mitochondrial constituents. Parkinson's disease, linked to oxidative stress, α-synuclein aggregation, and inflammation, results from reduced brain mitochondria activity. Mitochondrial dynamics profoundly influence cellular apoptosis via distinct causative mechanisms. The condition known as Huntington's disease is characterized by an expansion of polyglutamine, primarily impactingthe cerebral cortex and striatum. Research has identified mitochondrial failure as an early pathogenic mechanism contributing to HD's selective neurodegeneration. The mitochondria are organelles that exhibit dynamism by undergoing fragmentation and fusion processes to attain optimal bioenergetic efficiency. They can also be transported along microtubules and regulateintracellular calcium homeostasis through their interaction with the endoplasmic reticulum. Additionally, the mitochondria produce free radicals. The functions of eukaryotic cells, particularly in neurons, have significantly deviated from the traditionally assigned role of cellular energy production. Most of them areimpaired in HD, which may lead to neuronal dysfunction before symptoms manifest. This article summarizes the most important changes in mitochondrial dynamics that come from neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's and Amyotrophic Lateral Sclerosis. Finally, we discussed about novel techniques that can potentially treat mitochondrial malfunction and oxidative stress in four most dominating neuro disorders.
    Matched MeSH terms: Oxidative Stress/physiology
  2. Satel J, Hilchey MD, Wang Z, Reiss CS, Klein RM
    Psychophysiology, 2014 Oct;51(10):1037-45.
    PMID: 24976355 DOI: 10.1111/psyp.12245
    Inhibition of return (IOR) operationalizes a behavioral phenomenon characterized by slower responding to cued, relative to uncued, targets. Two independent forms of IOR have been theorized: input-based IOR occurs when the oculomotor system is quiescent, while output-based IOR occurs when the oculomotor system is engaged. EEG studies forbidding eye movements have demonstrated that reductions of target-elicited P1 components are correlated with IOR magnitude, but when eye movements occur, P1 effects bear no relationship to behavior. We expand on this work by adapting the cueing paradigm and recording event-related potentials: IOR is caused by oculomotor responses to central arrows or peripheral onsets and measured by key presses to peripheral targets. Behavioral IOR is observed in both conditions, but P1 reductions are absent in the central arrow condition. By contrast, arrow and peripheral cues enhance Nd, especially over contralateral electrode sites.
    Matched MeSH terms: Attention/physiology*; Brain/physiology*; Evoked Potentials/physiology*; Eye Movements/physiology*; Psychomotor Performance/physiology; Reaction Time/physiology; Visual Perception/physiology*
  3. Lee KT, Lim EH, Tan CH, Low JH, Wong KL, Guan C, et al.
    ACS Appl Mater Interfaces, 2024 Nov 13;16(45):62914-62924.
    PMID: 39497522 DOI: 10.1021/acsami.4c12371
    The integration of flexible sensors into human-machine interfaces (HMIs) is in increasing demand for intuitive and effective manipulation. Traditional glove-based HMIs, constrained by nonconformal rigid structures or the need for bulky batteries, face limitations in continuous operation. Addressing this, we introduce yarn-based bend sensors in our smart glove, which are wirelessly powered and harvest energy from a fully textile 5.8 GHz WiFi-band antenna receiver. These sensors exhibit a gauge factor (GF) of 5.60 for strains ranging from 0 to 10%. They show a consistent performance regardless of the straining frequency when being stretched and released at frequencies between 0.1 and 0.7 Hz. This reliability ensures that the sensor output is solely dependent on the yarn's elongation. Accurately detecting finger-bending movements from 0° to 90° in a virtual environment, the sensors enable enhanced degrees of freedom for human finger interaction. When integrated with advanced machine-learning techniques, the system achieves a classification accuracy of 98.75% for object recognition, demonstrating its potential for precise and accurate HMI. Unlike conventional near-field energy transfer methods that rely on magnetic flux and are limited by power loss over distance, our fully textile design effectively harvests microwave energy, showing no voltage deterioration up to 1 m away. This minimalist microwave-powered smart glove represents a significant advancement, offering a viable and practical solution for developing intuitive and reliable HMIs.
    Matched MeSH terms: Fingers/physiology
  4. Taniguchi M, Iwahashi M, Oka Y, Tiong SYX, Sato M
    PLoS One, 2022;17(9):e0274170.
    PMID: 36067159 DOI: 10.1371/journal.pone.0274170
    The fork cell and von Economo neuron, which are found in the insular cortex and/or the anterior cingulate cortex, are defined by their unique morphologies. Their shapes are not pyramidal; the fork cell has two primary apical dendrites and the von Economo neurons are spindle-shaped (bipolar). Presence of such neurons are reported only in the higher animals, especially in human and great ape, indicating that they are specific for most evolved species. Although it is likely that these neurons are involved in higher brain function, lack of results with experimental animals makes further investigation difficult. We here ask whether equivalent neurons exist in the mouse insular cortex. In human, Fezf2 has been reported to be highly expressed in these morphologically distinctive neurons and thus, we examined the detailed morphology of Fezf2-positive neurons in the mouse brain. Although von Economo-like neurons were not identified, Fezf2-positive fork cell-like neurons with two characteristic apical dendrites, were discovered. Examination with electron microscope indicated that these neurons did not embrace capillaries, rather they held another cell. We here term such neurons as holding neurons. We further observed several molecules, including neuromedin B (NMB) and gastrin releasing peptide (GRP) that are known to be localized in the fork cells and/or von Economo cells in human, were localized in the mouse insular cortex. Based on these observations, it is likely that an equivalent of the fork cell is present in the mouse.
    Matched MeSH terms: Neurons/physiology
  5. Barrouillet P, Camos V, Minamoto T, Nishiyama S, Chooi WT, Morita A, et al.
    J Exp Psychol Learn Mem Cogn, 2023 Oct;49(10):1539-1556.
    PMID: 37307321 DOI: 10.1037/xlm0001261
    Although working memory (WM) is usually defined as a cognitive system coordinating processing and storage in the short term, in most WM models, memory aspects have been developed more fully than processing systems, and many studies of WM tasks have tended to focus on memory performance. The present study investigated WM functioning without focusing exclusively on short-term memory performance by presenting participants with an n-back task on letters, n varying from 0 to 2, each letter being followed by a tone discrimination task involving from one to three tones. Predictions regarding the reciprocal effects of these tasks on each other were motivated by the time-based resource-sharing (TBRS) theoretical framework for WM that assumes the temporal sharing of attention between processing and memory. Although, as predicted, increasing the n value had a detrimental effect on tone discrimination in terms of accuracy and response times, and increasing the number of tones disrupted speed and accuracy on n-back performance, the overall pattern of results did not perfectly fit the TBRS predictions. Nonetheless, the main alternative models of WM do not seem to offer a complete account. The present findings point toward the need to use a larger range of tasks and situations in designing and testing models of WM. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
    Matched MeSH terms: Attention/physiology
  6. Gugnani HC, Denning DW
    Med Mycol, 2023 Aug 02;61(8).
    PMID: 37553137 DOI: 10.1093/mmy/myad080
    Histoplasma species infect humans and animals, notably bats. Histoplasma species are thermally dimorphic fungi existing in mycelial form in the natural environment and in yeast form in infected tissues. In this narrative literature review, we summarize the occurrence of Histoplasma spp. in different species of bat tissues (n = 49) and in soil admixed with bat guano where the species of bat dwelling nearby has been identified (an additional 18 species likely infected) to provide an up-to-date summary of data. Most positive isolations are from the Americas and Caribbean, with some studies from Thailand, Malaysia, Nigeria, Slovenia, France, and Australia. We also summarize some of the early experimental work to elucidate pathogenicity, latency, immune response, and faecal excretion in bats. Given the recent recognition of the global extent of histoplasmosis, thermal dimorphism in Histoplasma spp., and global heating, additional work on understanding the complex relationship between Histoplasma and bats is desirable.
    Matched MeSH terms: Histoplasma/physiology
  7. Ab Hamid MR, Buhari SS, Md Noor H, Azizan N', Md Nor N
    J Prim Care Community Health, 2023;14:21501319231214091.
    PMID: 38041441 DOI: 10.1177/21501319231214091
    OBJECTIVE: This study aimed to evaluate the feasibility of the D-PATH website to improve dietary and physical activity management for patients with cardiometabolic risk.

    METHODS: A website called D-PATH was developed, consisting of 6 learning units for managing hypertension. A 4-week program was implemented, and a pre- and post-intervention assessment was conducted to measure acceptability and changes in knowledge, attitude and practice, dietary intake, physical activity, and anthropometric status.

    RESULTS: The D-PATH website was acceptable in terms of understandability, actionability and cognitive load. Knowledge, attitude and practice, and physical activity levels were improved, but no changes were noted for dietary intake and blood pressure level.

    CONCLUSION: The D-PATH website was accepted and feasible for the intervention study. This study has shed light on using the website to promote behavioral change in patients with cardiometabolic risks.

    Matched MeSH terms: Exercise/physiology
  8. Yang C, Shi L, Lu Y, Wu H, Yu D
    J Sports Sci Med, 2024 Sep;23(1):611-618.
    PMID: 39228782 DOI: 10.52082/jssm.2024.611
    Drop jump (DJ) and squat jump (SJ) exercises are commonly used in rhythmic gymnastics training. However, the acute effects of DJ and SJ on countermovement jump (CMJ) performance have not been investigated. This study aimed to verify the post-activation performance enhancement (PAPE) responses induced by DJ and SJ with optimal power load and evaluate the relationship between peak PAPE effects and strength levels. Twenty female rhythmic gymnasts completed the following exercises in a randomized order on three separate days: 6 repetitions of DJs; 6 repetitions of SJs with optimal power load; and no exercise (control condition). Jump height was assessed before (baseline) and at 30 seconds and 3, 6, and 9 minutes after each exercise. DJs significantly improved jump height by 0.8 cm (effect size (ES) = 0.25; P = 0.003) at 30 seconds post-exercise compared with baseline. Jump height significantly decreased by -0.14 cm (ES = -0.61; P = 0.021) at 9 minutes after the control condition. SJs significantly improved jump height by 1.02 cm (ES = 0.36; P = 0.005) at 9 minutes post-exercise compared to the control condition. Jump height and relative back squat one-repetition maximum were positively related after performing DJs (r = 0.63; P = 0.003) and SJs (r = 0.64; P = 0.002). DJ and SJ exercises effectively improved countermovement jump height. DJ improved jump height early, while SJ produced greater potentiation effects later. Athletes with a higher strength level benefited the most from these exercises.
    Matched MeSH terms: Movement/physiology
  9. Li J, Soh KG, Loh SP
    Sci Rep, 2024 Jul 26;14(1):17213.
    PMID: 39060296 DOI: 10.1038/s41598-024-67995-7
    The optimal intermittent time for post-activation potentiation (PAP) training remains uncertain and contentious. This study employed a meta-analysis to systematically evaluate the effect of different intermittent times on PAP in relation to explosive vertical jump height. Relevant literature was sourced from CNKI, Wanfang, VIP, CBM, PubMed, Web of Science, and Google Scholar databases using keywords such as "postactivation potentiation," "activation enhancement effect," "PAP," "explosive vertical jump," "explosive vertical high jump," and "intermittent time." The search covered publications from the inception of each database until June 2024. Studies involving athletes (regardless of sport type) undergoing PAP training were included, with no restrictions on the methods used to induce PAP. Comparative analysis focused on the heights of countermovement jumps (CMJ) and peak ground reaction force (GRF) before and after interventions. The quality of the included studies was assessed using the Cochrane Risk of Bias Tool, and data were analyzed using RevMan5.3. The study included a total of 21 papers with 327 subjects, primarily using the squat as the method of PAP induction. The meta-analysis revealed that intermittent times of 4 min [MD = - 0.03, 95% CI: - 0.04 ~ - 0.01; Z = 2.71, P = 0.007] and 5-8 min [MD = - 0.03, 95% CI: - 0.04 ~ - 0.01; Z = 3.07, P = 0.002] significantly increased the height of explosive vertical CMJs. However, intermittent times of 1-3 min [MD = -0.00, 95% CI: - 0.01 ~ 0.01; Z = 0.38, P = 0.70] and 10-24 min [MD = - 0.01, 95% CI: - 0.02 ~ 0.00; Z = 1.43, P = 0.15] did not show significant effects on CMJ height. These findings indicate that 4-min and 5-8 min intervals significantly enhance CMJ height, while intervals shorter than 4 min or longer than 8 min do not have a significant impact.
    Matched MeSH terms: Muscle Strength/physiology
  10. Liu S, Du Z, Song L, Liu H, Tee CATH, Liu H, et al.
    J Orthop Surg Res, 2025 Jan 30;20(1):112.
    PMID: 39885604 DOI: 10.1186/s13018-025-05484-x
    BACKGROUND: Knee Osteoarthritis (KOA) is a prevalent condition worldwide, significantly diminishing quality of life and productivity. Except for the alignment change, muscle activation patterns (MAP) have garnered increasing attention as another crucial factor contributing to KOA.

    OBJECTIVE: This study explores the factors, characteristics, and effects of MAP changes caused by KOA, providing a neuromuscular-based causal analysis for the rehabilitation treatment of KOA.

    METHODS: Keywords including the association of MAP with KOA will be included. "Knee, Osteoarthritis, Electromyography(EMG), Muscle Activity patterns, activation amplitudes, activation time, Muscle Synergy, Co-contraction/activation" were used to search the databases of Science Direct, PubMed, Scopus, and Wiley. The criteria include studies from the past fifteen years that document changes in muscle contraction characteristics and causality analysis in patients with KOA. we compared MAP changes between individuals with and without KOA, such as the activation amplitudes, activation time, muscle synergy and co-contraction index(CCI). Additionally, we explored the potential relationship between muscle weakness, pain, and lower limb mechanical changes with the variations of MAP.

    RESULTS: A total of 832 articles were reviewed, and 44 articles that met the inclusion criteria were selected for analysis. The changes in biomechanical structure, pain, and muscle atrophy may contribute to the formation and progression of the changes in MAP in KOA patients. In moderate KOA patients, the vastus lateralis (VL) and biceps femoris (BF) exhibits larger activation amplitudes, with earlier and longer activation times. The vastus medialis (VM) shows a delayed activation time relative to VL. Gastrocnemius activation time is prolonged during mid-gait, while the soleus exhibits lower activation amplitudes during the late stance phase. There are fewer, merged synergies with prolonged activation coefficients, and a higher percentage of unclassifiable synergies. Additionally, the CCI is positively correlated with task difficulty and symptoms. It is higher in the medial and lateral than hamstrings and quadriceps, and CCI specifically respond to joint stabilisation and load.

    CONCLUSION: In patients with moderate KOA, changes in MAP are mainly related to symptoms and the difficulty of tasks. MAP changes primarily result in variations in amplitude, contraction duration, muscle synergy, and CCI. The MAP changes can subsequently affect the intermuscular structure, pain, joint loading, and stiffness.

    CLINICAL IMPLICATIONS: These contribute to the progression of KOA and create a vicious cycle that accelerates disease advancement. Clinical rehabilitation treatments can target the MAP changes to break the cycle and help mitigate disease progression.

    Matched MeSH terms: Biomechanical Phenomena/physiology
  11. Ghafourifar P, Farahani Z, Norooznezhad AH, Hantoushzadeh S, Azimzadeh M, Nabavian SM, et al.
    Reprod Biol, 2025 Mar;25(1):100991.
    PMID: 39798273 DOI: 10.1016/j.repbio.2024.100991
    Contrary to the evidence supporting the role for insulin in stimulating uterine contraction, only a limited number of studies have highlighted the inhibitory effect of insulin on myometrial contractions in human and rodent. A hypothetical narrative review of the current literature was conducted, revealing the current literature and shows the potential inhibitory effects of insulin on myometrial contractility. These inhibitory mechanisms include activation of adenylyl cyclase signaling pathways, an increase in cAMP production, a decrease in Ca2 + influx and cytosolic Ca2+, hyperpolarization of the cell membrane, and stimulation of NO synthesis. Altered oxytocin sensitivity, structural similarity to relaxin, modulating abscisic acid (ABA) effect, and synergistic interaction with progesterone, adiponectin, and leptin may also represent additional mechanisms for the inhibitory effects of insulin on myometrial contractions. The literature indicates that insulin exhibits inhibitory effects on myometrial contractility. Confirming such a conclusion through future studies may propose insulin as a possible uterine quiescent.
    Matched MeSH terms: Signal Transduction/physiology
  12. Obaidellah UH, Cheng PC
    Percept Mot Skills, 2015 Apr;120(2):535-55.
    PMID: 25706345 DOI: 10.2466/24.PMS.120v17x6
    The study investigated the effects of chunking and perceptual patterns that guide the drawings of Rey complex figure. Ten adult participants (M age=22.2 yr., SD=4.1) reproduced a single stimulus in four drawing modes including delayed recall, tracing, copying, and immediate recall across 10 sessions producing a total of 400 trials. It was hypothesized that the effect of chunking is most obvious in the free recall tasks than in the tracing or copying tasks. Measures such as pauses, patterns of drawings, and transitions among patterns of drawings suggested that participants used chunking to aid rapid learning of the diagram. The analysis of the participants' sequence of chunk production further revealed that they used a spatial schema to organize the chunks. Findings from this study provide additional evidence to support prior studies that claim graphical information is hierarchically organized.
    Matched MeSH terms: Learning/physiology*; Psychomotor Performance/physiology*; Mental Recall/physiology*; Space Perception/physiology*
  13. Mecawi AS, Macchione AF, Nuñez P, Perillan C, Reis LC, Vivas L, et al.
    Neurosci Biobehav Rev, 2015 Apr;51:1-14.
    PMID: 25528684 DOI: 10.1016/j.neubiorev.2014.12.012
    Thirst and sodium appetite are the sensations responsible for the motivated behaviors of water and salt intake, respectively, and both are essential responses for the maintenance of hydromineral homeostasis in animals. These sensations and their related behaviors develop very early in the postnatal period in animals. Many studies have demonstrated several pre- and postnatal stimuli that are responsible for the developmental programing of thirst and sodium appetite and, consequently, the pattern of water and salt intake in adulthood in need-free or need-induced conditions. The literature systematically reports the involvement of dietary changes, hydromineral and cardiovascular challenges, renin-angiotensin system and steroid hormone disturbances, and lifestyle in these developmental factors. Therefore, this review will address how pre- and postnatal challenges can program lifelong thirst and sodium appetite in animals and humans, as well as which neuroendocrine substrates are involved. In addition, the possible epigenetic molecular mechanisms responsible for the developmental programing of drinking behavior, the clinical implications of hydromineral disturbances during pre- and postnatal periods, and the developmental origins of adult hydromineral behavior will be discussed.
    Matched MeSH terms: Appetite/physiology*; Brain/physiology; Drinking/physiology; Thirst/physiology*
  14. Islam MA, Sundaraj K, Ahmad RB, Ahamed NU
    PLoS One, 2013;8(3):e58902.
    PMID: 23536834 DOI: 10.1371/journal.pone.0058902
    BACKGROUND: Mechanomyography (MMG) has been extensively applied in clinical and experimental practice to examine muscle characteristics including muscle function (MF), prosthesis and/or switch control, signal processing, physiological exercise, and medical rehabilitation. Despite several existing MMG studies of MF, there has not yet been a review of these. This study aimed to determine the current status on the use of MMG in measuring the conditions of MFs.

    METHODOLOGY/PRINCIPAL FINDINGS: Five electronic databases were extensively searched for potentially eligible studies published between 2003 and 2012. Two authors independently assessed selected articles using an MS-Word based form created for this review. Several domains (name of muscle, study type, sensor type, subject's types, muscle contraction, measured parameters, frequency range, hardware and software, signal processing and statistical analysis, results, applications, authors' conclusions and recommendations for future work) were extracted for further analysis. From a total of 2184 citations 119 were selected for full-text evaluation and 36 studies of MFs were identified. The systematic results find sufficient evidence that MMG may be used for assessing muscle fatigue, strength, and balance. This review also provides reason to believe that MMG may be used to examine muscle actions during movements and for monitoring muscle activities under various types of exercise paradigms.

    CONCLUSIONS/SIGNIFICANCE: Overall judging from the increasing number of articles in recent years, this review reports sufficient evidence that MMG is increasingly being used in different aspects of MF. Thus, MMG may be applied as a useful tool to examine diverse conditions of muscle activity. However, the existing studies which examined MMG for MFs were confined to a small sample size of healthy population. Therefore, future work is needed to investigate MMG, in examining MFs between a sufficient number of healthy subjects and neuromuscular patients.

    Matched MeSH terms: Muscle Contraction/physiology; Muscle, Skeletal/physiology*; Muscle Fatigue/physiology; Muscle Strength/physiology
  15. Pritam HM, Jayaprakash PT
    J Forensic Sci, 2009 Sep;54(5):1135-40.
    PMID: 19570050 DOI: 10.1111/j.1556-4029.2009.01095.x
    The likelihood of dipteran maggots colonizing a corpse due to nocturnal oviposition can be used to challenge the postmortem interval (PMI) estimated assuming diurnal oviposition. Earlier experiments tested nocturnal oviposition behavior by exposing fresh baits once during a single night. In this pilot study, oviposition behavior was studied using beef baits, which, simulating the decay of the body seen in case situations, decomposed inside cages designed to open and close at scheduled intervals during consecutive night or twilight periods. Freshly hatched maggots from diurnally oviposited eggs emerged in control baits on the third day, while a limited number of maggots attributable to nocturnal or twilight oviposition were observed in experimental baits only on the fifth or sixth day, indicating a categorical delay. These results suggest that such delayed and limited nocturnal oviposition is not forensically significant since the larger maggots deriving from diurnal oviposition would be the ones considered when estimating PMI.
    Matched MeSH terms: Circadian Rhythm/physiology*; Diptera/physiology*; Feeding Behavior/physiology*; Oviposition/physiology*
  16. Balakrishnan S, Gopalakrishnan M, Alagesan M, Prakash ES
    Adv Physiol Educ, 2007 Mar;31(1):51-4.
    PMID: 17327583
    It is common to see chapters on acid-base physiology state that the goal of acid-base regulatory mechanisms is to maintain the pH of arterial plasma and not arterial Pco(2) (Pa(CO(2))) or plasma HCO(3). A hypothetical situation in which the Pa(CO(2)) of arterial plasma is 80 mmHg and the plasma HCO(3) concentration is 48 mM is presented and analyzed to get over this misconception. As per the modified Henderson equation, the pH of arterial plasma would be 7.4; however, we explain that this may be associated with intracellular acidosis due to intracellular hypercapnia and that derangement of homeostasis is evident from the occurrence of respiratory depression and, eventually, coma in the patient described. This suggests that the ultimate goal of acid-base regulatory mechanisms is not just the maintenance of the pH of arterial plasma but the maintenance of the steady-state pH of intracellular fluid as well.
    Matched MeSH terms: Acid-Base Equilibrium/physiology*; Homeostasis/physiology; Physiology/education*
  17. Hor YL, Kim YJ, Ugap A, Chabrillange N, Sinniah UR, Engelmann F, et al.
    Ann Bot, 2005 Jun;95(7):1153-61.
    PMID: 15781438
    The purpose of this study was to investigate the basis of the optimal hydration status for cryopreservation of intermediate oily seeds using Citrus as a model.
    Matched MeSH terms: Citrus/physiology*; Lipids/physiology*; Seeds/physiology*; Water/physiology*
  18. Spence C, Okajima K, Cheok AD, Petit O, Michel C
    Brain Cogn, 2016 12;110:53-63.
    PMID: 26432045 DOI: 10.1016/j.bandc.2015.08.006
    One of the brain's key roles is to facilitate foraging and feeding. It is presumably no coincidence, then, that the mouth is situated close to the brain in most animal species. However, the environments in which our brains evolved were far less plentiful in terms of the availability of food resources (i.e., nutriments) than is the case for those of us living in the Western world today. The growing obesity crisis is but one of the signs that humankind is not doing such a great job in terms of optimizing the contemporary food landscape. While the blame here is often put at the doors of the global food companies - offering addictive foods, designed to hit 'the bliss point' in terms of the pleasurable ingredients (sugar, salt, fat, etc.), and the ease of access to calorie-rich foods - we wonder whether there aren't other implicit cues in our environments that might be triggering hunger more often than is perhaps good for us. Here, we take a closer look at the potential role of vision; Specifically, we question the impact that our increasing exposure to images of desirable foods (what is often labelled 'food porn', or 'gastroporn') via digital interfaces might be having, and ask whether it might not inadvertently be exacerbating our desire for food (what we call 'visual hunger'). We review the growing body of cognitive neuroscience research demonstrating the profound effect that viewing such images can have on neural activity, physiological and psychological responses, and visual attention, especially in the 'hungry' brain.
    Matched MeSH terms: Brain/physiology*; Hunger/physiology*; Satiation/physiology*; Visual Perception/physiology*
  19. Singh R, Singh HJ, Sirisinghe RG
    Br J Sports Med, 1995 Mar;29(1):13-5.
    PMID: 7788209
    Maximal oxygen consumption (VO2max) and maximal workload attained (WLmax) were determined in 28 Malaysian dragon boat rowers who were exercised to exhaustion on an arm ergometer. Mean VO2max was 2.75 l min-1 at a mean WLmax of 195.5 W. Anaerobic endurance power of the arms, determined by cranking at 100 RPM at a workload of 400 W and the time taken to maintain the cadence until it fell to 75 RPM, was 34.9(+/- 2.3) s. Leg performance, as determined by standing long jump and vertical jump, was 140.0(+/- 4.5) kg m and 100.3(+/- 3.1) kg m s-1 respectively. Right hand grip strength was significantly (p < 0.001) greater than the left hand. Percentage body fat of the rowers was 11.8(+/- 0.6)%. These values represent the first measurements of their kind performed on dragon boat rowers in Malaysia.
    Matched MeSH terms: Physical Endurance/physiology; Sports/physiology*; Exercise/physiology*; Muscle, Skeletal/physiology
  20. Malami I, Abdul AB
    Biomed Pharmacother, 2019 Jan;109:1506-1510.
    PMID: 30551402 DOI: 10.1016/j.biopha.2018.10.200
    Apoptosis is a series of molecular signalling regulating normal cellular growth and development. Cells resistance to apoptosis, however, leads to uncontrolled proliferation. Research involving cancer cell death is one of the most important targeted areas in the discovery of novel anticancer therapy. There are several biochemical pathways that are liked towards cancer cell death of which, uridine-cytidine kinase 2 (UCK2) was recently linked to cell apoptosis induction. UCK2 is responsible for the phosphorylation of uridine and cytidine to their corresponding monophosphate in a salvage pathway of pyrimidine nucleotides biosynthesis. Cytotoxic ribonucleoside analogues that target UCK2 enzyme activity are currently being investigated in clinical trials useful for cancer treatment. Whilst findings have clearly shown that these antimetabolites inhibit cancer development in clinical settings, they have yet to establish linking cytotoxic nucleoside analogues to cancer cell death. In this present review, we propose the probable molecular crosstalk involving UCK2 protein and cancer cell death through cell cycle arrest and triggering of apoptosis involving proteins, MDM2 and the subsequent activation of p53.
    Matched MeSH terms: Cell Death/physiology*; Apoptosis/physiology*; Cell Proliferation/physiology; Cell Cycle Checkpoints/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links